Academic literature on the topic 'Integrated Computational Fluid Dynamics (CFD)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrated Computational Fluid Dynamics (CFD).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Pachidis, Vassilios, Pericles Pilidis, Fabien Talhouarn, Anestis Kalfas, and Ioannis Templalexis. "A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics." Journal of Engineering for Gas Turbines and Power 128, no. 3 (March 1, 2004): 579–84. http://dx.doi.org/10.1115/1.2135815.

Full text
Abstract:
Background . This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. Approach. The technique described in this paper utilizes an object-oriented, zero-dimensional (0D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3D) computational fluid dynamics (CFD) component model. The work investigates relative changes in the simulated engine performance after coupling the 3D CFD component to the 0D engine analysis system. For the purposes of this preliminary investigation, the high-fidelity component communicates with the lower fidelity cycle via an iterative, semi-manual process for the determination of the correct operating point. This technique has the potential to become fully automated, can be applied to all engine components, and does not involve the generation of a component characteristic map. Results. This paper demonstrates the potentials of the “fully integrated” approach to component zooming by using a 3D CFD intake model of a high bypass ratio turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The high-fidelity model can fully define the characteristic of the intake at several operating condition and is subsequently used in the 0D cycle analysis to provide a more accurate, physics-based estimate of intake performance (i.e., pressure recovery) and hence, engine performance, replacing the default, empirical values. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the coupled, high-fidelity component is presented in this paper. The analysis carried out by this study demonstrates relative changes in the simulated engine performance larger than 1%. Conclusions. This investigation proves the value of the simulation strategy followed in this paper and completely justifies (i) the extra computational effort required for a more automatic link between the high-fidelity component and the 0D cycle, and (ii) the extra time and effort that is usually required to create and run a 3D CFD engine component, especially in those cases where more accurate, high-fidelity engine performance simulation is required.
APA, Harvard, Vancouver, ISO, and other styles
2

Shilton, A. "Potential application of computational fluid dynamics to pond design." Water Science and Technology 42, no. 10-11 (November 1, 2000): 327–34. http://dx.doi.org/10.2166/wst.2000.0673.

Full text
Abstract:
The ability to reliably predict the fluid flow through a pond and relate these hydraulic characteristics to pond treatment performance would clearly be a very valuable tool to the design engineer. The application of computational fluid dynamics (CFD) mathematical modelling has the potential to do this. In recent years there has been rapid advancement of computing power and mathematical modelling software. CFD simulation gives the pond designer the potential to explore the hydraulic performance for a wide range of design configurations and scenarios. This paper reports on the application of the PHOENICS CFD package for this purpose. To demonstrate the potential application of CFD to pond design, this paper presents a series of simulations of a small community pond. The simulations undertaken were three-dimensional and incorporated the k-e turbulence model. The first of these modelled the existing pond arrangement, after which the effects of adding a baffle is shown as an example of how CFD can be applied for design. In addition to the fluid velocity field, plots of a simulated tracer slick were produced. This simulated tracer movement is used to produce hydraulic retention time distribution curves of the tracer concentration at the outlet. These are then integrated with a simple, first-order decay model for BOD removal and faecal coliform die-off to calculate treatment efficiency. This allowed direct comparison of the expected treatment efficiencies with and without the baffle modification.
APA, Harvard, Vancouver, ISO, and other styles
3

Tannous, A. "Optimization of a Minienvironment Design Using Computational Fluid Dynamics." Journal of the IEST 40, no. 1 (January 31, 1997): 29–34. http://dx.doi.org/10.17764/jiet.2.40.1.b1762603371140r7.

Full text
Abstract:
This paper discusses the use of a CFD (computational fluid dynamics) code for the design and optimization processes of a minienvironment mounted on a wafer process tool. The three-dimensional code was used to predict the air velocity flied and pressure distribution in the minienvironment based on a finite volume approach. The geometric model consists of the minienvironment, the tool surface, and the integrated I/O Indexer interfaces. The airflow in the minienvironment (with a conceptual design configuration) was simulated. The results prompted a design change. The new design has a desirable airflow for a more effective minienvironment performance. Particular attention was paid to air recirculation zones that could potentially trap particles generated during the process and to maintaining a positive differential pressure to prevent cross contamination. CFD was shown to be an important step in the design process.
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Ying, and Zhi Min Li. "CFD Simulating Research of Integrated Solar Building Skin." Applied Mechanics and Materials 110-116 (October 2011): 2487–90. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.2487.

Full text
Abstract:
Through CFD, Computational Fluid Dynamics application to calculate the numerical simulation, this paper is to study natural wind velocity and temperature distribution of the internal and external room of BIPV with solar skin. The research provides the evidence of more effieicent ventilation mode for sloar energy-saving build skin.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Yuehan, Tomohiro Fukuda, and Nobuyoshi Yabuki. "Integrating Animated Computational Fluid Dynamics into Mixed Reality for Building-Renovation Design." Technologies 8, no. 1 (December 29, 2019): 4. http://dx.doi.org/10.3390/technologies8010004.

Full text
Abstract:
In advanced society, the existing building stock has a high demand for stock renovation, which gives existing buildings new lives, rather than building new ones. During the renovation process, it is necessary to simultaneously achieve architectural, facilities, structural, and environmental design in order to accomplish a healthy, comfortable, and energy-saving indoor environment, prevent delays in problem-solving, and achieve a timely feedback process. This study tackled the development of an integrated system for stock renovation by considering computational fluid dynamics (CFD) and mixed reality (MR) in order to allow the simultaneous design of a building plan and thermal environment. The CFD analysis enables simulation of the indoor thermal environment, including the entire thermal change process. The MR system, which can be operated by voice command and operated on head-mounted display (HMD), enables intuitive visualization of the thermal change process and, in a very efficient manner, shows how different renovation projects perform for various stakeholders. A prototype system is developed with Unity3D engine and HoloLens HMD. In the integrated system, a new CFD visualization method generating 3D CFD animation sequence for the MR system is proposed that allows stakeholders to consider the entirety of changes in the thermal environment.
APA, Harvard, Vancouver, ISO, and other styles
6

BULLOUGH, W. A., D. J. ELLAM, and R. J. ATKIN. "PRE-PROTOTYPE DESIGN OF ER/MR DEVICES USING COMPUTATIONAL FLUID DYNAMICS: UNSTEADY FLOW." International Journal of Modern Physics B 19, no. 07n09 (April 10, 2005): 1605–11. http://dx.doi.org/10.1142/s0217979205030657.

Full text
Abstract:
A feasibility investigation into modelling ER/MR devices in transient operation using CFD is summarised. This particular study is one part of a project which has previously included examining 1D and 2D steady state flow, heat transfer, and field distributions using CFD. Though developed piecewise, these various CFD approaches can be integrated to allow a full pre-prototype assessment programme for almost any device conceived, in any mode or sequence of operation. Solutions which include translating boundary motion and inertial boundaries are introduced. In order to verify the CFD results, some new experimental works were carried out on a hydrodynamic bearing and clutch apparatus.
APA, Harvard, Vancouver, ISO, and other styles
7

Wee, Ian, Chi Wei Ong, Nicholas Syn, and Andrew Choong. "Computational Fluid Dynamics and Aortic Dissections: Panacea or Panic?" Vascular and Endovascular Review 1, no. 1 (September 20, 2018): 27–29. http://dx.doi.org/10.15420/ver.2018.8.2.

Full text
Abstract:
This paper reviews the methodology, benefits and limitations associated with computational flow dynamics (CFD) in the field of vascular surgery. Combined with traditional imaging of the vasculature, CFD simulation enables accurate characterisation of real-time physiological and haemodynamic parameters such as wall shear stress. This enables vascular surgeons to understand haemodynamic changes in true and false lumens, and exit and re-entry tears. This crucial information may facilitate triaging decisions. Furthermore, CFD can be used to assess the impact of stent graft treatment, as it provides a haemodynamic account of what may cause procedure-related complications. Efforts to integrate conventional imaging, individual patient data and CFD are paramount to its success, given its potential to replace traditional registry-based, population-averaged data. Nonetheless, methodological limitations must be addressed before clinical implementation. This must be accompanied by further research with large sample sizes, to establish the association between haemodynamic patterns as observed by CFD and progression of aortic dissection.
APA, Harvard, Vancouver, ISO, and other styles
8

Cerri, G., V. Michelassi, S. Monacchia, and S. Pica. "Kinetic combustion neural modelling integrated into computational fluid dynamics." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, no. 2 (January 1, 2003): 185–92. http://dx.doi.org/10.1243/09576500360611218.

Full text
Abstract:
The attempt to replace traditional chemical kinetics model calculations with new ones based on neural networks (NNs) has been successfully carried out. The paper deals with the methodology that has been followed to replace traditional model calculations with neural models (NMs) for methane/air combustion. The reacting flowfield has been described with account taken of the detailed chemical reaction mechanism. Convective and turbulent diffusive transport of species has been taken into consideration by means of a well-known finite volume computational fluid dynamics (CFD) code. Two versions of such a mechanism have been developed. The first one is based on traditional differential equations representing the species production rates. Such equations are integrated over the time intervals related to the cell volumes and local volumetric flows. The second version is based on neural models which can extract and store knowledge from the data presented to them. The neural model capability of connecting output to input quantities by means of the stored knowledge leads to very fast calculations. A reduced combustion mechanism involving 20 species and 68 reactions has been developed both for the traditional calculation and for the neural model calculations. It can be concluded that calculations using chemical kinetics neural models show a 42 times shorter CPU time than that of the traditional procedures, with a comparable solution accuracy of the combustion flowfields.
APA, Harvard, Vancouver, ISO, and other styles
9

Jaworski, Z., M. L. Wyszynski, I. P. T. Moore, and A. W. Nienow. "Sliding mesh computational fluid dynamics—a predictive tool in stirred tank design." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 211, no. 3 (August 1, 1997): 149–56. http://dx.doi.org/10.1243/0954408971529638.

Full text
Abstract:
The use of a fully predictive numerical model of flow in a stirred, baffled tank is presented and validated for the laminar flow regime. This approach employs a commercial computational fluid dynamics (CFD) package with sliding mesh facility. The comparison of computed and experimental values for various flow characteristics shows a very good agreement without the need to input any experimental values for the boundary or initial conditions. It is proposed that the model/experiment error ratio (involving relative errors) may be generally adopted as a criterion for the quality of CFD modelling. This ratio should not be much larger, and does not need to be smaller, than unity. The ratio obtained in this work was just over unity. The state of the art CFD packages are now believed to be able to form a suitable basis for the process engineering aspects of an integrated design of stirred tanks, including mechanical engineering and other related issues.
APA, Harvard, Vancouver, ISO, and other styles
10

Luzi, Giovanni, and Christopher McHardy. "Modeling and Simulation of Photobioreactors with Computational Fluid Dynamics—A Comprehensive Review." Energies 15, no. 11 (May 27, 2022): 3966. http://dx.doi.org/10.3390/en15113966.

Full text
Abstract:
Computational Fluid Dynamics (CFD) have been frequently applied to model the growth conditions in photobioreactors, which are affected in a complex way by multiple, interacting physical processes. We review common photobioreactor types and discuss the processes occurring therein as well as how these processes have been considered in previous CFD models. The analysis reveals that CFD models of photobioreactors do often not consider state-of-the-art modeling approaches. As a comprehensive photobioreactor model consists of several sub-models, we review the most relevant models for the simulation of fluid flows, light propagation, heat and mass transfer and growth kinetics as well as state-of-the-art models for turbulence and interphase forces, revealing their strength and deficiencies. In addition, we review the population balance equation, breakage and coalescence models and discretization methods since the predicted bubble size distribution critically depends on them. This comprehensive overview of the available models provides a unique toolbox for generating CFD models of photobioreactors. Directions future research should take are also discussed, mainly consisting of an extensive experimental validation of the single models for specific photobioreactor geometries, as well as more complete and sophisticated integrated models by virtue of the constant increase of the computational capacity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Kalua, Amos. "Framework for Integrated Multi-Scale CFD Simulations in Architectural Design." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105013.

Full text
Abstract:
An important aspect in the process of architectural design is the testing of solution alternatives in order to evaluate them on their appropriateness within the context of the design problem. Computational Fluid Dynamics (CFD) analysis is one of the approaches that have gained popularity in the testing of architectural design solutions especially for purposes of evaluating the performance of natural ventilation strategies in buildings. Natural ventilation strategies can reduce the energy consumption in buildings while ensuring the good health and wellbeing of the occupants. In order for natural ventilation strategies to perform as intended, a number of factors interact and these factors must be carefully analysed. CFD simulations provide an affordable platform for such analyses to be undertaken. Traditionally, these simulations have largely followed the direction of Best Practice Guidelines (BPGs) for quality control. These guidelines are built around certain simplifications due to the high computational cost of CFD modelling. However, while the computational cost has increasingly fallen and is predicted to continue to drop, the BPGs have largely remained without significant updates. The need to develop a CFD simulation framework that leverages the contemporary and anticipates the future computational cost and capacity can, therefore, not be overemphasised. When conducting CFD simulations during the process of architectural design, the variability of the wind flow field including the wind direction and its velocity constitute an important input parameter. Presently, however, in many simulations, the wind direction is largely used in a steady state manner. It is assumed that the direction of flow downwind of a meteorological station remains constant. This assumption may potentially compromise the integrity of CFD modelling as in reality, the wind flow field is bound to be dynamic from place to place. In order to improve the accuracy of the CFD simulations for architectural design, it is therefore necessary to adequately account for this variability. This study was a two-pronged investigation with the ultimate objective of improving the accuracy of the CFD simulations that are used in the architectural design process, particularly for the design and analysis of natural ventilation strategies. Firstly, a framework for integrated meso-scale and building scale CFD simulations was developed. Secondly, the newly developed framework was then implemented by deploying it to study the variability of the wind flow field between a reference meteorological station, the Virginia Tech Airport, and a selected localized building scale site on the Virginia Tech campus. The findings confirmed that the wind flow field varies from place to place and showed that the newly developed framework was able to capture this variation, ultimately, generating a wind flow field characterization representative of the conditions prevalent at the localized building site. This framework can be particularly useful when undertaking de-coupled CFD simulations to design and analyse natural ventilation strategies in the building design process.
Doctor of Philosophy
The use of natural ventilation strategies in building design has been identified as one viable pathway toward minimizing energy consumption in buildings. Natural ventilation can also reduce the prevalence of the Sick Building Syndrome (SBS) and enhance the productivity of building occupants. This research study sought to develop a framework that can improve the usage of Computational Fluid Dynamics (CFD) analyses in the architectural design process for purposes of enhancing the efficiency of natural ventilation strategies in buildings. CFD is a branch of computational physics that studies the behaviour of fluids as they move from one point to another. The usage of CFD analyses in architectural design requires the input of wind environment data such as direction and velocity. Presently, this data is obtained from a weather station and there is an assumption that this data remains the same even for a building site located at a considerable distance away from the weather station. This potentially compromises the accuracy of the CFD analyses as studies have shown that due to a number of factors such the urban built form, vegetation, terrain and others, the wind environment is bound to vary from one point to another. This study sought to develop a framework that quantifies this variation and provides a way for translating the wind data obtained from a weather station to data that more accurately characterizes a local building site. With this accurate site wind data, the CFD analyses can then provide more meaningful insights into the use of natural ventilation in the process of architectural design. This newly developed framework was deployed on a study site at Virginia Tech. The findings showed that the framework was able to demonstrate that the wind flow field varies from one place to another and it also provided a way to capture this variation, ultimately, generating a wind flow field characterization that was more representative of the local conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Webster, Kasey Johnson. "Using STAR-CCM+ to Evaluate Multi-User Collaboration in CFD." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6094.

Full text
Abstract:
The client-server architecture of STAR-CCM+ allows multiple users to collaborate on a simulation set-up. The effectiveness of collaboration with this architecture is tested and evaluated on five models. The testing of these models is a start to finish set-up of an entire simulation excluding computational time for generating mesh and solving the solution. The different models have distinct differences which test every operation that would be used in a general CFD simulation. These tests focus on reducing the time spent preparing the geometry to be meshed, including setting up for a conformal mesh between multiple regions in conjugate heat transfer models. Results from these five tests show a maximum speed up of 36%.
APA, Harvard, Vancouver, ISO, and other styles
3

Arya, Sampurna N. "INVESTIGATION OF THE EFFECTIVENESS OF AN INTEGRATED FLOODED-BED DUST SCRUBBER ON A LONGWALL SHEARER THROUGH LABORATORY TESTING AND CFD SIMULATION." UKnowledge, 2018. https://uknowledge.uky.edu/mng_etds/40.

Full text
Abstract:
Dust generation at an underground coal mine working face continues to be a health and safety issue. Prolonged exposure to high concentrations of airborne respirable dust can cause a debilitating and often fatal respiratory disease called Black Lung. In addition, the deposition of float dust in mine return airways poses a serious safety hazard if not sufficiently diluted with inert rock dust. A localized methane explosion can transition into a self-propagating dust explosion. Since dust is a byproduct of various mining activities, such as cutting and loading, crushing, and transportation, the dust-related issues cannot be totally eliminated. However, the adverse health effects and safety concerns can be minimized if a significant amount of the generated dust is removed from the ventilation air by a mechanical device, such as a dust scrubber. Over the last three decades, flooded-bed dust scrubbers integrated into continuous miners have been successfully applied for capturing and removing airborne dust generated at the working face. According to the National Institute for Occupational Safety and Health (NIOSH), a flooded-bed scrubber can achieve more than 90% capture and cleaning efficiencies under optimum conditions. Although flooded-bed scrubbers have proven useful in the vast majority of cases, they have not yet been successfully applied to a longwall face. In the United States, numerous attempts have been made to reduce dust concentration at a longwall face through the application of a scrubber; but, none were successfully implemented. Encouraged by the successful use of a flooded-bed scrubber system at continuous miner faces, this research revisits the flooded-bed scrubber concept for a longwall shearer. For this investigation, a full-scale physical model of a Joy 7LS longwall shearer, modified with an integrated flooded-bed dust scrubber, was designed and fabricated at the University of Kentucky. The scope of work for this research was limited to capturing and cleaning dust generated near the shearer headgate drum only. The mock-up was transported to, and assembled in, the full-scale longwall dust gallery at the NIOSH Pittsburgh Research Laboratory (PRL). Tests were conducted to examine: (1) the effect of the scrubber on headgate-drum dust reduction and (2) the combined effect of the scrubber and splitter sprays on headgate drum dust reduction. Analysis of test results for the scrubber-alone condition indicates a significant dust reduction of up to 57% in the return airway and 85% in the test gallery walkway, whereas the combination of scrubber and splitter-arm sprays shows dust reduction of up to 61% and 96% in the return and walkway, respectively. These results indicate that a flooded-bed scrubber integrated into a longwall shearer can be used as a viable technique to reduce a large portion of airborne dust at a longwall face. Subsequently, a Computational Fluid Dynamics (CFD) model of the longwall gallery and shearer was developed and validated using the results of the experimental study. The CFD simulation results are in good agreement with the experimental results with a maximum of 9.7% variation. This validated CFD model can be used in future research to predict the effects of modifications to the scrubber system, including modifications to the scrubber inlet, to optimize the scrubber design, and to evaluate the effectiveness of adding a tailgate drum dust scrubber.
APA, Harvard, Vancouver, ISO, and other styles
4

Charmchi, Isar. "Computational Fluid Dynamics (CFD) Modeling of a Continuous Crystallizer." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Crystallization is one of the most important separation and purification processes in chemical and especially in pharmaceutical industries. Currently most crystallization processes in the industry are based on batch crystallization; however, due to the variation of product quality per batch, efforts are made to move to continuous processes instead. In this respect, micro and meso scale reactors represents a promising technology due to enhanced heat and mass transfer rates, which, translated to particle generation, provide control of size, morphology, and composition. In this study, a meso-scale continuous crystallizer has been characterized and optimized. A stirred tubular continuous-crystallizer has been characterized and optimized in which the crystallization of active pharmaceutical ingredients (APIs) can be performed under controlled conditions. The crystallizer is formed by two tubes, one for nucleation and the other one for growth, in order to separate different phenomena to control better the process and hence the crystal size distribution. The optimized nucleation tube has a length of 35 cm and a diameter of 3 cm with a long axial blade across the tube with the length of 30 cm and 2.5 cm of diameter. The phenomena of mixing helps to achieve homogeneous supersaturation along the tube to prevent growth during the nucleation and enables narrow residence time distribution of the crystals in the tube with the help of gravity to achieve narrower crystal size distribution. Computational fluid dynamics (CFD) is used to optimize the process. CFD is the application of numerical methods to solve systems of partial differential equations related to fluid dynamics. The continuity and the momentum equations are the most commonly applied equations within CFD, and together they can be used to calculate the velocity and pressure distributions in a fluid.
APA, Harvard, Vancouver, ISO, and other styles
5

Kaggerud, Torbjørn Herder. "Modeling an EDC Cracker using Computational Fluid Dynamics (CFD)." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9536.

Full text
Abstract:

The process used by the Norwegian company Hydro for making Vinyl Chloride Monomer (VCM) from natural gas and sodium chloride has been studied. A three dimensional CFD model representing the firebox of the EDC cracker has been developed using the commercial CFD tool Fluent. Heat to the cracker is delivered by means of combustion of a fuel gas consisting of methane and hydrogen. In the developed CFD model used in this work, the combustion reaction itself is omitted, and heat is delivered by hot flue gas. With the combustion reaction left out, the only means of tuning the CFD model is through the flue gas inlet temperature. With the flue gas inlet temperature near the adiabatic flame temperature, the general temperature level of the EDC cracker was reported to be too high. The outer surface temperature of the coil was reported to be 3-400 K higher than what was expected. By increasing the mass flow of flue gas and decreasing the temperature, the net delivered heat to the firebox was maintained at the same level as the first case, but the temperature on the coil was reduced by 100-150 K. Further reductions in the flue gas inlet temperature and modifications in the mass flow of flue gas at the different burner rows, eventually gave temperature distributions along the reaction coil, and flue gas and refractory temperatures, that resemble those in the actual cracker. The one-dimensional reactor model for the cracking reaction represents the actual cracker in a satsifactorily manner. The cracking reaction was simulated using a simple, global reaction mechanism, thus only the main components of the process fluid, EDC, VCM and HCl, can be studied. The model is written in a way suitable for implementation of more detailed chemical reaction mechanisms. The largest deviation in temperature between measured and simulated data are about 5%. At the outlet the temperature of the process fluid is equal to the measured data. The conversion of EDC out of the firebox is assumed to be 50 wt-%, this value is met exactly by the model.

APA, Harvard, Vancouver, ISO, and other styles
6

Al-Far, Salam H. "Indirect fired oven simulation using computational fluid dynamics (CFD)." Thesis, London South Bank University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dodds, David Scott. "Computational fluid dynamics (CFD) modelling of dilute particulate flows." Swinburne Research Bank, 2008. http://hdl.handle.net/1959.3/44947.

Full text
Abstract:
Thesis (PhD) - Swinburne University of Technology, Faculty of Engineering and Industrial Sciences, 2008.
A thesis submitted for the degree of Doctor of Philosophy, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 2008. Typescript. Bibliography: p. 129-142. Includes bibliographical references (p. 259-274)
APA, Harvard, Vancouver, ISO, and other styles
8

Demir, H. Ozgur. "Computational Fluid Dynamics Analysis Of Store Separation." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605294/index.pdf.

Full text
Abstract:
In this thesis, store separation from two different configurations are solved using computational methods. Two different commercially available CFD codes
CFD-FASTRAN, an implicit Euler solver, and an unsteady panel method solver USAERO, coupled with integral boundary layer solution procedure are used for the present computations. The computational trajectory results are validated against the available experimental data of a generic wing-pylon-store configuration at Mach 0.95. Major trends of the separation are captured. Same configuration is used for the comparison of unsteady panel method with Euler solution at Mach 0.3 and 0.6. Major trends are similar to each other while some differences in lateral and longitudinal displacements are observed. Trajectories of a fueltank separated from an F-16 fighter aircraft wing and full aircraft configurations are found at Mach 0.3 using only the unsteady panel code. The results indicate that the effect of fuselage is to decrease the drag and to increase the side forces acting on the separating fueltank from the aircraft. It is also observed that the yawing and rolling directions of the separating fueltank are reversed when it is separated from the full aircraft configuration when compared to the separation from the wing alone configuration.
APA, Harvard, Vancouver, ISO, and other styles
9

Chou, Ching Ju. "The Application of Computational Fluid Dynamics to Comfort Modelling." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16686.

Full text
Abstract:
This thesis studies thermal comfort in heating, ventilation and air-conditioning (HVAC) scenarios with computational fluid dynamics (CFD) models at domain and occupant levels. Domain level comfort modelling, where the details of the occupant are not modelled, is investigated utilising Fanger’s Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) comfort models. Occupant level comfort modelling, where the occupant geometry and skin temperature are required, is explored using two different models. The first model termed the thermal manikin model couples the University of California Berkeley (UCB) psychological model to a new physiological model which neglects the thermal regulation of the human body, and consists of a central core at constant temperature surrounded by a layer with thickness and corresponding thermal properties to allow the skin temperature to vary over the modelled human body. The second model based on Gagge’s two-node model, which includes thermal regulation, yet assumes the skin temperature of the occupant to be spatially uniform. The models are validated with the experimental results from the Technical University of Denmark, which provides the data of the air flow, and the Indoor Environmental Quality (IEQ) laboratory at the University of Sydney, which offered the actual votes of human subjects for a range of environmental conditions. To conclude, the prediction of the skin temperature and its spatial variation is the most important parameter to predict occupant comfort correctly. The occupant level comfort modelling approach employing the thermal manikin is found to be the superior method to evaluate thermal comfort as it can still be accurate when the environment is complex. However, the computational cost and model setup time is high. Further work employing multi-node thermal manikin models would be a fruitful area of research if the accuracy of occupant comfort prediction in complex thermal environments is of interest.
APA, Harvard, Vancouver, ISO, and other styles
10

Chiu, Ya-Tien. "Computational Fluid Dynamics Simulations of Hydraulic Energy Absorber." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/34775.

Full text
Abstract:
Hydraulic energy absorbers may be described as high-loss centrifugal turbomachines arranged to operate as stalled torque converters. The device absorbs the kinetic energy of a vehicle in motion and dissipates the energy into water. A steady, single-phase, Computational Fluid Dynamics (CFD) simulation has been performed to investigate the flow field in a hydraulic energy absorber. It was determined that to better predict the performance of the energy absorber, more sophisticated modeling approaches may be needed. In this research, a steady, two-phase calculation with basic turbulence modeling was used as a first assessment. The two-phase model was used to investigate cavitation effects. Unsteady and advanced turbulence modeling techniques were then incorporated into single-phase calculations. The Multiple Reference Frame (MRF) Technique was used to model the interaction between the rotor and the stator. The calculations provided clearer details of the flow field without dramatically increasing the computational cost. It was found that unsteady modeling was necessary to correctly capture the close coupling between the rotor and the stator. The predicted torque in the unsteady calculations was 70% of the experimental value and twice of the result in the steady-state calculations. It was found that the inaccuracy of torque prediction was due to (1) high pressures in the regions with complicated geometrical boundaries and, (2) dynamic interactions between the rotor and the stator were not captured fully. It was also determined that the unrealistically low pressure values were not caused by the physical cavitation, but by the lack of proper boundary conditions for the model. Further integration of the modeling techniques studied would improve the CFD results for use in the design of the energy absorber.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Fuller, E. J. Integrated CFD modeling of gas turbine combustors. Washington, D. C: AIAA, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Institute for Computer Applications in Science and Engineering., ed. Runtime volume visualization for parallel CFD. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Turbomachinery design using CFD. Neuilly sur Seine, France: AGARD, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peraire, Jaime. Unstructured mesh methods for CFD. London, England: Imperial College of Science, Technology and Medicine. Dept. of Aeronautics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wilcox, David C. Turbulence modeling for CFD. La Cañada, CA: DCW Industries, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilcox, David C. Turbulence modeling for CFD. La Cãnada, CA: DCW Industries, Inc., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilcox, David C. Turbulence modeling for CFD. 2nd ed. La Cãnada, Calif: DCW Industries, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. CFD techniques for propulsion applications. Neuilly sur Seine, France: AGARD, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

CFD 94 (1994 Toronto, Ont.). Proceedings, CFD 94: Second Annual Conference of the CFD Society of Canada : Toronto, Ontario, June 1-3, 1994. Edited by Gottlieb J. J and Ethier Christopher Ross 1959-. [Toronto, Ont.]: CFD Society of Canada, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A grassroots campaign for CFD analysis. [New York, N.Y.]: Knovel, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Schwarze, Rüdiger. "Computational Fluid Dynamics." In CFD-Modellierung, 3–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24378-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feng, Z., P. Gu, M. Zheng, X. Yan, and D. W. Bao. "Environmental Data-Driven Performance-Based Topological Optimisation for Morphology Evolution of Artificial Taihu Stone." In Proceedings of the 2021 DigitalFUTURES, 117–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_11.

Full text
Abstract:
AbstractTaihu stone is the most famous one among the top four stones in China. It is formed by the water's erosion in Taihu Lake for hundreds or even thousands of years. It has become a common ornamental stone in classical Chinese gardens because of its porous and intricate forms. At the same time, it has become a cultural symbol through thousands of years of history in China; later, people researched its spatial aesthetics; there are also some studies on its structural properties. For example, it has been found that the opening of Taihu stone caves has a steady-state effect which people develop its value in the theory of Poros City, Porosity in Architecture and some cultural symbols based on the original ornamental value of Taihu stone. This paper introduces a hybrid generative design method that integrates the Computational Fluid Dynamics (CFD) and Bi-directional Evolutionary Structural Optimization (BESO) techniques. Computational Fluid Dynamics (CFD) simulation enables architects and engineers to predict and optimise the performance of buildings and environment in the early stage of the design and topology optimisation techniques BESO has been widely used in structural design to evolve a structure from the full design domain towards an optimum by gradually removing inefficient material and adding materials simultaneously. This research aims to design the artificial Taihu stone based on the environmental data-driven performance feedback using the topological optimisation method. As traditional and historical ornament craftwork in China, the new artificial Taihu stone stimulates thinking about the new value and unique significance of the cultural symbol of Taihu stone in modern society. It proposes possibilities and reflections on exploring the related fields of Porosity in Architecture and Poros City from the perspective of structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, J. D. "Basic Philosophy of CFD." In Computational Fluid Dynamics, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85056-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anderson, J. D. "Basic Philosophy of CFD." In Computational Fluid Dynamics, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-11350-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wagner, S. "Computational Fluid Dynamics (CFD)." In High Performance Computing in Science and Engineering ’99, 239–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59686-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pender, G., H. P. Morvan, N. G. Wright, and D. A. Ervine. "CFD for Environmental Design and Management." In Computational Fluid Dynamics, 487–509. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470015195.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Zi-Niu, and Jing Shi. "Coordinate Transformation for CFD." In Computational Fluid Dynamics 2002, 171–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leclerc, M. "Ecohydraulics: A New Interdisciplinary Frontier for CFD." In Computational Fluid Dynamics, 429–60. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470015195.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ingham, D. B., and L. Ma. "Fundamental Equations for CFD in River Flow Simulations." In Computational Fluid Dynamics, 17–49. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470015195.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nakahashi, Kazuhiro. "Progress in Unstructured-Grid CFD." In Computational Fluid Dynamics 2000, 3–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56535-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Jones, William. "GridEx - An Integrated Grid Generation Package for CFD." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Straw, Matt, Ravindra Aglave, and Rodolfo Piccioli. "Integrated Approach to Multiphase Flow Regime Prediction Through Computational Fluid Dynamics CFD." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31096-ms.

Full text
Abstract:
Abstract This paper presents recent advances in multiphase modelling methods in Computational Fluid Dynamics (CFD). It uses case studies to show how integration of advanced multiphase modelling approaches can improve the fidelity and realism of simulation of separation and process systems; helping improve design and performance. CFD has been widely used to aid the design and operational performance of many separation and multiphase production and process systems; often providing significant insight and performance improvement. Traditionally, numerous compromises or simplifications must be made when simulating complex multiphase flows and their transitions within production and separation systems using CFD. For example, the modelling methods applicable to capture gas-liquid or liquid-liquid interface behaviour are not suitable (or practical) to also capture gas columns, liquid films or liquid entrainment phenomena, that may be important to quantifying overall system performance. To accommodate different multiphase phenomena and flow regimes, multiple CFD simulations or approaches have often been required. This can limit the insight or fidelity of a given simulation or, in some cases, mean overall performance cannot be fully quantified (even though useful performance indicators may still be identified). Here, the authors present advances in hybrid multiphase modelling and how integration of multiphase modelling approaches enables multiple multiphase flow regimes and their transition to be captured through CFD simulation. The paper will demonstrate how these advances enables simulation of more complex behaviours with increased fidelity. Examples, case studies and validation cases are presented demonstrating phenomena including bulk liquid interface break-up, liquid film formation and entrainment of droplets plus their break—up and deposition. The examples will be presented in the context of the improvements possible in simulation fidelity and realism, of multiphase systems, and how this can impact the insight and value gained from CFD simulation in this complex field. The work presented shows how new developments and evolution of CFD-based predictions can advance how the industry uses this approach and the value that can be obtained. It highlights how integration of the most advanced modelling approaches and methods is key to the next stage of application of CFD to enable better representation of the full range of fluid mechanics that are critical to many separation and multiphase system designs and performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Pachidis, Vassilios, Pericles Pilidis, Geoffrey Guindeuil, Anestis Kalfas, and Ioannis Templalexis. "A Partially Integrated Approach to Component Zooming Using Computational Fluid Dynamics." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68457.

Full text
Abstract:
This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. The technique described in this paper utilizes an object-oriented, zero-dimensional (0-D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3-D) computational fluid dynamics (CFD) component model. The technique is called ‘partially integrated’ zooming, in that there is no automatic link between the 0-D engine cycle and the 3-D CFD model. It can be applied to all engine components and involves the generation of a component characteristic map via an iterative execution of the 0-D cycle and the 3-D CFD model. This work investigates relative changes in the simulated engine performance after integrating the CFD-generated component map into the 0-D engine analysis. This paper attempts to demonstrate the ‘partially integrated’ approach to component zooming by using a 3-D CFD intake model of a high by-pass ratio (HBR) turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The CFD-generated performance map can fully define the characteristic of the intake at several operating conditions and is subsequently used to provide a more accurate, physics-based estimate of intake performance (i.e. pressure recovery) and hence, engine performance, replacing the default, empirical values within the 0-D cycle model. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the CFD-generated map is presented in this paper. The analysis carried out by this study, demonstrates relative changes in the simulated engine performance larger than 1%.
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Jinmo, and Donghyun You. "Computational Methodology for Integrated CFD-CSD Simulations of Fluid-Structure Interaction Problems." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31199.

Full text
Abstract:
A newly developed computational methodology for high-fidelity prediction of fluid and structure dynamics and their unsteady interaction is presented. The present methodology combines an immersed-boundary method, which is capable of simulating flow over non-grid-conforming complex moving bodies and a structural dynamics solver, which is based on a finite-element method and is capable of predicting time-accurate dynamics of deforming solid structures. The pressure and velocity of fluid and geometric information of submerged structures are time-accurately coupled through an integration algorithm. The capability of the present computational fluid dynamics (CFD)–computational structure dynamics (CSD) coupling technique is assessed in a number of validation simulations.
APA, Harvard, Vancouver, ISO, and other styles
5

Hailu, Getu, TingTing Yang, Andreas K. Athienitis, and Alan S. Fung. "Computational Fluid Dynamics (CFD) Analysis of Building Integrated Photovoltaic Thermal (BIPV/T) Systems." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6394.

Full text
Abstract:
This paper presents CFD study of a BIPV/T system with forced convection. Air was circulated behind PV arrays and used as a coolant with various air flow rates (air velocities) to recover the thermal energy that could be used for space and/or domestic water heating. Turbulent flows were considered with Reynolds number ranging from 5199 to 9392. COMSOL Multiphysics finite element analysis (FEA) software was used to develop CFD models for the BIPV/T system using: (a) measured temperature profile at different flow rates, and (b) measured solar radiation as boundary condition. Predictions of the air temperature profiles inside the air flow channel and the backside of the PV were obtained and compared to experimentally obtained temperature profiles using both boundary conditions. In general, better agreement with the experimentally measured temperature profiles was obtained when the measured solar radiation was used as a boundary condition. The results of the study can be used to establish relationships between the average/local convective heat transfer coefficients and air flow velocity. The relationships obtained will also be useful for developing correlations and simple mathematical models that facilitate the design and optimization of different parts of the BIPV/T system, such as inlet regions.
APA, Harvard, Vancouver, ISO, and other styles
6

Pachidis, Vassilios, Pericles Pilidis, Fabien Talhouarn, Anestis Kalfas, and Ioannis Templalexis. "A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68458.

Full text
Abstract:
This study focuses on a simulation strategy that will allow the performance characteristics of an isolated gas turbine engine component, resolved from a detailed, high-fidelity analysis, to be transferred to an engine system analysis carried out at a lower level of resolution. This work will enable component-level, complex physical processes to be captured and analyzed in the context of the whole engine performance, at an affordable computing resource and time. The technique described in this paper utilizes an object-oriented, zero-dimensional (0-D) gas turbine modeling and performance simulation system and a high-fidelity, three-dimensional (3-D) computational fluid dynamics (CFD) component model. The work investigates relative changes in the simulated engine performance after coupling the 3-D CFD component to the 0-D engine analysis system. For the purposes of this preliminary investigation, the high-fidelity component communicates with the lower fidelity cycle via an iterative, semi-manual process for the determination of the correct operating point. This technique has the potential to become fully automated, can be applied to all engine components and does not involve the generation of a component characteristic map. This paper demonstrates the potentials of the ‘fully integrated’ approach to component zooming by using a 3-D CFD intake model of a high by-pass ratio (HBR) turbofan as a case study. The CFD model is based on the geometry of the intake of the CFM56-5B2 engine. The high-fidelity model can fully define the characteristic of the intake at several operating condition and is subsequently used in the 0-D cycle analysis to provide a more accurate, physics-based estimate of intake performance (i.e. pressure recovery) and hence, engine performance, replacing the default, empirical values. A detailed comparison between the baseline engine performance (empirical pressure recovery) and the engine performance obtained after using the coupled, high-fidelity component is presented in this paper. The analysis carried out by this study, demonstrates relative changes in the simulated engine performance larger than 1%.
APA, Harvard, Vancouver, ISO, and other styles
7

Satti, Rajani, Narasimha Rao Pillalamarri, and Eckard Scholz. "Computational Fluid Dynamics (CFD) Analysis of a Single-Stage Downhole Turbine." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16258.

Full text
Abstract:
In this study, the application of computational fluid dynamics (CFD) is explored to predict the performance characteristics in a typical single-stage downhole turbine. The single-stage turbine model utilized for this study consists of a stator and a rotor. A finite-volume based CFD approach was implemented to simulate the complex flow field around the turbine. The analysis is based on transient, three-dimensional, isothermal turbulent flow in an incompressible fluid system. The inlet flow rates and angular velocity of the rotor were varied to encompass the operating regime. Comparison with experimental data revealed excellent agreement, proving reliability of the model in predicting the performance characteristics. Motivated by the successful model validation, a parametric study (considering blade tip clearance and blade count) was also conducted to understand the effects of the design parameters on the performance of the turbine. Detailed flow visualizations and efficiency calculations were also done to provide further insight into the overall performance of the turbine. As part of the present study, significant efforts were also spent in the following areas: standardization of CFD methodology and assessment of commercial software to develop an integrated CFD-driven design process.
APA, Harvard, Vancouver, ISO, and other styles
8

Rodriguez, Alexander, Jan Persson, Johannes Witt, and Paolo Vaccaneo. "Improving the Columbus Integrated Overall Thermal Mathematical Model (IOTMM) Using Computational Fluid Dynamics (CFD)." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Bo, Ye Qin, Shaoping Shi, Shu Yan, Yanfei Mu, Xin Liu, Xinming Chen, Yutong Guo, and Chongji Zeng. "Computational Fluid Dynamics Simulation of Syngas Nozzle of Gas Turbine for Syngas." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90272.

Full text
Abstract:
Abstract Integrated Gasification Combined Cycle (IGCC) is a technology that integrates the coal gasification and combined cycle to produce electricity efficiently. Due to the fact that the heating value of syngas from coal gasification process is typically lower than that of the natural gas, the conventional gas turbine will have to be adapted for syngas. The nozzle adjustment is the key to the successful transformation since the ignition properties are different between syngas and natural gas which have totally different compositions. The nozzles suitable for natural gas have been prone to partially melting around the flame stabilization holes on sidewalls of the nozzle in real operation. Thus a computational fluid dynamics (CFD) model was constructed for the syngas nozzles as well as combustion chamber of the gas turbine for low heating value syngas to study the thermostability of the nozzle. The detailed structure of the syngas nozzle, the combustion characteristics of syngas, as well as the actual operation condition of the gas turbine were all employed in the CFD model to improve the simulation accuracy. The reason of partially melting of the nozzles suitable for natural gas can be attributed to that the syngas leaked from the flame stabilization holes into the mainstream air can quickly mix with air, adhere to the sidewalls of the nozzles and then ignite around the holes which result in temperatures high enough to melt the material of the nozzle around the holes through CFD simulation. Finally, a new structure of the syngas nozzle was proposed and validated by CFD simulations. The simulation result shows that the flames caused by the syngas leaked from the flame stabilization holes are no longer adhering to the nozzle sidewalls and local high temperature can be lowered by about 30% which will not be able to melt the nozzle material.
APA, Harvard, Vancouver, ISO, and other styles
10

Garbey, Marc, Wei Shyy, Bilel Hadri, and Edouard Rougetet. "Numerically Efficient Solution Techniques for Computational Fluid Dynamics and Heat Transfer Problems." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56475.

Full text
Abstract:
We present a numerical software interface that can be integrated easily in a CFD or Heat transfer code and allows the systematic investigation of the efficiency of a broad class of solvers to optimize the code. We consider three classes of solvers that are respectively direct solver with LU decomposition, Krylov method with incomplete LU preconditionner and algebraic multigrid that have been implemented in Lapack, Sparskit, and Hypre. We systematically investigate the performance of these solvers with four test cases in ground flow, multiphase flow, bioheat transfer, and pressure solve in an Incompressible Navier Stokes code for flow in pipe with overset composite meshes. We show for each test case that the choice of the best solver may depend critically on the grid size, the aspect ratio of the grid, and further the physical parameters of the problem and the architecture of the processor. We have constructed an interface that allows to easily include in an existing CFD or heat transfer code any of the elliptic solvers available in Lapack, Sparskit and Hypre. This interface has the simplicity of Matlab command but keeps the efficiency of the original Fortran or C library. This interface can help us to investigate what would be the best solver as a preprocessing procedure. This work is a first step to construct intelligent software that will optimize an existing code automatically using the best algorithm for the application.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Integrated Computational Fluid Dynamics (CFD)"

1

Behr, Marek, Daniel M. Pressel, Walter B. Sturek, and Sr. Comments on Computational Fluid Dynamics (CFD) Code Performance on Scalable Architectures. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada409739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strons, P., J. Bailey, A. Frigo, and ( NE). Computational Fluid Dynamics (CFD) Analyses of a Glovebox under Glove Loss Conditions. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1160209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nickolaus, D. Computational Fluid Dynamics (CFD) Analysis and Development of Halon-Replacement Fire Extinguishing Systems (Phase 2). Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada585794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heavy, Karen R., Jubaraj Sahu, and Stephen A. Wilkerson. A Multidisciplinary Coupled Computational Fluid Dynamics (CFD) and Structural Dynamics (SD) Analysis of a 2.75-in Rocket Launcher. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada402247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dr. Chenn Zhou. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/949189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

JACKSON VL. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1028214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Douglas, Craig C., and Adam F. Zornes. Computational Fluid Dynamics (CFD) Modeling And Analysis Delivery Order 0006: Cache-Aware Air Vehicles Unstructured Solver (AVUS). Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada451530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meidani, Hadi, and Amir Kazemi. Data-Driven Computational Fluid Dynamics Model for Predicting Drag Forces on Truck Platoons. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-036.

Full text
Abstract:
Fuel-consumption reduction in the truck industry is significantly beneficial to both energy economy and the environment. Although estimation of drag forces is required to quantify fuel consumption of trucks, computational fluid dynamics (CFD) to meet this need is expensive. Data-driven surrogate models are developed to mitigate this concern and are promising for capturing the dynamics of large systems such as truck platoons. In this work, we aim to develop a surrogate-based fluid dynamics model that can be used to optimize the configuration of trucks in a robust way, considering various uncertainties such as random truck geometries, variable truck speed, random wind direction, and wind magnitude. Once trained, such a surrogate-based model can be readily employed for platoon-routing problems or the study of pavement performance.
APA, Harvard, Vancouver, ISO, and other styles
9

Coirier, William J., and James Stutts. Development of an Aero-Optics Software Library and Integration into Structured Overset and Unstructured Computational Fluid Dynamics (CFD) Flow Solvers. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada547289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leishear, Robert A., Si Y. Lee, Michael R. Poirier, Timothy J. Steeper, Robert C. Ervin, Billy J. Giddings, David B. Stefanko, Keith D. Harp, Mark D. Fowley, and William B. Van Pelt. CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1052822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography