Academic literature on the topic 'Integrable quantum field theories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Integrable quantum field theories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Integrable quantum field theories"
Fioretto, Davide, and Giuseppe Mussardo. "Quantum quenches in integrable field theories." New Journal of Physics 12, no. 5 (May 28, 2010): 055015. http://dx.doi.org/10.1088/1367-2630/12/5/055015.
Full textBOSTELMANN, HENNING, GANDALF LECHNER, and GERARDO MORSELLA. "SCALING LIMITS OF INTEGRABLE QUANTUM FIELD THEORIES." Reviews in Mathematical Physics 23, no. 10 (November 2011): 1115–56. http://dx.doi.org/10.1142/s0129055x11004539.
Full textMARSHAKOV, A. "EXACT SOLUTIONS TO QUANTUM FIELD THEORIES AND INTEGRABLE EQUATIONS." Modern Physics Letters A 11, no. 14 (May 10, 1996): 1169–83. http://dx.doi.org/10.1142/s021773239600120x.
Full textMiramontes, J. Luis, and C. R. Fernández-Pousa. "Integrable quantum field theories with unstable particles." Physics Letters B 472, no. 3-4 (January 2000): 392–401. http://dx.doi.org/10.1016/s0370-2693(99)01444-6.
Full textSmirnov, F. A., and A. B. Zamolodchikov. "On space of integrable quantum field theories." Nuclear Physics B 915 (February 2017): 363–83. http://dx.doi.org/10.1016/j.nuclphysb.2016.12.014.
Full textDelfino, G., G. Mussardo, and P. Simonetti. "Non-integrable quantum field theories as perturbations of certain integrable models." Nuclear Physics B 473, no. 3 (August 1996): 469–508. http://dx.doi.org/10.1016/0550-3213(96)00265-9.
Full textBostelmann, H., and D. Cadamuro. "An operator expansion for integrable quantum field theories." Journal of Physics A: Mathematical and Theoretical 46, no. 9 (February 15, 2013): 095401. http://dx.doi.org/10.1088/1751-8113/46/9/095401.
Full textBalog, J., M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, and P. Weisz. "The intrinsic coupling in integrable quantum field theories." Nuclear Physics B 583, no. 3 (September 2000): 614–70. http://dx.doi.org/10.1016/s0550-3213(00)00277-7.
Full textMathur, Samir D. "Quantum Kac-Moody symmetry in integrable field theories." Nuclear Physics B 369, no. 1-2 (January 1992): 433–60. http://dx.doi.org/10.1016/0550-3213(92)90393-p.
Full textLechner, Gandalf. "Deformations of Quantum Field Theories and Integrable Models." Communications in Mathematical Physics 312, no. 1 (December 3, 2011): 265–302. http://dx.doi.org/10.1007/s00220-011-1390-y.
Full textDissertations / Theses on the topic "Integrable quantum field theories"
Silk, James Brian. "Evaluation of correlation functions in integrable quantum field theories." Thesis, Durham University, 2012. http://etheses.dur.ac.uk/4447/.
Full textMattsson, Peter Aake. "Integrable quantum field theories, in the bulk and with a boundary." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4225/.
Full textKarabin, Svyatoslav. "Generalized hydrodynamics of a class of integrable quantum field theories with non-diagonal scattering." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18009/.
Full textBelliard, Raphaël. "Geometry of integrable systems : from topological Lax systems to conformal field theories." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066175/document.
Full textThis PhD thesis is about a framework in complex geometry and methods thereof for solving sets of compatible differential equations arising from integrable systems, classical or quantum, in the context of the geometry of moduli spaces of connections over complex curves, or Riemann surfaces. It is based on the idea in mathematical Physics that integrable systems posess symmetries that impose algebro-differential constraints, so-called loop equations, on the objects of interest (e.g. partition or correlation functions). In turn, we intend to solve these constraints recursively in certain topological regimes using a particular procedure called the topological recursion. Their solutions are in general generating functions of enumerative-geometric quantities. Since they are for the most part determined by the initial data of the recursive process, it realizes in the making an algebro-geometric classification of the family of integrable models under consideration
Longino, Brando. "Exact S-matrices for a class of 1+1-dimensional integrable factorized scattering theories with Uq(sl2) symmetry and arbitrary spins." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20542/.
Full textParini, Robert Charles. "Classical integrable field theories with defects and near-integrable boundaries." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/20428/.
Full textRoa, Aguirre Alexis [UNESP]. "Type-II defects in integrable classical field theories." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/102532.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nesta tese discutimos as propriedades de integrabilidade das teorias de campo clássicas em duas dimensões na presença de descontinuidades ou defeitos tipo-II, principalmente usando a linguagem do formalismo do espalhamento inverso. Um método geral para calcular a função geradora de um conjunto infinito de grandezas conservadas modificadas para qualquer equação de campo integrável é apresentado, uma vez que seus respetivos problemas lineares associados são dados e suas correspondentes matrices do defeito são calculadas. O método é aplicado no cálculo das contribuições dos defeitos para a energia e o momento para vários modelos e mostramos a relação entre as condições de defeito integráveis e suas respevtivas transformações de Bäcklund para cada modelo
In this thesis we discuss the integrability properties of two-dimensional classical field theories in the presence of discontinuities or type-II defects, mainly using the language of the inverses cattering approach. We present a general method to compute the generating function of an infinite set of modified conserved quantities for any integrable field equation givent heir associated linear problems and computing their corresponding defect matrices. We apply this method to derive in particular defect contributions to the energy and momentum for several models and show the relationship between the integrable defect conditions and the Bäcklund transformations for each model
Roa, Aguirre Alexis. "Type-II defects in integrable classical field theories /." São Paulo, 2012. http://hdl.handle.net/11449/102532.
Full textBanca: Clisthenis Ponce Constantinidis
Banca: Harold Socrates Blas Achic
Banca: Andrei Mikhailov
Banca: Marcio José Martins
Resumo: Nesta tese discutimos as propriedades de integrabilidade das teorias de campo clássicas em duas dimensões na presença de descontinuidades ou defeitos tipo-II, principalmente usando a linguagem do formalismo do espalhamento inverso. Um método geral para calcular a função geradora de um conjunto infinito de grandezas conservadas modificadas para qualquer equação de campo integrável é apresentado, uma vez que seus respetivos problemas lineares associados são dados e suas correspondentes matrices do defeito são calculadas. O método é aplicado no cálculo das contribuições dos defeitos para a energia e o momento para vários modelos e mostramos a relação entre as condições de defeito integráveis e suas respevtivas transformações de Bäcklund para cada modelo
Abstract: In this thesis we discuss the integrability properties of two-dimensional classical field theories in the presence of discontinuities or type-II defects, mainly using the language of the inverses cattering approach. We present a general method to compute the generating function of an infinite set of modified conserved quantities for any integrable field equation givent heir associated linear problems and computing their corresponding defect matrices. We apply this method to derive in particular defect contributions to the energy and momentum for several models and show the relationship between the integrable defect conditions and the Bäcklund transformations for each model
Doutor
Hills, Daniel. "Generating boundary conditions for integrable field theories using defects." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/16379/.
Full textEvangelisti, Stefano <1983>. "Quantum Correlations in Field Theory and Integrable Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5161/1/Evangelisti_Stefano_Tesi.pdf.
Full textBooks on the topic "Integrable quantum field theories"
Bonora, L., G. Mussardo, A. Schwimmer, L. Girardello, and M. Martellini, eds. Integrable Quantum Field Theories. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0.
Full textIbort, L. A., and M. A. Rodríguez, eds. Integrable Systems, Quantum Groups, and Quantum Field Theories. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1980-1.
Full textGIFT, International Seminar on Recent Problems in Mathematical Physics (23rd 1992 Salamanca Spain). Integrable systems, quantum groups, and quantum field theories. Dordrecht: Kluwer Academic, 1993.
Find full textIbort, L. A. Integrable Systems, Quantum Groups, and Quantum Field Theories. Dordrecht: Springer Netherlands, 1993.
Find full textG, Matinyan S., Gurzadyan V. G. 1955-, and Sedrakian A. G, eds. From integrable models to gauge theories: A volume in honor of Sergei Matinyan. River Edge, NJ: World Scientific, 2002.
Find full textZ, Horváth, and Palla L, eds. Conformal field theories and integrable models: Lectures held at the Eötvös Graduate course, Budapest, Hungary 13-18 August 1996. Berlin: Springer, 1997.
Find full textIohara, Kenji. Symmetries, Integrable Systems and Representations. London: Springer London, 2013.
Find full textChangrim, Ahn, Rim C, and Sasaki R, eds. Integrable quantum field theories and their applications: Proceedings of the APCTP Winter School : Cheju Island, Korea, 28 February-4 March 2000. River Edge, N.J: World Scientific, 2001.
Find full textMotives, quantum field theory, and pseudodifferential operators: Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, June 2-13, 2008, Boston University, Boston, Massachusetts. Providence, R.I: American Mathematical Society, 2010.
Find full textT, Inami, and Sasaki Ryu, eds. Quantum field theory, integrable models and beyond. Kyoto: Progress of Theoretical Physics, 1995.
Find full textBook chapters on the topic "Integrable quantum field theories"
Miwa, Tetsuji. "Quantum Affine Symmetry and Correlation Functions of the XXZ Model." In Integrable Quantum Field Theories, 1–14. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_1.
Full textCecotti, Sergio. "Non-perturbative Computability vs. Integrability in Susy QFT’s." In Integrable Quantum Field Theories, 123–39. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_10.
Full textZanon, D. "Quantum Integrability and Exact S-Matrices for Affine Toda Theories." In Integrable Quantum Field Theories, 141–56. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_11.
Full textEguchi, Tohur. "Two-Dimensional Black Hole and the c = 1 Liouville Theory." In Integrable Quantum Field Theories, 157–67. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_12.
Full textOlive, David. "Affine Toda Solitons." In Integrable Quantum Field Theories, 169–71. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_13.
Full textMussardo, G. "Correlation Functions in 2-Dimensional Integrable Quantum Field Theories." In Integrable Quantum Field Theories, 173–86. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_14.
Full textAlcaraz, Francisco C., and Vladimir Rittenberg. "Reaction-Diffusion Processes and Quantum Chains." In Integrable Quantum Field Theories, 187–216. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_15.
Full textSotkov, Galen, and Marian Stanishkov. "Off — Critical W ∞ and Virasoro Algebras as Dynamical Symmetries of the Integrable Models." In Integrable Quantum Field Theories, 217–34. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_16.
Full textGervais, Jean-Loup. "The W-Geometry and Quantum-Group Structure of (Generalized) Two-Dimensional Gravities." In Integrable Quantum Field Theories, 235–55. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_17.
Full textDijkgraaf, Robbert, Gregory Moore, and Ronen Plesser. "The Partition Function of 2D String Theory." In Integrable Quantum Field Theories, 257–81. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1516-0_18.
Full textConference papers on the topic "Integrable quantum field theories"
DOREY, PATRICK. "BOUNDARY INTEGRABLE QUANTUM FIELD THEORIES." In Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Theory 24. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799968_0007.
Full textCadamuro, Daniela. "Quantum energy inequalities in integrable quantum field theories." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0511.
Full textMiramontes, Luis J. "Unstable particles in integrable quantum field theories." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0036.
Full textDo Rego Monteiro, Marco Aurelio, V. B. Bezerra, and E. M. F. Curado. "Some remarks on a deformed quantum field theory." In Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0031.
Full textDOREY, PATRICK, CLARE DUNNING, and ROBERTO TATEO. "ORDINARY DIFFERENTIAL EQUATIONS AND INTEGRABLE QUANTUM FIELD THEORIES." In Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Theory 24. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799968_0008.
Full textRAVANINI, FRANCESCO. "FINITE SIZE EFFECTS IN INTEGRABLE QUANTUM FIELD THEORIES." In Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Theory 24. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799968_0009.
Full textFishman, Louis. "Symbol Analysis and the Construction of One-Way Forward and Inverse Wave Propagation Theories." In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.se3.
Full textZuber, Jean-Bernard, and V. B. Petkova. "Boundary conditions in conformal and integrable theories." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0038.
Full textMiramontes, J. Luis. "Solitonic integrable perturbations of conformal field theories." In Trends in theoretical physics CERN-Santiago de Compostela-La Plata meeting. AIP, 1998. http://dx.doi.org/10.1063/1.54692.
Full textStroganov, Yuri, and F. C. Alcaraz. "Free fermion branches in some quantum spin models." In Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0037.
Full textReports on the topic "Integrable quantum field theories"
Binger, Michael William, and /Stanford U., Phys. Dept. /SLAC. The Physical Renormalization of Quantum Field Theories. Office of Scientific and Technical Information (OSTI), February 2007. http://dx.doi.org/10.2172/899841.
Full textNicolis, Alberto. Final Scientific/Technical Report-Quantum Field Theories for Cosmology. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1425341.
Full textСоловйов, Володимир Миколайович, and D. N. Chabanenko. Financial crisis phenomena: analysis, simulation and prediction. Econophysic’s approach. Гумбольдт-Клуб Україна, November 2009. http://dx.doi.org/10.31812/0564/1138.
Full textTask A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. Progress report, July 1, 1991--June 30, 1992. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10103376.
Full textTask A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. [Particle Physics Group, Physics Dept. , The Florida State Univ. , Tallahassee]. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6851536.
Full text