Academic literature on the topic 'Integrated optics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrated optics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Integrated optics"
Andersson, P. O., A. Persson, L. Thyléen, and G. Edwall. "Fibre optic interferometer using integrated optics." Electronics Letters 21, no. 6 (1985): 245. http://dx.doi.org/10.1049/el:19850175.
Full textLeonberger, F. "Integrated optics." IEEE Journal of Quantum Electronics 22, no. 3 (March 1986): 494. http://dx.doi.org/10.1109/jqe.1986.1072971.
Full textLaybourn, P. J. R. "Integrated optics." Spectrochimica Acta Part A: Molecular Spectroscopy 42, no. 10 (January 1986): 1233. http://dx.doi.org/10.1016/0584-8539(86)80081-2.
Full textSteier, William H., Antao Chen, Sang-Shin Lee, Sean Garner, Hua Zhang, Vadim Chuyanov, Larry R. Dalton, et al. "Polymer electro-optic devices for integrated optics." Chemical Physics 245, no. 1-3 (July 1999): 487–506. http://dx.doi.org/10.1016/s0301-0104(99)00042-7.
Full textde Michel, Marc, and Dan Ostrowsky. "Nonlinear integrated optics." Physics World 3, no. 3 (March 1990): 56–62. http://dx.doi.org/10.1088/2058-7058/3/3/28.
Full textStegeman, George I., and Colin T. Seaton. "Nonlinear integrated optics." Journal of Applied Physics 58, no. 12 (December 15, 1985): R57—R78. http://dx.doi.org/10.1063/1.336205.
Full textOsborne, I. S. "Integrated Quantum Optics." Science 334, no. 6063 (December 22, 2011): 1605. http://dx.doi.org/10.1126/science.334.6063.1605-b.
Full textHandelman, Amir, Nadezda Lapshina, Boris Apter, and Gil Rosenman. "Peptide Integrated Optics." Advanced Materials 30, no. 5 (December 11, 2017): 1705776. http://dx.doi.org/10.1002/adma.201705776.
Full textQi, Yifan, and Yang Li. "Integrated lithium niobate photonics." Nanophotonics 9, no. 6 (April 28, 2020): 1287–320. http://dx.doi.org/10.1515/nanoph-2020-0013.
Full textRahmatian, Farnoosh, Hiroshi Kato, Nicolas A. F. Jaeger, Robert James, and Ezio Berolo. "Slow-wave electrodes on GaAs for integrated electro-optic modulators." Canadian Journal of Physics 74, S1 (December 1, 1996): 35–38. http://dx.doi.org/10.1139/p96-828.
Full textDissertations / Theses on the topic "Integrated optics"
Llobera, Adan Andreu. "Integrated Optics Technology on Silicon: Optical Transducers." Doctoral thesis, Universitat Autònoma de Barcelona, 2002. http://hdl.handle.net/10803/3342.
Full textDels diferents materials aptes per a la realització de components òptics integrats, únicament el silici, amb l'ampli bagatge de processos altament desenvolupats, derivats de la micromecanització i la microelectrònica, permet la fabricació de grans sèries a preus reduïts. Tot i que les propietats òptiques d'aquest element son limitades, la seva abundància, baix preu, elevada puresa, estabilitat química i rigidesa mecànica, fan d'aquest el substrat ideal per a la realització d'estructures híbrides, on les diferents funcions, òptiques i electròniques es combinen sobre el silici, utilitzant tècniques de muntatge superficial amb interconnexió òptica, a través de guies d'ona, dels diferents elements.
El confinament òptic amb estructures ARROW es basa en la reflexió total interna a l'interfase amb l'aire i l'elevada reflectivitat que provoquen les capes subjacents al nucli. L'índex de refracció i el gruix d'aquestes capes es sintonitza de manera que el mode fonamental presenti un mínim de pèrdues, mentre que els modes superiors pateixen una elevada atenuació. D'aquesta manera, és possible obtenir guies d'ona monomode amb tamany similar a la fibra òptica, encarregades d'injectar la llum, minimitzant les pèrdues d'inserció. Aquesta propietat fa que aquest tipus de guies siguin les candidates òptimes per a la fabricació de transductors òptics, els quals es basen en la idea que qualsevol alteració d'una propietat física o química produïda a un medi pot detectar-se a partir del canvi que produeix a las característiques de propagació de la llum a través d'ell.
En aquest treball s'han desenvolupat les eines necessàries per a la caracterització dels transductors òptics integrats: s'ha posat a punt els programes de simulació de diferències finites amb xarxa no-uniforme (NU-FDM) i el Mètode de propagació del feix (BPM), que permeten analitzar el comportament tridimensional de tota l'estructura. La tecnologia de Sala Blanca ha estat acondicionada per tal d'aconseguir els requeriments que necessitava l'Òptica Integrada. A aquest fet, l'obtenció de capes per PECVD amb diferents índexs de refracció, així com l'optimització de les tècniques de gravat RIE, han permès realitzar tota una sèrie de transductors òptics amb unes característiques notables. Les guies d'ona han estat mesurades en potència i longitud d'ona. Així, s'ha pogut comprovar com la configuració ARROW es trobava ben sintonitzada, a la longitud d'ona de treball (633nm) tant en gruix com en índex de refracció, validant la tecnologia emprada.
Gràcies als punts anteriors, s'han pogut realitzar tres tipus de transductors. El primer d'ells consisteix en un interferòmetre Mach-Zehnder (MZI), el qual basa el seu principi de funcionament en la modificació del camí òptic a una de les seves branques, obtenint un patró interferomètric. A partir d'aquest, és possible determinar la variació en la part real de l'índex de refracció. El segon transductor es basa en la modificació de la part imaginaria de l'índex de refracció. Entremig de dues guies es situa una membrana selectiva, la qual té com a característica principal la modificació de la seva transmissió, a una certa longitud d'ona, a mesura que absorbeix un determinat ió. A partir de l'atenuació mesurada al final del dispositiu, és possible conèixer la quantitat d'ions absorbits. Finalment, el tercer transductor es basa en l'obstrucció del camí òptic amb un material absorbent mòbil. La posició d'aquest absorbent ha estat dissenyada per variar amb l'acceleració, obtenint un accelerómetre òptic.
Integrated optics is one of the most interesting research fields in the short-mid term due to the clear advantages that it has as compared to the traditional electronics. Using light as the carrier of information, which is unaffected to electromagnetic perturbations, cause this field to be one of the most viable solutions concerning the telecommunications bottleneck. In addition, the application of integrated optics in the sensor field offers a better response as compared to the transducers used nowadays: Its capability to resist harsh environments, the measurement without direct contact and the safety in explosive media cause this to be of huge interest for the industry.
Between the different materials available to be used for integrated optics, only silicon, with the great knowledge of their technological aspects, allows the mass low-cost fabrication. Although its limited optical properties, its abundance, high purity, chemical stability and mechanical stiffness cause it to be ideal for hybrid integration, where the optical an electrical parts of the device are combined on silicon, using surface mounting techniques and with optical interconnection, using waveguides, between them.
The optical confinement with ARROW structures is based on the total internal reflection at the upper interface and the ultra-high reflectivity that cause the layers beneath the core. The refractive index and the thickness of these layers is tuned in such a way that the lowest order mode has a minimum of losses, while the rest of the modes suffer from high attenuation. Then, it is possible to obtain single mode waveguides with core thickness comparable to the single-moded fiber optics, minimizing the insertion losses. Then, these waveguides seem to be the most promising candidates for the fabrication of optical transducers, which are based on the idea that any variation of a physical or chemical property caused to a media can be detected form a the change that is produced on the light path across it.
In this thesis it has been developed the necessary tools to characterize the integrated optical transducers: It has been implemented the simulation programs based on non-uniform finite-difference method (NU-FDM) and the Beam propagation method (BPM), that allows analyzing the 3D behavior of any structure. The technological steps have been arranged so as to meet the integrated optics requirements. Concretely, the deposition of PECVD layers with different refractive index, together with the optimization of the RIE process, has allowed obtaining several optical transducers with excellent properties. Their waveguides have measured, both in power and in wavelength, showing that the ARROW structure was tuned in according to specifications.
With the basis of the waveguides, it has been possible to define three different optical transducers: A Mach-Zehnder Interferometer, an absorption sensor and an optical accelerometer.
Almeida, Luis Miguel Lima de. "All-optical processing based on integrated optics." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13705.
Full textDuring the last years, the demand for high data transfer rates in optical fiber communications has increased exponentially. Since image in its original format exactly as it is captured by the digital camera requires an enormous amount of storage capacity, it is important to develop a system that increases its amount of compression while preserving the important image’s information. In the topic of image’s compression, there are several transformation techniques used for data compression. Discrete Wavelet Transform (DWT) is one of the most commonly used, thanks to its multi-resolution transformation. This multi-resolution property allows to develop, not only a lossless compression method, from which the original image can be obtained exactly as it was before the transform, but also, a lossy method where it is not possible to obtain the original image. In this context, this thesis will develop the idea to apply the Haar wavelet transform using optical circuits. This concept will be analyzed, verifying the possibility of its implementation in the optical domain, using several methods, lossy and lossless, to conclude about the best compression method to apply to an image. Finally, the lossy method will be tested in the laboratory with different components and design the optical device able to accomplish the Haar wavelet transform.
Nos últimos anos, a procura por elevados ritmos de transferência de informação em comunicações óticas tem aumentado exponencialmente. Dado que imagem, no seu formato original exactamente como é captada pela câmara fotográfica ocupa enormes quantidades de espaço de armazenamento, torna-se importante desenvolver um sistema que aumente o seu grau de compressão, preservando as informações importantes da imagem. No tópico da compressão de imagem existem várias técnicas de transformação usadas para compressão de dados. A transformada discreta de onduleta é uma das mais usadas, graças ao uso da transformação em multiresolução. Esta propriedade de multi-resolução permite não só desenvolver métodos de compressão de imagem sem perdas, nos quais se obtém a imagem original exatamente como era antes da transformação, como também métodos com perdas, já não sendo possível obter a imagem original. Neste contexto, esta tese irá desenvolver a ideia de aplicar a transformada de onduleta de Haar usando circuitos óticos. Este conceito irá ser analisado, verificando a possibilidade da sua implementação no domínio ótico, usando vários métodos, com perdas e sem perdas, para concluir acerca do melhor método de compressão a aplicar a uma imagem. Por fim, o método com perdas irá ser testado no laboratório com diferentes componentes e desenhar o dispositivo ótico capaz de aplicar a transformada de onduleta de Haar.
Baker, Christopher Charles. "Electroluminescent Thin Films for Integrated Optics Applications." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1054903604.
Full textClark, Douglas F. "High frequency electro-optic modulators for integrated optics." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293507.
Full textVillalaz, Ricardo A. "Volume Grating Couplers for Optical Interconnects: Analysis, Design, Fabrication, and Testing." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-07102004-165012/unrestricted/villalaz%5Fricardo%5Fa%5F200407%5Fphd.pdf.
Full textGlytsis, Elias, Committee Co-Chair ; Buck, John, Committee Member ; Kohl, Paul, Committee Member ; Adibi, Ali, Committee Member ; Gaylord, Thomas, Committee Chair. Vita. Includes bibliographical references.
Liu, Bo. "Integrated Microwave Photonics Signal Processing." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21633.
Full textAn, Dechang. "Electro-optic polymer-based monolithic waveguide devices with multi-functions of amplification switching and modulation." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035933.
Full textSmalley, Daniel E. "Integrated optics for holographic video." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41617.
Full textIncludes bibliographical references (leaves 83-85).
The goal of this research is to fabricate a guided-wave, two-axis scanner and to modify the design of the MIT holovideo system to take full advantage of the scanner's high bandwidth and two-dimensional deflection. The new display geometry will be designed to use the guided-wave scanner coupled with a holographic optical element to perform a solid-state horizontal de-scan. The development of the guided-wave scanner and the improvements made to the holovideo geometry, will enable the construction of a third generation holovideo display that is higher bandwidth, more solid-state and at least an order of magnitude less expensive than previous generations.
by Daniel E. Smalley.
M.Eng.
Evans, Christopher Courtney. "Nonlinear optics in titanium dioxide: from bulk to integrated optical devices." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11167.
Full textEngineering and Applied Sciences
MOSHREFZADEH, ROBERT SHAHRAM. "THEORY AND FABRICATION OF SUB-MICRON GRATINGS ON NONLINEAR OPTICAL WAVEGUIDES." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184138.
Full textBooks on the topic "Integrated optics"
Hunsperger, Robert G. Integrated Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03159-9.
Full textHunsperger, Robert G. Integrated Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-38843-2.
Full textNolting, Hans-Peter J., and Reinhard Ulrich, eds. Integrated Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39452-5.
Full textHunsperger, Robert G. Integrated Optics. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b98730.
Full text1938-, Ehrfeld Wolfgang, ed. Integrated optics and micro-optics with polymers. Stuttgart: B.G. Teubner, 1993.
Find full textMartellucci, S., A. N. Chester, and M. Bertolotti, eds. Advances in Integrated Optics. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2566-0.
Full textS, Martellucci, Chester A. N, and Bertolotti Mario, eds. Advances in integrated optics. New York: Plenum Press, 1994.
Find full textEhrfeld, Wolfgang, Gerhard Wegner, Wolfgang Karthe, Hans-Dieter Bauer, and Herbert O. Moser, eds. Integrated Optics and Micro-Optics with Polymers. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-93430-7.
Full textIraj, Najafi S., and Society of Photo-optical Instrumentation Engineers., eds. Glass integrated optics and optical fiber devices. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1994.
Find full textHunsperger, Robert G. Integrated Optics: Theory and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textBook chapters on the topic "Integrated optics"
Young, Matt. "Integrated Optics." In Optics and Lasers, 300–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02697-7_12.
Full textZimmermann, Horst. "Integrated Optics." In Springer Series in Optical Sciences, 257–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01521-2_10.
Full textYoung, Matt. "Integrated Optics." In Optics and Lasers, 233–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-540-37456-5_11.
Full textIizuka, Keigo. "Integrated Optics." In Engineering Optics, 449–511. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_15.
Full textMärz, Reinhard, and Christoph Wächter. "Integrated Optics." In Springer Handbook of Lasers and Optics, 1209–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19409-2_15.
Full textIizuka, Keigo. "Integrated Optics." In Springer Series in Optical Sciences, 408–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-36808-3_15.
Full textYoung, Matt. "Integrated Optics." In Optics and Lasers, 319–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04260-1_12.
Full textIizuka, Keigo. "Integrated Optics." In Engineering Optics, 408–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-07032-1_15.
Full textZimmermann, Horst. "Integrated Optics." In Springer Series in Photonics, 203–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04018-8_10.
Full textBoos, Nikolaus, and Christian Lerminiaux. "Integrated optics." In Handbook of Optoelectronics, 573–632. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: CRC Press, 2017. http://dx.doi.org/10.1201/9781315157009-17.
Full textConference papers on the topic "Integrated optics"
Tipps, Joe. "Computer Integrated Manufacturing Tools for the Optics Industry." In Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/oft.1994.owd2.
Full textUra, Shogo, Hiroshi Sunagawa, Toshiaki Suhara, and Hiroshi Nishihara. "A Focusing Grating Coupler for Polarization Detection." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.mc6.
Full textMorasca, Salvatore. "Integrated Optics: How Integrated?" In Integrated Photonics and Nanophotonics Research and Applications. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ipnra.2007.iwb1.
Full textGupta, Neelam, George Simonis, and Paul Ashley. "Multichannel optical heterodyning using integrated optics." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuq4.
Full textSottini, Stefano. "Polymer integrated optics for all optical devices." In Integrated Optoelectronics '94, edited by Giancarlo C. Righini and David Yevick. SPIE, 1994. http://dx.doi.org/10.1117/12.185125.
Full textGarmire, Elsa M. "Integrated Optics For Optical Computing." In Worshop on Photonic Logic and Information Processing, edited by Charles M. Bowden and J. G. Duthie. SPIE, 1986. http://dx.doi.org/10.1117/12.940297.
Full textTetsuya Mizumoto and Yuya Shoji. "Optical isolators for integrated optics." In 2008 International Nano-Optoelectronics Workshop. IEEE, 2008. http://dx.doi.org/10.1109/inow.2008.4634451.
Full textPopov, Yury G. "Integrated optics in optical engineering." In Singapore, edited by Soon Fatt Yoon, M. H. Kuok, and Donald E. Silva. SPIE, 1991. http://dx.doi.org/10.1117/12.26108.
Full textYoung, T. P., G. A. Armstrong, and W. P. Smith. "Semiconductor Finite Elements for Integrated Optics." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.mf2.
Full textPennings, E. C. M., M. K. Smit, A. A. M. Staring, and G. D. Khoe. "Integrated-Optics versus Micro-Optics - a Comparison." In Integrated Photonics Research. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ipr.1996.iwc3.
Full textReports on the topic "Integrated optics"
Ducharme, Stephen, and James M. Takacs. Photorefractive Polymers for Integrated Optics. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada379989.
Full textRijal, Mehul. Fiber optics integrated with Biosensors. Ames (Iowa): Iowa State University, January 2021. http://dx.doi.org/10.31274/cc-20240624-726.
Full textHochberg, Michael J. PECASE: New Directions for Silicon Integrated Optics. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada594983.
Full textSchmidt, Holger, Aaron R. Hawkins, Bin Wu, and John F. Hulbert. Single-Photon Nonlinear Optics in Integrated Hollow-Core Waveguides. Fort Belvoir, VA: Defense Technical Information Center, October 2010. http://dx.doi.org/10.21236/ada563376.
Full textGuo, Junpeng, Karen Lynn McDaniel, Jeremy Andrew Palmer, Pin Yang, Michelle Lynn Griffith, Gregory Allen Vawter, Marc F. Harris, David Robert Tallant, Ting Shan Luk, and George Robert Burns. Microfabrication with femtosecond laser processing : (A) laser ablation of ferrous alloys, (B) direct-write embedded optical waveguides and integrated optics in bulk glasses. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/920737.
Full textPrucnal, P. R., and E. R. Fossum. Integrated Fiber-Optic Coupler. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada184494.
Full textBenwell, Bruce T., Daniel Edmands, and Eduardo Saravia. High-Sensitivity Wideband Analog Fiber-Optic Link Based on Integrated Optical Modulators. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada320333.
Full textRoos, E. V., and J. L. Hendrix. Integrated optical maze. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10170136.
Full textHartman, Nile F., Daniel P. Campbell, and Janet Cobb. Integrated Optic Chemical-Biological Sensors. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada385370.
Full textLaurich, B., I. Campbell, D. Smith, A. Bishop, A. Saxena, T. Hagler, and P. Davids. Polymers for integrated optical interconnects. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/206601.
Full text