Academic literature on the topic 'Intégration multi-Omiques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Intégration multi-Omiques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Intégration multi-Omiques"

1

Wery, Méline. "Identification de signature causale pathologie par intégration de données multi-omiques." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S071.

Full text
Abstract:
Le lupus systémique erythémateux est un exemple de maladie complexe, hétérogène et multi-factorielle. L'identification de signature pouvant expliquer la cause d'une maladie est un enjeu important pour la stratification des patients. De plus, les analyses statistiques classiques s'appliquent difficilement quand les populations d'intérêt sont hétérogènes et ne permettent pas de mettre en évidence la cause. Cette thèse présente donc deux méthodes permettant de répondre à cette problématique. Tout d'abord, un modèle transomique est décrit pour structurer l'ensemble des données omiques en utilisant le Web sémantique (RDF). Son alimentation repose sur une analyse à l'échelle du patient. L'interrogation de ce modèle sous forme d'une requête SPARQL a permis l'identification d'expression Individually-Consistent Trait Loci (eICTLs). Il s'agit d'une association par raisonnement d'un couple SNP-gène pour lequel la présence d'un SNP influence la variation d'expression du gène. Ces éléments ont permis de réduire la dimensionalité des données omiques et présentent un apport plus informatif que les données de génomique. Cette première méthode se base uniquement sur l'utilisation des données omiques. Ensuite, la deuxième méthode repose sur la dépendance entre les régulations existante dans les réseaux biologiques. En combinant la dynamique des systèmes biologiques et l'analyse par concept formel, les états stables générés sont automatiquement classés. Cette classification a permis d'enrichir des signatures biologiques, caractéristique de phénotype. De plus, de nouveaux phénotypes hybrides ont été identifiés
Systematic erythematosus lupus is an example of a complex, heterogeneous and multifactorial disease. The identification of signature that can explain the cause of a disease remains an important challenge for the stratification of patients. Classic statistical analysis can hardly be applied when population of interest are heterogeneous and they do not highlight the cause. This thesis presents two methods that answer those issues. First, a transomic model is described in order to structure all the omic data, using semantic Web (RDF). Its supplying is based on a patient-centric approach. SPARQL query interrogates this model and allow the identification of expression Individually-Consistent Trait Loci (eICTLs). It a reasoning association between a SNP and a gene whose the presence of the SNP impact the variation of its gene expression. Those elements provide a reduction of omics data dimension and show a more informative contribution than genomic data. This first method are omics data-driven. Then, the second method is based on the existing regulation dependancies in biological networks. By combining the dynamic of biological system with the formal concept analysis, the generated stable states are automatically classified. This classification enables the enrichment of biological signature, which caracterised a phenotype. Moreover, new hybrid phenotype is identified
APA, Harvard, Vancouver, ISO, and other styles
2

Bodein, Antoine. "Mise en place d'approches bioinformatiques innovantes pour l'intégration de données multi-omiques longitudinales." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69592.

Full text
Abstract:
Les nouvelles technologies «omiques» à haut débit, incluant la génomique, l'épigénomique, la transcriptomique, la protéomique, la métabolomique ou encore la métagénomique, ont connues ces dernières années un développement considérable. Indépendamment, chaque technologie omique est une source d'information incontournable pour l'étude du génome humain, de l'épigénome, du transcriptome, du protéome, du métabolome, et également de son microbiote permettant ainsi d'identifier des biomarqueurs responsables de maladies, de déterminer des cibles thérapeutiques, d'établir des diagnostics préventifs et d'accroître les connaissances du vivant. La réduction des coûts et la facilité d'acquisition des données multi-omiques à permis de proposer de nouveaux plans expérimentaux de type série temporelle où le même échantillon biologique est séquencé, mesuré et quantifié à plusieurs temps de mesures. Grâce à l'étude combinée des technologies omiques et des séries temporelles, il est possible de capturer les changements d'expressions qui s'opèrent dans un système dynamique pour chaque molécule et avoir une vision globale des interactions multi-omiques, inaccessibles par une approche simple standard. Cependant le traitement de cette somme de connaissances multi-omiques fait face à de nouveaux défis : l'évolution constante des technologies, le volume des données produites, leur hétérogénéité, la variété des données omiques et l'interprétabilité des résultats d'intégration nécessitent de nouvelles méthodes d'analyses et des outils innovants, capables d'identifier les éléments utiles à travers cette multitude d'informations. Dans cette perspective, nous proposons plusieurs outils et méthodes pour faire face aux challenges liés à l'intégration et l'interprétation de ces données multi-omiques particulières. Enfin, l'intégration de données multi-omiques longitudinales offre des perspectives dans des domaines tels que la médecine de précision ou pour des applications environnementales et industrielles. La démocratisation des analyses multi-omiques et la mise en place de méthodes d'intégration et d'interprétation innovantes permettront assurément d'obtenir une meilleure compréhension des écosystèmes biologiques.
New high-throughput «omics» technologies, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, have expanded considerably in recent years. Independently, each omics technology is an essential source of knowledge for the study of the human genome, epigenome, transcriptome, proteome, metabolome, and also its microbiota, thus making it possible to identify biomarkers leading to diseases, to identify therapeutic targets, to establish preventive diagnoses and to increase knowledge of living organisms. Cost reduction and ease of multi-omics data acquisition resulted in new experimental designs based on time series in which the same biological sample is sequenced, measured and quantified at several measurement times. Thanks to the combined study of omics technologies and time series, it is possible to capture the changes in expression that take place in a dynamic system for each molecule and get a comprehensive view of the multi-omics interactions, which was inaccessible with a simple standard omics approach. However, dealing with this amount of multi-omics data faces new challenges: continuous technological evolution, large volumes of produced data, heterogeneity, variety of omics data and interpretation of integration results require new analysis methods and innovative tools, capable of identifying useful elements through this multitude of information. In this perspective, we propose several tools and methods to face the challenges related to the integration and interpretation of these particular multi-omics data. Finally, integration of longidinal multi-omics data offers prospects in fields such as precision medicine or for environmental and industrial applications. Democratisation of multi-omics analyses and the implementation of innovative integration and interpretation methods will definitely lead to a deeper understanding of eco-systems biology.
APA, Harvard, Vancouver, ISO, and other styles
3

Jagtap, Surabhi. "Multilayer Graph Embeddings for Omics Data Integration in Bioinformatics." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST014.

Full text
Abstract:
Les systèmes biologiques sont composés de biomolécules en interaction à différents niveaux moléculaires. D’un côté, les avancées technologiques ont facilité l’obtention des données omiques à ces divers niveaux. De l’autre, de nombreuses questions se posent, pour donner du sens et élucider les interactions importantes dans le flux d’informations complexes porté par cette énorme variété et quantité des données multi-omiques. Les réponses les plus satisfaisantes seront celles qui permettront de dévoiler les mécanismes sous-jacents à la condition biologique d’intérêt. On s’attend souvent à ce que l’intégration de différents types de données omiques permette de mettre en lumière les changements causaux potentiels qui conduisent à un phénotype spécifique ou à des traitements ciblés. Avec les avancées récentes de la science des réseaux, nous avons choisi de traiter ce problème d’intégration en représentant les données omiques à travers les graphes. Dans cette thèse, nous avons développé trois modèles à savoir BraneExp, BraneNet et BraneMF pour l’apprentissage d’intégrations de noeuds à partir de réseaux biologiques multicouches générés à partir de données omiques. Notre objectif est de résoudre divers problèmes complexes liés à l’intégration de données multiomiques, en développant des méthodes expressives et évolutives capables de tirer parti de la riche sémantique structurelle latente des réseaux du monde réel
Biological systems are composed of interacting bio-molecules at different molecular levels. With the advent of high-throughput technologies, omics data at their respective molecular level can be easily obtained. These huge, complex multi-omics data can be useful to provide insights into the flow of information at multiple levels, unraveling the mechanisms underlying the biological condition of interest. Integration of different omics data types is often expected to elucidate potential causative changes that lead to specific phenotypes, or targeted treatments. With the recent advances in network science, we choose to handle this integration issue by representing omics data through networks. In this thesis, we have developed three models, namely BraneExp, BraneNet, and BraneMF, for learning node embeddings from multilayer biological networks generated with omics data. We aim to tackle various challenging problems arising in multi-omics data integration, developing expressive and scalable methods capable of leveraging rich structural semantics of realworld networks
APA, Harvard, Vancouver, ISO, and other styles
4

Duperret, Léo. "Caractérisation des mécanismes moléculaires de la permissivité au Syndrome de Mortalité de l'Huître du Pacifique (POMS) sous influence de la température et du régime alimentaire." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0042.

Full text
Abstract:
Les systèmes de production alimentaire ont dû répondre ces dernières décennies à une demande alimentaire croissante générée par l'augmentation exponentielle de la population humaine. Ceci a mené à une intensification des cultures, des élevages et de la pêche au détriment des stocks et de la santé de notre planète. Pour le milieu marin, l'intensification de la pêche a conduit à l'amenuisement de certains stocks et à la mise en place de quotas. Cette diminution des ressources halieutiques a conduit au développement de l'aquaculture, une pratique d'élevage de la ressource bleue. Cependant, avec la surproduction et les changements globaux nous assistons à une recrudescence des épizooties depuis 1970, surtout chez les orgnaismes ectothermes. La maladie du POMS (Pacific Oyster Mortality Syndrome) en est une parfaite illustration puisqu'elle est responsable, chaque année, d'importants épisodes de mortalités chez les juvéniles de l'espèce d'huître Magallana gigas dans l'ensemble des pays producteurs. Maladie polymicrobienne apparue en 2008 en France, sa pathogénicité dépend de multiples facteurs dont la température (entre 16 et 24°C sur les côtes françaises) et la disponibilité en ressources nutritives. Alors que de nombreuses recherches ont permis de caractériser la pathogénèse et d'identifier les différents facteurs influençant le développement de cette maladie, les mécanismes moléculaires responsables des variations de permissivité en fonction de ces facteurs demeurent encore largement inconnus. Cette thèse s'inscrit donc dans cet objectif. Par un design expérimental rigoureux, une approche holistique et une analyse comparative intégrative à différentes échelles dans des conditions permissives et non-permissives à la maladie, nous avons pu identifier les mécanismes moléculaires sous-jacents à la permissivité liée à la température et à la ressource alimentaire. Ces résultats permettent de mieux comprendre la complexité de cette interaction hôte-pathogène-environnement et permettront à terme d'implémenter des modèles prédictifs du risque épidémiologique
Over the past decades, food production systems have had to meet the growing demand for food driven by the exponential increase in the global human population. This demand has led to intensified agriculture, livestock farming, and fishing practices, often at the expense of natural resources and planetary health. In the marine environment, intensified fishing has resulted in the depletion of certain stocks and the implementation of fishing quotas. The decline in marine resources has prompted the development of aquaculture, a practice for farming blue resources. However, with overproduction and global environmental changes, we have witnessed an upsurge in epizootics since 1970, particularly among ectothermic organisms. The Pacific Oyster Mortality Syndrome (POMS) is a prime example, responsible for significant annual mortality episodes in juvenile oysters of the species Magallana gigas across major producing countries. Emerging in 2008 in France, this polymicrobial disease is influenced by several factors, including temperature (between 16°C and 24°C along the French coasts) and the availability of nutritional resources. Although extensive research has helped characterize its pathogenesis and identify the various factors influencing the development of the disease, the molecular mechanisms underlying variations in permissiveness according to these factors remain largely unknown. This thesis addresses this objective. Through a rigorous experimental design, a holistic approach, and an integrative comparative analysis at multiple scales under permissive and non-permissive conditions for the disease, we identified the molecular mechanisms underlying permissiveness related to temperature and nutritional resources. These findings enhance our understanding of the complexity of host-pathogen-environment interactions and will ultimately contribute to the development of predictive models for epidemiological risk
APA, Harvard, Vancouver, ISO, and other styles
5

Bretones, Santamarina Jorge. "Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.

Full text
Abstract:
De nos jours, la communauté scientifique s'accorde sur la nécessité de diagnostics et de thérapies personnalisés pour les patients atteints de cancer, conçus par des études translationnelles combinant approches expérimentales et statistiques. Les défis actuels incluent la validation de modèles expérimentaux précliniques et leur profilage multi-omiques, ainsi que la conception de méthodes bioinformatiques et mathématiques dédiées pour identifier les combinaisons de médicaments optimales pour chaque patient.Cette thèse a visé à concevoir de telles approches statistiques pour analyser différents types de données à grande échelle et les intégrer afin d'identifier les vulnérabilités ciblables des lignées cancéreuses. Nous nous sommes focalisés sur les altérations du complexe de remodelage de la chromatine SWI/SNF, muté dans ~20 % des cancers, pour lesquels aucune thérapie efficace n'est disponible. Nous avons utilisé un panel de lignées cellulaires isogéniques HAP1 mutées pour les sous-unités du complexe SWI/SNF ou d'autres enzymes épigénétiques, pour lesquelles des données de transcriptomique, protéomique et de criblage de médicaments étaient disponibles.Nous avons travaillé sur quatre axes méthodologiques. Premièrement, nous avons conçu une méthodologie optimisée d'enrichissement pour détecter les voies de régulation différentiellement activées entre mutants et type sauvage. Ensuite, nous avons croisé les résultats des criblages de médicaments et les bases d'interaction gène-médicament, pour inférer des voies de régulation ciblables spécifiquement chez les lignées mutantes. Ensuite, la validation de ces cibles potentielles a été réalisée à l'aide d'une nouvelle méthode détectant la létalité synthétique à partir de données transcriptomiques et CRISPR de lignées cancéreuses indépendantes du projet DepMap. Enfin, en vue de l'optimisation de thérapies multi-agents, nous avons conçu une première représentation digitale des voies de régulation ciblables pour les tumeurs mutées SMARCA4, en construisant un réseau dirigé d'interaction protéine-protéine reliant les cibles inférées des analyses multi-omiques HAP1 et CRISPR DepMap. Nous avons utilisé la base de données OmniPath pour récupérer les interactions protéiques directes et ajouté les protéines liant celles présentes dans le réseau avec l'algorithme Neko.Ces développements méthodologiques ont été appliqués aux ensembles de données disponibles pour le panel HAP1. En utilisant notre méthodologie d'enrichissement optimisée, nous avons identifié le Métabolisme des protéines comme la catégorie de voies de régulation la plus fréquemment dérégulée dans les lignées SWI/SNF-KO. Ensuite, l'analyse de criblage de médicaments a révélé des médicaments cytotoxiques et épigénétiques ciblant sélectivement les mutants SWI/SNF, notamment les inhibiteurs de CBP/EP300 ou de la respiration mitochondriale, également identifiés comme létaux synthétiques par notre analyse CRISPR DepMap. Ces résultats ont été validés dans deux modèles expérimentaux isogéniques indépendants. L'analyse CRISPR DepMap a également été utilisée pour identifier des interactions létales synthétiques dans le glioblastome, qui se sont révélées pertinentes pour des lignées cellulaires dérivées de patients et sont en cours de validation.En résumé, nous avons développé des méthodes computationnelles pour intégrer des données d'expression multi-omiques avec des criblages de médicaments et des tests CRISPR, et identifié de nouvelles vulnérabilités chez les mutants SWI/SNF, qui ont été validées expérimentalement. Cette étude était limitée à l'identification de monothérapies efficaces. Pour l'avenir, nous proposons de concevoir des modèles mathématiques représentant les réseaux de protéines ciblables à l'aide d'équations différentielles et de les utiliser dans des procédures d'optimisation numérique et d'apprentissage automatique pour étudier les cibles médicamenteuses concomitantes et personnaliser les combinaisons de médicaments
Nowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations
APA, Harvard, Vancouver, ISO, and other styles
6

Abd-Rabbo, Diala. "Beyond hairballs: depicting complexity of a kinase-phosphatase network in the budding yeast." Thèse, 2017. http://hdl.handle.net/1866/19318.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Intégration multi-Omiques"

1

DÉJEAN, Sébastien, and Kim-Anh LÊ CAO. "Modèles multivariés pour l’intégration de données et la sélection de biomarqueurs dans les données omiques." In Intégration de données biologiques, 211–69. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9030.ch7.

Full text
Abstract:
Les méthodes multivariées linéaires présentées permettent : l’exploration d’un seul jeu de données (ACP), la discrimination (PLS-DA), l’intégration de plusieurs jeux de données (PLS, multi-block PLS). Les aspects mathématiques de chaque méthode sont présentés, ensuite leur mise en œuvre sur des exemples fictifs et réels permet d’en illustrer l’intérêt pour répondre à des questions biologiques.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography