Journal articles on the topic 'Integrated Bragg Gratings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Integrated Bragg Gratings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bartelt, Hartmut. "Trends in Bragg Grating Technology for Optical Fiber Sensor Applications." Key Engineering Materials 437 (May 2010): 304–8. http://dx.doi.org/10.4028/www.scientific.net/kem.437.304.
Full textSimard, Alexandre D., Yves Painchaud, and Sophie LaRochelle. "Integrated Bragg gratings in spiral waveguides." Optics Express 21, no. 7 (April 4, 2013): 8953. http://dx.doi.org/10.1364/oe.21.008953.
Full textMunster, Petr, and Tomas Horvath. "Intelligent Technical Textiles Based on Fiber Bragg Gratings for Strain Monitoring." Sensors 20, no. 10 (May 22, 2020): 2951. http://dx.doi.org/10.3390/s20102951.
Full textDhavamani, Vigneshwar, Srijani Chakraborty, S. Ramya, and Somesh Nandi. "Design and Simulation of Waveguide Bragg Grating based Temperature Sensor in COMSOL." Journal of Physics: Conference Series 2161, no. 1 (January 1, 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2161/1/012047.
Full textZhong, Huajian, Xueya Liu, Cailing Fu, Baijie Xu, Jun He, Pengfei Li, Yanjie Meng, et al. "Quasi-Distributed Temperature and Strain Sensors Based on Series-Integrated Fiber Bragg Gratings." Nanomaterials 12, no. 9 (May 2, 2022): 1540. http://dx.doi.org/10.3390/nano12091540.
Full textField, James W., Sam A. Berry, Rex H. S. Bannerman, Devin H. Smith, Corin B. E. Gawith, Peter G. R. Smith, and James C. Gates. "Highly-chirped Bragg gratings for integrated silica spectrometers." Optics Express 28, no. 14 (July 2, 2020): 21247. http://dx.doi.org/10.1364/oe.389211.
Full textSimard, A. D., N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle. "Impact of Sidewall Roughness on Integrated Bragg Gratings." Journal of Lightwave Technology 29, no. 24 (December 2011): 3693–704. http://dx.doi.org/10.1109/jlt.2011.2173556.
Full textAyotte, Nicolas, Alexandre D. Simard, and Sophie LaRochelle. "Long Integrated Bragg Gratings for SoI Wafer Metrology." IEEE Photonics Technology Letters 27, no. 7 (April 1, 2015): 755–58. http://dx.doi.org/10.1109/lpt.2015.2391174.
Full textKaur, Manjinder, and Sanjeev Dewra. "Investigation of Photonic Integrated Circuits with Low-Loss Bragg Gratings." Journal of Optical Communications 41, no. 3 (April 28, 2020): 229–33. http://dx.doi.org/10.1515/joc-2017-0177.
Full textTu, Donghe, Xingrui Huang, Yuxiang Yin, Hang Yu, Zhiguo Yu, Huan Guan, and Zhiyong Li. "Mode-Conversion-Based Chirped Bragg Gratings on Thin-Film Lithium Niobate." Photonics 9, no. 11 (November 4, 2022): 828. http://dx.doi.org/10.3390/photonics9110828.
Full textThursby, G., B. Sorazu, D. Betz, M. Staszewski, and B. Culshaw. "The Use of Fibre Optic Sensors for Damage Detection and Location in Structural Materials." Applied Mechanics and Materials 1-2 (September 2004): 191–96. http://dx.doi.org/10.4028/www.scientific.net/amm.1-2.191.
Full textShishova, Maria, Alexander Zherdev, Dmitrii Lushnikov, and Sergey Odinokov. "Recording of the Multiplexed Bragg Diffraction Gratings for Waveguides Using Phase Mask." Photonics 7, no. 4 (October 27, 2020): 97. http://dx.doi.org/10.3390/photonics7040097.
Full textKefer, Stefan, Gian-Luca Roth, Julian Zettl, Bernhard Schmauss, and Ralf Hellmann. "Sapphire Photonic Crystal Waveguides with Integrated Bragg Grating Structure." Photonics 9, no. 4 (April 1, 2022): 234. http://dx.doi.org/10.3390/photonics9040234.
Full textBurla, Maurizio, Luis Romero Cortés, Ming Li, Xu Wang, Lukas Chrostowski, and José Azaña. "Integrated waveguide Bragg gratings for microwave photonics signal processing." Optics Express 21, no. 21 (October 15, 2013): 25120. http://dx.doi.org/10.1364/oe.21.025120.
Full textGiuntoni, Ivano, David Stolarek, Jurgen Bruns, Lars Zimmermann, Bernd Tillack, and Klaus Petermann. "Integrated Dispersion Compensator Based on Apodized SOI Bragg Gratings." IEEE Photonics Technology Letters 25, no. 14 (July 2013): 1313–16. http://dx.doi.org/10.1109/lpt.2013.2264050.
Full textButt, Muhammad Ali. "Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 82. http://dx.doi.org/10.4302/plp.v12i3.1042.
Full textXiao, Jing. "Phase-Shifted Bragg Gratings Based on Hybrid Plasmonics Structure." Advanced Materials Research 901 (February 2014): 21–23. http://dx.doi.org/10.4028/www.scientific.net/amr.901.21.
Full textCheng, Rui, and Lukas Chrostowski. "Apodization of Silicon Integrated Bragg Gratings Through Periodic Phase Modulation." IEEE Journal of Selected Topics in Quantum Electronics 26, no. 2 (March 2020): 1–15. http://dx.doi.org/10.1109/jstqe.2019.2929698.
Full textJiang, Lingjun, and Zhaoran Rena Huang. "Integrated Cascaded Bragg Gratings for On-Chip Optical Delay Lines." IEEE Photonics Technology Letters 30, no. 5 (March 1, 2018): 499–502. http://dx.doi.org/10.1109/lpt.2018.2801026.
Full textSun, Hao, Yue Wang, and Lawrence R. Chen. "Integrated Discretely Tunable Optical Delay Line Based on Step-Chirped Subwavelength Grating Waveguide Bragg Gratings." Journal of Lightwave Technology 38, no. 19 (October 1, 2020): 5551–60. http://dx.doi.org/10.1109/jlt.2020.3017496.
Full textČehovski, Marko, Jing Becker, Ouacef Charfi, Hans-Hermann Johannes, Claas Müller, and Wolfgang Kowalsky. "Single-Mode Polymer Ridge Waveguide Integration of Organic Thin-Film Laser." Applied Sciences 10, no. 8 (April 18, 2020): 2805. http://dx.doi.org/10.3390/app10082805.
Full textBudadin, O. N., W. Yu Kutyurin, A. N. Rykov, and P. I. Gnusin. "MEASUREMENT OF STRAINS IN CARBON-REINFORCED POLYMER COMPOSITE PRODUCTS AT ELEVATED TEMPERATURES USING FIBER-OPTIC SENSORS." Kontrol'. Diagnostika, no. 255 (2019): 14–19. http://dx.doi.org/10.14489/td.2019.09.pp.014-019.
Full textCheng, Rui, and Lukas Chrostowski. "Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings." Optics Letters 43, no. 5 (February 22, 2018): 1031. http://dx.doi.org/10.1364/ol.43.001031.
Full textRivas, Luis M., Michael J. Strain, David Duchesne, Alejandro Carballar, Marc Sorel, Roberto Morandotti, and José Azaña. "Picosecond linear optical pulse shapers based on integrated waveguide Bragg gratings." Optics Letters 33, no. 21 (October 17, 2008): 2425. http://dx.doi.org/10.1364/ol.33.002425.
Full textHruschka, Crassen, Udo Barabas, and Lutz Gohler. "Optical narrow band filter without resonance's." Facta universitatis - series: Electronics and Energetics 17, no. 2 (2004): 209–17. http://dx.doi.org/10.2298/fuee0402209h.
Full textKefer, Stefan, Theresia Sauer, Steffen Hessler, Michael Kaloudis, and Ralf Hellmann. "Microstructure-Based Fiber-To-Chip Coupling of Polymer Planar Bragg Gratings for Harsh Environment Applications." Sensors 20, no. 19 (September 23, 2020): 5452. http://dx.doi.org/10.3390/s20195452.
Full textEmmerson, G. D., C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming. "All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing." IEE Proceedings - Optoelectronics 151, no. 2 (2004): 119. http://dx.doi.org/10.1049/ip-opt:20040182.
Full textNedjalkov, Antonio, Jan Meyer, Alexander Gräfenstein, Benjamin Schramm, Martin Angelmahr, Julian Schwenzel, and Wolfgang Schade. "Refractive Index Measurement of Lithium Ion Battery Electrolyte with Etched Surface Cladding Waveguide Bragg Gratings and Cell Electrode State Monitoring by Optical Strain Sensors." Batteries 5, no. 1 (March 12, 2019): 30. http://dx.doi.org/10.3390/batteries5010030.
Full textTan, Mengying, Ning Zhou, Yao Cheng, Jiangwen Wang, Weihua Zhang, and Dong Zou. "A temperature-compensated fiber Bragg grating sensor system based on digital filtering for monitoring the pantograph–catenary contact force." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 233, no. 2 (July 9, 2018): 187–200. http://dx.doi.org/10.1177/0954409718786143.
Full textWANG, YiPing, XueYa LIU, Shen LIU, WeiJia BAO, KaiMing YANG, ZhengYong LI, CaiLing FU, LaiPeng SHAO, and Bin DU. "Temperature-insensitive vector bending sensor based on parallel-integrated fiber Bragg gratings." SCIENTIA SINICA Technologica 51, no. 2 (December 11, 2020): 241–48. http://dx.doi.org/10.1360/sst-2020-0276.
Full textGuo, Qi, Zong-Da Zhang, Zhong-Ming Zheng, Xue-Peng Pan, Chao Chen, Zhen-Nan Tian, Qi-Dai Chen, Yong-Sen Yu, and Hong-Bo Sun. "Parallel-Integrated Sapphire Fiber Bragg Gratings Probe Sensor for High Temperature Sensing." IEEE Sensors Journal 22, no. 6 (March 15, 2022): 5703–8. http://dx.doi.org/10.1109/jsen.2022.3149508.
Full textChoi, Duk-Yong, Steve Madden, Andrei Rode, Rongping Wang, Barry Luther-Davies, Neil J. Baker, and Benjamin J. Eggleton. "Integrated shadow mask for sampled Bragg gratings in chalcogenide (As_2S_3) planar waveguides." Optics Express 15, no. 12 (2007): 7708. http://dx.doi.org/10.1364/oe.15.007708.
Full textCheng, Rui, Han Yun, Stephen Lin, Ya Han, and Lukas Chrostowski. "Apodization profile amplification of silicon integrated Bragg gratings through lateral phase delays." Optics Letters 44, no. 2 (January 15, 2019): 435. http://dx.doi.org/10.1364/ol.44.000435.
Full textWeisen, Mathias J., Matthew T. Posner, James C. Gates, Corin B. E. Gawith, Peter G. R. Smith, and Peter Horak. "Low-loss wavelength-selective integrated waveguide coupler based on tilted Bragg gratings." Journal of the Optical Society of America B 36, no. 7 (June 12, 2019): 1783. http://dx.doi.org/10.1364/josab.36.001783.
Full textCheng, Rui, Ya Han, and Lukas Chrostowski. "Characterization and compensation of apodization phase noise in silicon integrated Bragg gratings." Optics Express 27, no. 7 (March 19, 2019): 9516. http://dx.doi.org/10.1364/oe.27.009516.
Full textDochow, Sebastian, Ines Latka, Martin Becker, Ron Spittel, Jens Kobelke, Kay Schuster, Albrecht Graf, et al. "Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing." Optics Express 20, no. 18 (August 20, 2012): 20156. http://dx.doi.org/10.1364/oe.20.020156.
Full textBader, M. A., and G. Marowsky. "Bragg gratings in planar polydiactylene waveguides and their application in integrated optics." Synthetic Metals 124, no. 1 (October 2001): 141–43. http://dx.doi.org/10.1016/s0379-6779(01)00452-0.
Full textPortosi, Vincenza, Dario Laneve, Mario Christian Falconi, and Francesco Prudenzano. "Advances on Photonic Crystal Fiber Sensors and Applications." Sensors 19, no. 8 (April 21, 2019): 1892. http://dx.doi.org/10.3390/s19081892.
Full textSaghaei, Hamed, Payam Elyasi, and Bhavin J. Shastri. "Sinusoidal and rectangular Bragg grating filters: Design, fabrication, and comparative analysis." Journal of Applied Physics 132, no. 6 (August 14, 2022): 064501. http://dx.doi.org/10.1063/5.0098923.
Full textRutkowska, K. A., D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña. "Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings." Optics Express 19, no. 20 (September 22, 2011): 19514. http://dx.doi.org/10.1364/oe.19.019514.
Full textWang, Yiping, Ziliang Li, Shen Liu, Cailing Fu, Zhengyong Li, Zhe Zhang, Ying Wang, Jun He, Zhiyong Bai, and Changrui Liao. "Parallel-Integrated Fiber Bragg Gratings Inscribed by Femtosecond Laser Point-by-Point Technology." Journal of Lightwave Technology 37, no. 10 (May 15, 2019): 2185–93. http://dx.doi.org/10.1109/jlt.2019.2899585.
Full textRogers, Helen L., Sumiaty Ambran, Christopher Holmes, Peter G. R. Smith, and James C. Gates. "In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings." Optics Letters 35, no. 17 (August 17, 2010): 2849. http://dx.doi.org/10.1364/ol.35.002849.
Full textStrain, M. J., and M. Sorel. "Post-Growth Fabrication and Characterization of Integrated Chirped Bragg Gratings on GaAs–AlGaAs." IEEE Photonics Technology Letters 18, no. 24 (December 2006): 2566–68. http://dx.doi.org/10.1109/lpt.2006.887199.
Full textStrain, M. J., and M. Sorel. "Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient." IEEE Photonics Technology Letters 20, no. 22 (November 2008): 1863–65. http://dx.doi.org/10.1109/lpt.2008.2004780.
Full textStrain, M. J., and M. Sorel. "Design and Fabrication of Integrated Chirped Bragg Gratings for On-Chip Dispersion Control." IEEE Journal of Quantum Electronics 46, no. 5 (May 2010): 774–82. http://dx.doi.org/10.1109/jqe.2009.2039116.
Full textSimard, Alexandre D., Guillaume Beaudin, Vincent Aimez, Yves Painchaud, and Sophie LaRochelle. "Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings." Optics Express 21, no. 20 (September 24, 2013): 23145. http://dx.doi.org/10.1364/oe.21.023145.
Full textGerber, J., and R. Kowarschik. "Photoresist Bragg gratings as beam splitters and beam reflectors for integrated optical systems." Optical and Quantum Electronics 19, no. 1 (January 1987): 49–58. http://dx.doi.org/10.1007/bf02030631.
Full textLuo, Z. H., Z. Yang, B. Lu, B. Xu, and J. L. Huang. "Modular DAS demodulation system based on ultra-weak fibre Bragg grating." Journal of Instrumentation 17, no. 10 (October 1, 2022): P10037. http://dx.doi.org/10.1088/1748-0221/17/10/p10037.
Full textSimara Azizova, Simara Azizova. "FIBER OPTIC SENSORS." PIRETC-Proceeding of The International Research Education & Training Centre 23, no. 02 (April 19, 2023): 94–100. http://dx.doi.org/10.36962/piretc23022023-94.
Full textJia, Peng, Jianwei Zhang, Yongyi Chen, Lei Liang, Li Qin, Yongqiang Ning, and Lijun Wang. "Dual-wavelength emission from a high-order Bragg gratings integrated broad-area laser diode." Optics & Laser Technology 150 (June 2022): 107944. http://dx.doi.org/10.1016/j.optlastec.2022.107944.
Full text