Academic literature on the topic 'Integrated photonic structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrated photonic structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integrated photonic structures"

1

Soref, Richard. "Tutorial: Integrated-photonic switching structures." APL Photonics 3, no. 2 (February 2018): 021101. http://dx.doi.org/10.1063/1.5017968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yi, Ailun, Chengli Wang, Liping Zhou, Yifan Zhu, Shibin Zhang, Tiangui You, Jiaxiang Zhang, and Xin Ou. "Silicon carbide for integrated photonics." Applied Physics Reviews 9, no. 3 (September 2022): 031302. http://dx.doi.org/10.1063/5.0079649.

Full text
Abstract:
Photonic integrated circuits (PICs) based on lithographically patterned waveguides provide a scalable approach for manipulating photonic bits, enabling seminal demonstrations of a wide range of photonic technologies with desired complexity and stability. While the next generation of applications such as ultra-high speed optical transceivers, neuromorphic computing and terabit-scale communications demand further lower power consumption and higher operating frequency. Complementing the leading silicon-based material platforms, the third-generation semiconductor, silicon carbide (SiC), offers a significant opportunity toward the advanced development of PICs in terms of its broadest range of functionalities, including wide bandgap, high optical nonlinearities, high refractive index, controllable artificial spin defects and complementary metal oxide semiconductor-compatible fabrication process. The superior properties of SiC have enabled a plethora of nano-photonic explorations, such as waveguides, micro-cavities, nonlinear frequency converters and optically-active spin defects. This remarkable progress has prompted the rapid development of advanced SiC PICs for both classical and quantum applications. Here, we provide an overview of SiC-based integrated photonics, presenting the latest progress on investigating its basic optoelectronic properties, as well as the recent developments in the fabrication of several typical approaches for light confinement structures that form the basic building blocks for low-loss, multi-functional and industry-compatible integrated photonic platform. Moreover, recent works employing SiC as optically-readable spin hosts for quantum information applications are also summarized and highlighted. As a still-developing integrated photonic platform, prospects and challenges of utilizing SiC material platforms in the field of integrated photonics are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Olmos, J. J. V., M. Tokushima, and K. I. Kitayama. "Photonic Add–Drop Filter Based on Integrated Photonic Crystal Structures." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 1 (2010): 332–37. http://dx.doi.org/10.1109/jstqe.2009.2028901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ritter, Ralf, Nico Gruhler, Wolfram Pernice, Harald Kübler, Tilman Pfau, and Robert Löw. "Atomic vapor spectroscopy in integrated photonic structures." Applied Physics Letters 107, no. 4 (July 27, 2015): 041101. http://dx.doi.org/10.1063/1.4927172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pustelny, Tadeusz. "The 13th conference on Integrated Optics - Sensors, Sensing Structures and Methods IOS'2018." Photonics Letters of Poland 10, no. 1 (March 31, 2018): 1. http://dx.doi.org/10.4302/plp.v10i1.807.

Full text
Abstract:
The conference covers the topical areas of optics, optoelectronics and photonics in the following aspects: fundamental and applied research, physics and technical, materials, components and devices, circuits and systems, technological and design, construction and manufacturing of photonic devices and systems, and metrology.
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, and Raymond G. Beausoleil. "Avalanche photodiodes on silicon photonics." Journal of Semiconductors 43, no. 2 (February 1, 2022): 021301. http://dx.doi.org/10.1088/1674-4926/43/2/021301.

Full text
Abstract:
Abstract Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits. The Ge- or III–V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths. Herein, the last advances of monolithic and heterogeneous avalanche photodiodes on silicon are reviewed, including different device structures and semiconductor systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Veluthandath, Aneesh Vincent, and Ganapathy Senthil Murugan. "Photonic Nanojet Generation Using Integrated Silicon Photonic Chip with Hemispherical Structures." Photonics 8, no. 12 (December 17, 2021): 586. http://dx.doi.org/10.3390/photonics8120586.

Full text
Abstract:
Photonic nanojet (PNJ) is a tightly focused diffractionless travelling beam generated by dielectric microparticles. The location of the PNJ depends on the refractive index of the material and it usually recedes to the interior of the microparticle when the refractive index is higher than 2, making high index materials unsuitable to produce useful PNJs while high index favours narrower PNJs. Here we demonstrate a design of CMOS compatible high index on-chip photonic nanojet based on silicon. The proposed design consists of a silicon hemisphere on a silicon substrate. The PNJs generated can be tuned by changing the radius and sphericity of the hemisphere. Oblate spheroids generate PNJs further away from the refracting surface and the PNJ length exceeds 17λ when the sphericity of the spheroid is 2.25 The proposed device can have potential applications in focal plane arrays, enhanced Raman spectroscopy, and optofluidic chips.
APA, Harvard, Vancouver, ISO, and other styles
8

Kremer, Mark, Lukas J. Maczewsky, Matthias Heinrich, and Alexander Szameit. "Topological effects in integrated photonic waveguide structures [Invited]." Optical Materials Express 11, no. 4 (March 9, 2021): 1014. http://dx.doi.org/10.1364/ome.414648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vieira, M. A., M. Vieira, P. Louro, V. Silva, and A. Fantoni. "Integrated photonic filters based on SiC multilayer structures." Applied Surface Science 275 (June 2013): 185–92. http://dx.doi.org/10.1016/j.apsusc.2013.01.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kitzerow, Heinz-S., Heinrich Matthias, Stefan L. Schweizer, Henry M. van Driel, and Ralf B. Wehrspohn. "Tuning of the Optical Properties in Photonic Crystals Made of Macroporous Silicon." Advances in Optical Technologies 2008 (June 22, 2008): 1–12. http://dx.doi.org/10.1155/2008/780784.

Full text
Abstract:
It is well known that robust and reliable photonic crystal structures can be manufactured with very high precision by electrochemical etching of silicon wafers, which results in two- and three-dimensional photonic crystals made of macroporous silicon. However, tuning of the photonic properties is necessary in order to apply these promising structures in integrated optical devices. For this purpose, different effects have been studied, such as the infiltration with addressable dielectric liquids (liquid crystals), the utilization of Kerr-like nonlinearities of the silicon, or free-charge carrier injection by means of linear (one-photon) and nonlinear (two-photon) absorptions. The present article provides a review, critical discussion, and perspectives about state-of-the-art tuning capabilities.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Integrated photonic structures"

1

Chong, Harold Meng Hoon. "Photonic crystal and photonic wire structures for photonic integrated circuits." Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weed, Matthew. "Wavelength scale resonant structures for integrated photonic applications." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5888.

Full text
Abstract:
An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models enables comb-like resonant clusters in systems that otherwise have no such regular resonant landscape (e.g. photonic crystal cavities). Through design, simulation, fabrication and test, the work presented here is a thorough validation for the future potential of coupled-resonator filters in frequency comb laser sources.
Ph.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Qing. "Densely integrated photonic structures for on-chip signal processing." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49035.

Full text
Abstract:
Microelectronics has enjoyed great success in the past century. As the technology node progresses, the complementary metal-oxide-semiconductor scaling has already reached a wall, and serious challenges in high-bandwidth interconnects and fast-speed signal processing arise. The incorporation of photonics to microelectronics provides potential solutions. The theme of this thesis is focused on the novel applications of travelling-wave microresonators such as microdisks and microrings for the on-chip optical interconnects and signal processing. Challenges arising from these applications including theoretical and experimental ones are addressed. On the theoretical aspect, a modified version of coupled mode theory is offered for the TM-polarization in high index contrast material systems. Through numerical comparisons, it is shown that our modified coupled mode theory is more accurate than all the existing ones. The coupling-induced phase responses are also studied, which is of critical importance to coupled-resonator structures. Different coupling structures are studied by a customized numerical code, revealing that the phase response of symmetric couplers with the symmetry about the wave propagating direction can be simply estimated while the one of asymmetric couplers is more complicated. Mode splitting and scattering loss, which are two important features commonly observed in the spectrum of high-Q microresonators, are also investigated. Our review of the existing analytical approaches shows that they have only achieved partial success. Especially, different models have been proposed for several distinct regimes and cannot be reconciled. In this thesis, a unified approach is developed for the general case to achieve a complete understanding of these two effects. On the experimental aspect, we first develop a new fabrication recipe with a focus on the accurate dimensional control and low-loss performance. HSQ is employed as the electron-beam resist, and the lithography and plasma etching steps are both optimized to achieve vertical and smooth sidewalls. A third-order temperature-insensitive coupled-resonator filter is designed and demonstrated in the silicon-on-insulator (SOI) platform, which serves as a critical building block element in terabit/s on-chip networks. Two design challenges, i.e., a broadband flat-band response and a temperature-insensitive design, are coherently addressed by employing the redundant bandwidth of the filter channel caused by the dispersion as thermal guard band. As a result, the filter can accommodate 21 WDM channels with a data rate up to 100 gigabit/s per wavelength channel, while providing a sufficient thermal guard band to tolerate more than ±15°C temperature fluctuations in the on-chip environment. In this thesis, high-Q microdisk resonators are also proposed to be used as low-loss delay lines for narrowband filters. Pulley coupling scheme is used to selectively couple to one of the radial modes of the microdisk and also to achieve a strong coupling. A first-order tunable narrowband filter based on the microdisk-based delay line is experimentally demonstrated in an SOI platform, which shows a tunable bandwidth from 4.1 GHz to 0.47 GHz with an overall size of 0.05 mm². Finally, to address the challenges for the resonator-based delay lines encountered in the SOI platform, we propose to vertically integrate silicon nitride to the SOI platform, which can potentially have significantly lower propagation loss and higher power handling capability. High-Q silicon nitride microresonators are demonstrated; especially, microresonators with a 16 million intrinsic Q and a moderate size of 240 µm radius are realized, which is one order of magnitude improvement compared to what can be achieved in the SOI platform using the same fabrication technology. We have also successfully grown silicon nitride on top of SOI and a good coupling has been achieved between the silicon nitride and the silicon layers.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Ning. "Cylindrically symmetric integrated photonic structures : theory, devices and applications." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwagmann, Andre. "On-chip single photon sources based on quantum dots in photonic crystal structures." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244393.

Full text
Abstract:
In order to harness the enormous potential of schemes in optical quantum information processing, readily scalable photonic circuits will be required. A major obstacle for this scalability is the monolithic integration of quantum light sources with the photonic circuit on a single chip. This dissertation presents the experimental demonstration of different in-plane single photon sources that allow for this integration with planar light circuits. To this end, the spontaneous recombination of excitons in single indium arsenide quantum dots was exploited to generate single photons. The emission into on-chip waveguides was achieved by the use of advanced two-dimensional photonic crystal structures. First, slow-light effects in a unidirectional photonic crystal waveguide were exploited to achieve on-demand single photon emission with a rate of up to 18.7 MHz, corresponding to a remarkable estimated internal device efficiency of up to 47%. Waveguide-coupled L3 defect cavities with record Q-factors of up to 5150 were then studied for improved Purcell enhancement of the emission, and in-plane single photon generation from such a device was demonstrated. Finally, an electrically tunable, integrable quantum light source with a total tuning range of 1.9 nm was demonstrated by exploiting the quantum-confined Stark effect in an electrical PIN diode. These results are the first demonstrations of in-plane single photon emission at optical wavelengths and mark an important cornerstone for the realisation of fully integrated quantum photonic circuits in optical quantum information science.
APA, Harvard, Vancouver, ISO, and other styles
6

Xia, Zhixuan. "Highly sensitive, multiplexed integrated photonic structures for lab-on-a-chip sensing." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54848.

Full text
Abstract:
The objective of this work is to develop essential building blocks for the lab-on-a-chip optical sensing systems with high performance. In this study, the silicon-on-insulator (SOI) platform is chosen because of its compatibility with the mature microelectronics industry for the great potential in terms of powerful data processing and massive production. Despite the impressing progress in optical sensors based on the silicon photonic technologies, two constant challenges are larger sensitivity and better selectivity. To address the first issue, we incorporate porous materials to the silicon photonics platform. Two porous materials are investigated: porous silicon and porous titania. The demonstrated travelling-wave resonators with the magnesiothermically reacted porous silicon cladding have shown significant enhancement in the sensitivity. The process is then further optimized by replacing the thermal oxide with a flowable oxide for the magnesiothermic reduction. A different approach of making porous silicon using porous anodized alumina membrane leads to better flexibility in controlling the pore size and porosity. Porous titania is successfully integrated with silicon nitride resonators. To improve the selectivity, an array of integrated optical sensors are coated with different polymers, such that each incoming gas analyte has its own signature in the collective response matrix. A multiplexed gas sensor with four polymers has been demonstrated. It also includes on chip references compensating for the adverse environmental effects. On chip spectral analysis is also very critical for lab-on-a-chip sensing systems. For that matter, based on an array of microdonut resonators, we demonstrate an 81 channel microspectrometer. The demonstrated spectrometer leads to a high spectral resolution of 0.6 nm, and a large operating bandwidth of ~ 50 nm.
APA, Harvard, Vancouver, ISO, and other styles
7

Biasi, Stefano. "Light propagation in confined photonic structures: modeling and experiments." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/258037.

Full text
Abstract:
This thesis explored fundamental concepts of linear optics focusing on the modal interaction within waveguide/microresonator systems. In addition, it investigated a nonlinear process of stimulated degenerate four-wave mixing in a channel waveguide exploiting the analogy between photons and cold boson atoms. The backscattering phenomenon due to the surface wall roughness of a microresonator is addressed by adding to the usual conservative (Hermitian) coupling coefficient, a dissipative (non-Hermitian) term. This allows explaining the experimental measurements of a multimodal microresonator, which exhibits an asymmetrical resonance splitting characterized by a difference in the peak depths of the transmission spectra. It is shown theoretically, numerically and experimentally that the stochastic nature of the roughness along with the inter-modal dissipative coupling could give rise to a different exchange of energy between the co-propagating and the counter-propagating mode. The unbalanced exchange of energy between the two modes with opposite angular momenta can generate a different reflection by swapping the injection of the light between the input and the output ports. This effect lies at the heart of the realization of an unidirectional reflection device and it finds an explanation in the physics of the exceptional points. The realization of an optical setup based on a Mach-Zehnder interferometer, which exploits some particular techniques of data acquisition, allows obtaining a full knowledge of the complex electric field of a propagating mode. In this way, the spectrum of a wedge microresonator vertically coupled to a bus waveguide is explained using analysis methods based on parametric phasors and inverse complex representations. In addition, the energy exchange between the co-propagating and counter-propagating modes is studied from a temporal point of view by extrapolating a simple model based on the Green function. In particular, it is discussed the analytical temporal response of a microring resonator excited through a bus waveguide by an optical rectangular pulse. Here, it is shown theoretically and experimentally, how the temporal response leads to the characterization of the coupling regime simply from the knowledge of the electric field intensity. In this thesis, the isomorphism between the Schroedinger’s equation and the Helmholtz wave equation is analyzed in the nonlinear case. Considering a bulk nonlinear medium of the Kerr type, the complex amplitude of the optical field is a slowly varying function of space and time, which satisfies a nonlinear Schroedinger equation. The well-known nonlinear optical phenomenon of stimulated degenerate four wave mixing is reformulated in the language of the Bogoliubov theory. This parallelism between photons and cold atoms allows showing that the phase of the signal assumes a peculiar sound-like dispersion under proper assumptions.
APA, Harvard, Vancouver, ISO, and other styles
8

García, Castelló Javier. "A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap Structures." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/35398.

Full text
Abstract:
The necessity of using extremely high sensitivity biosensors in certain research areas has remarkably increased during the last two decades. Optical structures, where light is used to transduce biochemical interactions into optical signals, are a very interesting approach for the development of this type of biosensors. Within optical sensors, photonic integrated architectures are probably the most promising platform to develop novel lab-on-a-chip devices. Such planar structures exhibit an extremely high sensitivity, a significantly reduced footprint and a high multiplexing potential for sensing applications. Furthermore, their compatibility with CMOS processes and materials, such as silicon, opens the route to mass production, thus reducing drastically the cost of the final devices. Optical sensors achieve their specificity and label-free operation by means of a proper chemical functionalization of their surfaces. The selective attachment of the receptors allows the detection of the target analytes within a complex matrix. This PhD Thesis is focused on the development of label-free photonic integrated sensors in which the detection is based on the interaction of the target analytes with the evanescent field that travels along the structures. Herein, we studied several photonic structures for sensing purposes, such as photonic crystals and ring resonators. Photonic crystals, where their periodicity provokes the appearance of multiple back and forth reflections, exhibits the so-called slow-light phenomenon that allows an increase of the interaction between the light and the target matter. On the other hand, the circulating nature of the resonant modes in a ring resonator offers a multiple interaction with the matter near the structure, providing a longer effective length. We have also proposed a novel approach for the interrogation of photonic bandgap sensing structures where simply the output power needs to measured, contrary to current approaches based on the spectral interrogation of the photonic structures. This novel technique consists on measuring the overlap between a broadband source and the band edge from a SOI-based corrugated waveguide, so that we can determine indirectly its spectral position in real-time. Since there is no need to employ tunable equipment, we obtain a lighter, simpler and a cost-effective platform, as well as a real-time observation of the molecular interactions. The experimental demonstration with antibody detection measurements has shown the potential of this technique for sensing purposes
García Castelló, J. (2014). A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap Structures [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35398
TESIS
APA, Harvard, Vancouver, ISO, and other styles
9

Sterkhova, Anna. "Modelling of Pulse Propagation in Nonlinear Photonic Structures." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-234225.

Full text
Abstract:
V současnosti jsme svědky stále zvyšujících se nároku na rychlost přenosu a zpracování signálu a kapacitu pamet’ových zařízení. Proto se pozornost výzkumných pracovníku zaměřuje k plně optickým zařízením, která by mohla splnit zmíněné požadavky. Jednou z intenzívně zkoumaných možností je využití mikroprstencových optických rezonátoru. Při výzkumu je nutné využít numerických metod, které simulují šíření optického záření v dané struktuře. K tomuto účelu existuje celá rada metod, které se liší v efektivitě výpočtu, použitých aproximacích, i možnostech použití. Cílem této práce bylo vyvinout dvě jednoduché a praktické numerické metody pro modelování šíření pulzního záření v nelineárních vlnovodných strukturách. Přítom bylo požadováno, aby, na rozdíl od obecně známé a často využívané metody konečných diferencí v časové oblasti (FD-TD), bylo možné metody snadno aplikovat při studiu nelineárních struktur založených na mikroprstencových rezonátorech. Proto vyvinuté metody používají některé aproximace, zejména aproximaci pomalu proměnné obálky. Výhodou metod je vysoká rychlost a skromné požadavky na výpočetní zdroje. Obě metody vycházejí ze zkutečnosti, že naprostá většina nelineárních struktur založených na mikroprstencových rezonátorech se skládá ze dvou základních prvku: obyčejných vlnovodu a vlnovodných vazebních clenu. První metoda řeší vázané parciální diferenciální rovnice, které popisují šíření obálky pulzu ve struktuře. Přitom je použito tzv. „up-wind“ schéma vhodné pro parciální diferenciální rovnice popisující šíření vln. Druhá metoda vychází z první; rozdíl je v popisu vazby mezi dvěma vlnovody. Pokud se v první metodě uvažuje realistická vazba rozložená na určité délce, pak druhá metoda je založena na představě vazby nacházející se v jednom místě. Díky tomu je možné integrovat příslušné rovnice a dosáhnout výrazného urychlení výpočtu. Kvazianalytický charakter druhé metody umožňuje dále snadnou klasifikaci různých typu ustálených řešení. Vzhledem k těmto vlastnostem byla druhá metoda využita k výzkumu samovolné generace optických pulzu ve strukturách skládajících se z vázaných prstencových rezonátoru. Obě metody, které byly vyvinuty během této práce, představují rychlé a fyzikálně názorné alternativy k metodě FD-TD, a tak lze očekávat, že mohou hrát důležitou roli při výzkumu nelineárních vlnovodných struktur.
APA, Harvard, Vancouver, ISO, and other styles
10

Shahid, Naeem. "Technology and properties of InP-based photonic crystal structures and devices." Doctoral thesis, KTH, Halvledarmaterial, HMA, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101662.

Full text
Abstract:
Photonic crystals (PhCs) are periodic dielectric structures that exhibit a photonic band gap; a range of wavelengths for which light propagation is forbidden. 2D PhCs exhibit most of the properties as their three dimension counterparts with a compatibility with standard semiconductor processing techniques such as epitaxial growth, electron beam lithography, Plasma deposition/etching and electromechanical lapping/polishing. Indium Phosphide (InP) is the material of choice for photonic devices especially when it comes to realization of coherent light source at 1.55 μm wavelength. Precise engineering of the nanostructures in the PhC lattice offers novel ways to confine, guide and control light in phonic integrated circuits (PICs). Strong confinement of light in PhCs offer novel opportunities in many areas of physics and engineering. Dry etching, a necessary process step in PhC device manufacturing, is known to introduce damage in the etched material. Process induced damage and its impact on the electrical and optical properties of PhCs depends on the etched material, the etching technique and process parameters. We have demonstrated a novel post-etch process based on so-called mass-transport (MT) technology for the first time on InP-based PhCs that has significantly improved side-wall verticality of etched PhC holes. A statistical analysis performed on several devices fabricated by MT process technology shows a great deal of improvement in the reliability of optical transmission characteristics which is very promising for achieving high optical quality in PhC components. Several PhC devices were manufactured using MT technology. Broad enough PhC waveguides that operate in the mono/multi-mode regime are interesting for coarse wavelength de-multiplexing. The fundamental mode and higher order mode interaction creates mini-stop band (MSB) in the dispersion diagram where the higher order mode has a lower group velocity which can be considered as slow light regime. In this thesis work, the phenomena of MSBs and its impact on transmission properties have been evaluated. We have proposed and demonstrated a method that enables spectral tuning with sub-nanometer accuracy which is based on the transmission MSB. Along the same lines most of the thesis work relates to broad enough PhC guides that operated in the multimode regime. Temperature tuning experiments on these waveguides reveals a clear red-shift with a gradient of dλ/dT=0.1 nm/˚C. MSBs in these waveguides have been studied by varying the width in incremental amounts. Analogous to semiconductors heterostructures, photonic heterostructures are composed of two photonic crystals with different band-gaps obtained either by changing the air-fill factor or by the lattice constant. Juxtaposing two PhC and the use of heterostructures in waveguide geometry has been experimentally investigated in this thesis work. In particular, in multimode line defect waveguides the “internal” MSB effect brings a new dimension in single junction-type photonic crystal waveguide (JPCW) and heterostructure W3 (HW3) for fundamental physics and applications. We have also fabricated an ultra-compact polarization beam splitter (PBS) realized by combining a multimode waveguide with internal PhC. MSBs in heterostructure waveguides have shown interesting applications such as designable band-pass flat-top filters, and resonance-like filters with high transmission. In the course of this work, InGaAsP suspended membrane technology was developed. An H2 cavity with a linewidth of ~0.4 nm, corresponding to a Q value of ~3675 has been shown. InGaAsP PhC membrane is an ideal platform to study coupled quantum well/dot-nanocavity system.

QC 20120831

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Integrated photonic structures"

1

America, Optical Society of, ed. Nonlinear guided waves & their applications: Technical digest : collocated with the Workshop on Novel Solitons and Nonlinear Periodic Structures, Integrated Photonics Research, April 1-3, 1998, Victoria Conference Centre, Victoria, British Columbia, Canada. Washington, DC: The Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

America, Optical Society of, ed. Nonlinear guided waves & their applications: Technical digest : collocated with the Workshop on Novel Solitons and Nonlinear Periodic Structures, Integrated Photonics Research, April 1-3, 1998, Victoria Conference Centre, Victoria, British Columbia, Canada. Washington, DC: The Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

National Aeronautics and Space Administration (NASA) Staff. Photonic Integrated Circuit Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vučković, Jelena. Quantum optics and cavity QED with quantum dots in photonic crystals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198768609.003.0008.

Full text
Abstract:
Quantum dots in optical nanocavities are interesting as a test-bed for fundamental studies of light–matter interaction (cavity quantum electrodynamics, QED), as well as an integrated platform for information processing. As a result of the strong field localization inside sub-cubic-wavelength volumes, these dots enable very large emitter–field interaction strengths. In addition to their use in the study of new regimes of cavity QED, they can also be employed to build devices for quantum information processing, such as ultrafast quantum gates, non-classical light sources, and spin–photon interfaces. Beside quantum information systems, many classical information processing devices, such as lasers and modulators, benefit greatly from the enhanced light–matter interaction in such structures. This chapter gives an introduction to quantum dots, photonic crystal resonators, cavity QED, and quantum optics on this platform, as well as possible device applications.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Integrated photonic structures"

1

Ajisawa, A., M. Fujiwara, J. Shimizu, M. Sugimoto, M. Uchida, Y. Ohta, and K. Asakawa. "Monolithically Integrated Optical Gate 2X2 Matrix Switch Using GaAs/AlGaAs Multiple Quantum Well Structure." In Photonic Switching, 63–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73388-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mishra, Madhusudan, and Nikhil Ranjan Das. "Trenched Core Waveguide Structure for Photonic Integrated Circuit." In Computers and Devices for Communication, 321–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8366-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Téllez-Limón, Ricardo, and Rafael Salas-Montiel. "Nanowires Integrated to Optical Waveguides." In Nanowires - Recent Progress. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95689.

Full text
Abstract:
Chip-scale integrated optical devices are one of the most developed research subjects in last years. These devices serve as a bridge to overcome size mismatch between diffraction-limited bulk optics and nanoscale photonic devices. They have been employed to develop many on-chip applications, such as integrated light sources, polarizers, optical filters, and even biosensing devices. Among these integrated systems can be found the so-called hybrid photonic-plasmonic devices, structures that integrate plasmonic metamaterials on top of optical waveguides, leading to outstanding physical phenomena. In this contribution, we present a comprehensive study of the design of hybrid photonic-plasmonic systems consisting of periodic arrays of metallic nanowires integrated on top of dielectric waveguides. Based on numerical simulations, we explain the physics of these structures and analyze light coupling between plasmonic resonances in the nanowires and the photonic modes of the waveguides below them. With this chapter we pretend to attract the interest of research community in the development of integrated hybrid photonic-plasmonic devices, especially light interaction between guided photonic modes and plasmonic resonances in metallic nanowires.
APA, Harvard, Vancouver, ISO, and other styles
4

"Appendix Seven: Periodic Structures and the Transmission Matrix." In Diode Lasers and Photonic Integrated Circuits, 593–607. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118148167.app7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suhara, Toshiaki, and Masahiro Uemukai. "Integrated photonic devices using semiconductor quantum-well structures." In Nano Biophotonics - Science and Technology, Proceedings of the 3rd International Nanophotonics Symposium Handai, 387–409. Elsevier, 2007. http://dx.doi.org/10.1016/s1574-0641(07)80031-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aoki, Kanna. "Assembly of Microscopic Three-Dimensional Structures and Their Applications in Three-Dimensional Photonic Crystals." In Integrated Microsystems, 541–48. CRC Press, 2017. http://dx.doi.org/10.1201/b11205-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khan, Sumaya, and Ishu Sharma. "Revolutionary Future Using the Ultimate Potential of Nanophotonics." In Photonic Materials: Recent Advances and Emerging Applications, 141–59. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010011.

Full text
Abstract:
As the world is modernizing, it is noteworthy to mention photonics and its categorization based on size. Despite the components of light being invisible to the human eye, nature never ceases to amaze us with its idiosyncratic phenomenon. Furthermore, the manipulation of the matter is confined to the nanoscale as a part of the progression. Adding nanotechnology to photonics emerges out as nanophotonics which is the cutting-edge tech of the twenty-first century. Human beings have acclimated to the concept of photonics, furthermore, nanophotonics is the science of miniaturization study, potentially helping the technology to modify itself into the sophistication of the equipment and thereby be of assistance in various disciplines of science and technology. One can illustrate nanophotonics by considering the fabrication processes of nanomaterials. In variegated applications, these nanoscale processes will refine and produce structures with high precision and accuracy. Meanwhile, groundbreaking inventions and discoveries have been going around, from communications to data processing, from detecting diseases to treating diseases at the outset. As one stresses on the idea of nanophotonics, it never reaches a dead-end, however, this explains how vast the universe and each of the components co-existing are infinitesimally beyond humans' reach. Nevertheless, nanophotonics and its applications bring about remarkable multidisciplinary challenges which require proficient and well-cultivated researchers. Despite the fact it has several advantages, it carries its downside, which requires a detailed analysis of any matter. Using state-of-the-art technology, one can constrict light into a nanometer scale using different principle methodologies such as surface plasmons, metal optics, near field optics, and metamaterials. The distinctive optical properties of nanophotonics call out specific applications in the electronics field such as interaction chips, tiny devices, transistor filaments, etc. When compared to conventional electronic integrated circuits, the pace at which data using nanophotonic devices is sent is exceptionally fast, accurate, and has a better signal processing capability. As a result of the integration of nanotechnology with photonic circuit technology, high-speed data processing with an average processing speed on the order of terabits per second is possible. Furthermore, nano-integrated photonics technology is capable of comprehensive data storage and processing, which inevitably lays the groundwork for the fabrication, quantification, control, and functional requirements of novel optical science and technology. The majority of applications include nanolithography, near-field scanning optical microscopy, nanotube nanomotors, and others. This explains about the working principle, different materials utilized, and several other applications for a better understanding.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Mengyuan, Kelly Magruder, Yann Malinge, Parastou Fakhimi, Hao-Hsiang Liao, David Kohen, Gregory Lovell, et al. "Germanium on Silicon Avalanche Photodiode for High-Speed fiber Communication." In Photodetectors - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107971.

Full text
Abstract:
Silicon photonics is one of the promising technologies for high-speed optical fiber communications. Among various silicon photonic devices, germanium on silicon avalanche photodiode (Ge/Si APDs) received tremendous attentions because of its superior performance and integration compatibility. In 2016, normal incidence Ge/Si APD demonstrated a NRZ 10−12 sensitivity of −23.5 dBm at 25 Gb/s; more recently, a waveguide-integrated Ge/Si APD receiver presents a 106Gb/s PAM4 sensitivity of −18.9 dBm. These results are best reported performance among all APD-based devices, and these breakthroughs are mainly benefited from Ge/Si APD’s structure and material characteristics. Ge/Si APD adopts a separated charge-absorption-multiplication (SCAM) structure with a pure Ge absorber and an intrinsic Si avalanche layer. Since, Si is one of well-known best avalanche materials with large gain-bandwidth products and low ionization noise ratio, which make Ge/Si APDs demonstrating superior performance at high data rates. Moreover, this Si-based device is manufactured by standard CMOS foundries and is process-compatible with other silicon photonic devices including silicon-based waveguides, demux, hybrid, etc. This advantage simplifies the assembly of photonic systems and makes a large-scale integrated silicon photonic chip possible, which provides compact solutions for high-density communication systems. In this chapter, we review recent progresses on Ge/Si APD structure design, material, and performance.
APA, Harvard, Vancouver, ISO, and other styles
9

Bovino, Fabio A., Matteo Braccini, Concita Sibilia, and Mario Bertolotti. "TWIN PHOTONS GENERATION IN AN INTEGRATED PHOTONIC CRYSTAL STRUCTURE." In Selected Topics in Photonic Crystals and Metamaterials, 359–72. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814355193_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knoll, Wolfgang. "Waveguide Structures for Integrated Optics." In Organic Materials for Photonics, 323–46. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89916-3.50019-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integrated photonic structures"

1

Prather, Dennis W. "Photonic Band Gap Structures for Terahertz Photonics." In Integrated Photonics Research. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/ipr.2001.imb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kopp, Victor I., Peter V. Shibaev, Ranojoy Bose, and Azriel Z. Genack. "Anisotropic photonic-bandgap structures." In Symposium on Integrated Optoelectronic Devices, edited by Ali Adibi, Axel Scherer, and Shawn-Yu Lin. SPIE, 2002. http://dx.doi.org/10.1117/12.463868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Feigel, A. I., Zvi Kotler, Bruno Sfez, A. Arsh, Matvei Klebanov, and Victor Lyubin. "Chalcogenide three-dimensional photonic structures." In Symposium on Integrated Optics, edited by Giancarlo C. Righini and Seppo Honkanen. SPIE, 2001. http://dx.doi.org/10.1117/12.426829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Srinivas, Talabattula. "Photonic Integrated Circuits based on Photonic Bandgap Structures." In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/photonics.2016.tu5f.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sundaram, S. K., P. E. Keller, B. J. Riley, J. E. Martinez, B. R. Johnson, P. J. Allen, L. V. Saraf, N. C. Anheier, Jr., and F. Liau. "Infrared photonic bandgap materials and structures." In Integrated Optoelectronic Devices 2006, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2006. http://dx.doi.org/10.1117/12.658895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suh, Wonjoo, Mehmet F. Yanik, Olav Solgaard, and Shanhui Fan. "Mechanically switchable photonic crystal structures based on coupled photonic crystal slabs." In Integrated Optoelectronic Devices 2004, edited by Ali Adibi, Axel Scherer, and Shawn-Yu Lin. SPIE, 2004. http://dx.doi.org/10.1117/12.521541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, K. M. C., C. Santori, P. E. Barclay, N. Meyer, A. M. Holm, I. Aharonovich, S. Prawer, and R. G. Beausoleil. "Photonic structures for QIP in diamond." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Zameer U. Hasan, Alan E. Craig, and Philip R. Hemmer. SPIE, 2009. http://dx.doi.org/10.1117/12.813788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yilmaz, Yusuf Abdulaziz, Ahmet Mesut Alpkilic, Mediha Tutgun, Done Yilmaz, Ipek Anil Atalay, Aydan Yeltik, and Hamza Kurt. "Inverse Design of Integrated Photonic Structures." In 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. http://dx.doi.org/10.1109/icton.2019.8840480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammed, Waleed S., Eric G. Johnson, and Laurent Vaissie. "Optimization of two-dimensional photonic bandgap structures." In Symposium on Integrated Optics, edited by Richard L. Sutherland, Dennis W. Prather, and Ivan Cindrich. SPIE, 2001. http://dx.doi.org/10.1117/12.424839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Min, Mi-Sun, Q. Y. Chen, and Y. Maday. "Spectral methods for 2D photonic band structures." In Integrated Optoelectronic Devices 2004, edited by Ali Adibi, Axel Scherer, and Shawn-Yu Lin. SPIE, 2004. http://dx.doi.org/10.1117/12.529767.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Integrated photonic structures"

1

Adibi, Ali. Advanced Photonic Crystal-Based Integrated Structures for Optical Communications and Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada563400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography