Academic literature on the topic 'Insulin secretory granule'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insulin secretory granule.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Insulin secretory granule"

1

Hutton, J. C. "The insulin secretory granule." Diabetologia 32, no. 5 (May 1989): 271–81. http://dx.doi.org/10.1007/bf00265542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tompkins, Linda S., Kevin D. Nullmeyer, Sean M. Murphy, Craig S. Weber, and Ronald M. Lynch. "Regulation of secretory granule pH in insulin-secreting cells." American Journal of Physiology-Cell Physiology 283, no. 2 (August 1, 2002): C429—C437. http://dx.doi.org/10.1152/ajpcell.01066.2000.

Full text
Abstract:
Luminal acidification is important for the maturation of secretory granules, yet little is known regarding the regulation of pH within them. A pH-sensitive green fluorescent protein (EGFP) was targeted to secretory granules in RIN1046-38 insulinoma cells by using a construct in which the EGFP gene was preceded by the nucleotide sequence for human growth hormone. Stimulatory levels of glucose doubled EGFP secretion from cell cultures, and potentiators of glucose-induced insulin secretion enhanced EGFP release. Thus this targeted EGFP is useful for population measurements of secretion. However, less than ∼4% of total cell EGFP was released after 1.5 h of stimulation. Consequently, when analyzed in single cells, fluorescence of the targeted EGFP acts as an indicator of pH within secretory granules. Glucose elicited a decrease in granule pH, whereas inhibitors of the V-type H+-ATPase increased pH and blocked the glucose effect. Granule pH also was modified by effectors of the protein kinase A pathway, with activation eliciting granule alkalinization, suggesting that potentiation of peptide release by cAMP may involve regulated changes in secretory granule pH.
APA, Harvard, Vancouver, ISO, and other styles
3

Grimaldi, K. A., J. C. Hutton, and K. Siddle. "Production and characterization of monoclonal antibodies to insulin secretory granule membranes." Biochemical Journal 245, no. 2 (July 15, 1987): 557–66. http://dx.doi.org/10.1042/bj2450557.

Full text
Abstract:
Monoclonal antibodies to insulin secretory granule membranes were obtained following immunization of mice with granule membranes purified from a rat transplantable insulinoma. The specificities of the antibodies were investigated by using binding assays with different insulinoma subcellular fractions, by indirect immunofluorescence studies with intact and permeabilized cells, and by immunoblotting of granule membrane proteins fractionated by SDS/polyacrylamide-gel electrophoresis. Fifty-six antibodies were characterized initially, and 21 representative cell lines were cloned. The antibodies fell into four categories: (1) binding preferentially to secretory granules, and reacting with a component of approx. 80,000 Da on immunoblots (antigen designated SGM 80); (2) binding preferentially to secretory granules, and reacting with components of approx. 110,000 and 50,000 Da on immunoblots (antigen designated SGM 110); (3) binding preferentially to secretory granules but unreactive on immunoblots; (4) binding to membrane antigen(s) with a widespread intracellular distribution which included granules and plasma membranes. The antigens SGM 80 and SGM 110 were studied in more detail and both were shown to be integral membrane glycoproteins with antigenic determinants located on the internal face of the secretory granule membrane. These antigens were also present in normal rat islets of Langerhans and similar components were detected by immunoblotting in secretory granules from anterior pituitary and adrenal medulla. Proteins which were immunologically related to SGM 80 and SGM 110, but distinct in molecular size, were also identified in liver. It is concluded that secretory granules contain specific components which are restricted in subcellular location but widespread in tissue distribution. The antibodies obtained will be valuable reagents in the further investigation of the biogenesis and turnover of insulin secretory granules.
APA, Harvard, Vancouver, ISO, and other styles
4

Germanos, Mark, Andy Gao, Matthew Taper, Belinda Yau, and Melkam A. Kebede. "Inside the Insulin Secretory Granule." Metabolites 11, no. 8 (August 5, 2021): 515. http://dx.doi.org/10.3390/metabo11080515.

Full text
Abstract:
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Haddad, A., B. Kopriwa, and G. Pelletier. "Localization of glycoproteins in insulin secretory granules by ultrastructural autoradiography." Journal of Histochemistry & Cytochemistry 35, no. 10 (October 1987): 1059–62. http://dx.doi.org/10.1177/35.10.3305700.

Full text
Abstract:
To determine whether or not the secretory granules of insulin-secreting cells contained glycoproteins, isolated rat pancreatic islets were incubated for 2 and 4 hr in a medium containing L-[3H]-fucose. Quantitative analysis of high-resolution electron microscopic autoradiographs of the insulin-secreting beta cells demonstrated that glycoproteins with fucose residues are contained within the insulin secretory granule.
APA, Harvard, Vancouver, ISO, and other styles
6

Waselle, Laurent, Thierry Coppola, Mitsunori Fukuda, Mariella Iezzi, Aziz El-Amraoui, Christine Petit, and Romano Regazzi. "Involvement of the Rab27 Binding Protein Slac2c/MyRIP in Insulin Exocytosis." Molecular Biology of the Cell 14, no. 10 (October 2003): 4103–13. http://dx.doi.org/10.1091/mbc.e03-01-0022.

Full text
Abstract:
Rab27a is a GTPase associated with insulin-containing secretory granules of pancreatic β-cells. Selective reduction of Rab27a expression by RNA interference did not alter granule distribution and basal secretion but impaired exocytosis triggered by insulin secretagogues. Screening for potential effectors of the GTPase revealed that the Rab27a-binding protein Slac2c/MyRIP is associated with secretory granules of β-cells. Attenuation of Slac2c/MyRIP expression by RNA interference did not modify basal secretion but severely impaired hormone release in response to secretagogues. Although β-cells express Myosin-Va, a potential partner of Slac2c/MyRIP, no functional link between the two proteins could be demonstrated. In fact, overexpression of the Myosin-Va binding domain of Slac2c/MyRIP did not affect granule localization and hormone exocytosis. In contrast, overexpression of the actin-binding domain of Slac2c/MyRIP led to a potent inhibition of exocytosis without detectable alteration in granule distribution. This effect was prevented by point mutations that abolish actin binding. Taken together our data suggest that Rab27a and Slac2c/MyRIP are part of a complex mediating the interaction of secretory granules with cortical actin cytoskeleton and participate to the regulation of the final steps of insulin exocytosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Brüning, Dennis, Kirstin Reckers, Peter Drain, and Ingo Rustenbeck. "Glucose but not KCl diminishes submembrane granule turnover in mouse beta-cells." Journal of Molecular Endocrinology 59, no. 3 (October 2017): 311–24. http://dx.doi.org/10.1530/jme-17-0063.

Full text
Abstract:
KCl depolarization is widely used to mimic the depolarization during glucose-stimulated insulin secretion. Consequently, the insulin secretion elicited by KCl is often regarded as the equivalent of the first phase of glucose-induced insulin secretion. Here, the effects of both stimuli were compared by measuring the secretion of perifused mouse islets, the cytosolic Ca2+ concentration of single beta-cells and the mobility of submembrane insulin granules by TIRF microscopy of primary mouse beta-cells. Two cargo-directed granule labels were used namely insulin-EGFP and C-peptide-emGFP. The granule behaviour common to both was used to compare the effect of sequential stimulation with 40 mM KCl and 30 mM glucose and sequential stimulation with the same stimuli in reversed order. At the level of the cell secretory response, the sequential pulse protocol showed marked differences depending on the order of the two stimuli. KCl produced higher maximal secretion rates and diminished the response to the subsequent glucose stimulus, whereas glucose enhanced the response to the subsequent KCl stimulus. At the level of granule behaviour, a difference developed during the first stimulation phase in that the total number of granules, the short-term resident granules and the arriving granules, which are all parameters of granule turnover, were significantly smaller for glucose than for KCl. These differences at both the level of the cell secretory response and granule behaviour in the submembrane space are incompatible with identical initial response mechanisms to KCl and glucose stimulation.
APA, Harvard, Vancouver, ISO, and other styles
8

Kemter, Elisabeth, Andreas Müller, Martin Neukam, Anna Ivanova, Nikolai Klymiuk, Simone Renner, Kaiyuan Yang, et al. "Sequential in vivo labeling of insulin secretory granule pools in INS-SNAP transgenic pigs." Proceedings of the National Academy of Sciences 118, no. 37 (September 10, 2021): e2107665118. http://dx.doi.org/10.1073/pnas.2107665118.

Full text
Abstract:
β cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo–labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.
APA, Harvard, Vancouver, ISO, and other styles
9

Yau, Belinda, Lori Hays, Cassandra Liang, D. Ross Laybutt, Helen E. Thomas, Jenny E. Gunton, Lindy Williams, et al. "A fluorescent timer reporter enables sorting of insulin secretory granules by age." Journal of Biological Chemistry 295, no. 27 (April 27, 2020): 8901–11. http://dx.doi.org/10.1074/jbc.ra120.012432.

Full text
Abstract:
Within the pancreatic β-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in β-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from β-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the β-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in β-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 β-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the β-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.
APA, Harvard, Vancouver, ISO, and other styles
10

Georgiadou, Eleni, and Guy A. Rutter. "Age matters: Grading granule secretion in beta cells." Journal of Biological Chemistry 295, no. 27 (July 3, 2020): 8912–13. http://dx.doi.org/10.1074/jbc.h120.014586.

Full text
Abstract:
Insulin is stored in secretory granules to facilitate rapid release in response to rising glucose levels, but the mechanisms by which these granules are identified and prioritized for secretion remains unclear. Using a fluorescent timer and flow cytometry–assisted organelle sorting, Yau et al. develop an elegant approach to assess insulin secretion as a function of granule age in pancreatic islet beta cells. Their findings supply quantitative evidence supporting the age-dependent release of different granule pools and confirm earlier models of preferential release of younger granules.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Insulin secretory granule"

1

Guest, Paul C. "Insulin secretory granule biogenesis." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennett, Deborah Louise. "Subtilisin-related proteases of the insulin secretory granule." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wasmeier, Christina. "Molecular cloning of phogrin, a novel insulin secretory granule membrane protein." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grimaldi, K. A. "Production, characterisation and uses of antibodies to the insulin secretory granule membrane." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schubert, Sandra. "The Role of [beta]2-Syntrophin Phosphorylation in Secretory Granule Exocytosis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1146851994562-42414.

Full text
Abstract:
The trafficking of insulin secretory granules(SGs) of pancreatic b-cells is a tightly controlled complex network. Increasing evidence indicates that the cortical actin cytoskeleton modulates the mobility and exocytosis of SGs,yet the mechanisms anchoring SGs to the cytoskeleton is not completely understood.It has been shown by Ort et al.(2000,2001) that the cytoplasmic tail of an intrinsic membrane protein of the SGs named ICA512/IA-2 binds the PDZ domain of b2-syntrophin,which in turn binds to the F-actin-binding protein utrophin. These data also indicate that stimulation of SG exocytosis affects the phosphorylation of b2-syntrophin,hence altering its binding to ICA512.Therefore a model was proposed whereby SGs are anchored to the actin cytoskeleton through the ICA512/b2-syntrophin complex, whose dynamics are regulated by phosphorylation.To test this model GFP-b2-syntrophin stable INS-1 cell clones were generated.GFP-b2-syntrophin expression and localization pattern were similar to those of the endogenous protein. Electron microscopy showed that in GFP-b2-syntrophin INS-1 cells the number of SGs with a pear-like shape was increased relative to control cells. Insulin content and stimulated secretion were increased in three GFP-â2-syntrophin INS-1 cell clones,compared to non-transfected INS-1 cells and INS-1 cells expressing GFP. These increments correlated with the different expression levels of GFP-b2-syntrophin in the three GFP-b2-syntrophin INS-1 cell clones. These findings support the hypothesis that b2-syntrophin regulates the trafficking and exocytosis of SGs by modulating their tethering to the actin cytoskeleton.In order to confirm the proposed model, the phosphorylation of b2-syntrophin was investigated in more detail. Similar to endogenous b2-syntrophin,GFP-b2-syntrophin underwent Ca2+-dependent and okadaic acid-sensitive dephosphorylation upon stimulation of insulin secretion. Stimulation-dependent dephosphorylation was confirmed by immunoprecipitation of 32P-labeled GFP-b2-syntrophin.Mass spectrometry of immunoprecipitated GFP-b2-syntrophin allowed the identification of four serine-phosphorylation sites (S75,S90,S213,S373) that could affect the binding to ICA512.Mutants,in which all four phosphoserines, were replaced by either asp or ala to mimic(S/D) or prevent(S/A) phosphorylation were expressed in INS-1 cells. All S/D mutants retained a cortical localization,but by immunoblotting the pattern of the S75D allele differed from wild type and all other S/D alleles.Conversely, all S/A alleles were diffused cytosolically, except S213A,which was still restricted to the cortex. Finally, pull down assays showed increased binding of ICA512 to the S75A and S90D alleles compared to wild type b2-syntrophin,while the opposite was observed with the S75D and S90A mutants.Additionally,both the S75 and the S213 allele conform a consensus for phosphorylation by Cdk5,which is known to modulate insulin secretion. The phosphorylation of GFP-b2-syntrophin and particularly the S75 allele by Cdk5 was exhibited with pharmacological inhibitors,by in vitro phosphorylation and by RNAi. Taken together, these findings are consistent with the model by which phosphorylation of b2-syntrophin modulates the tethering of SGs to the cytoskeleton, and thereby their mobility and exocytosis. Specifically, the data of this thesis suggest that Cdk5-dependent phosphorylation of the S75 site of GFP-b2-syntrophin facilitates insulin secretion by reducing the interaction of b2-syntrophin with ICA512,thereby decreasing the actin cytoskeleton constrain on SG mobility. This process could occur in combination with the phosphatase-dependent dephosphorylation of b2-syntrophin at phosphosites other than S75
Der Transport Insulin-gefüllter sekretorische Granula(SG) ist ein streng kontrollierter komplexer Prozess.Es gibt vermehrt Beweise,dass das kortikale Actinzytoskelett die Ausschüttung der SGs beeinflusst.Bisher ist der Mechanismus der Verankerung von SGs am Zytoskelett noch nicht vollständig aufgeklärt.Ort et al.(2000,2001) haben gezeigt,daß der zytosoplasmatische Teil des trans-membranen SG-Proteins ICA512 mit der PDZ-Domäne von b2-Syntrophin interagiert.Dieses Protein bindet das F-Actin-Bindeprotein Utrophin.Die Ergebnisse zeigen außerdem,daß durch Stimulation der SG-Exozytose der Phosphorilierungsstatus von b2-Syntrophin beeinflusst wird,woraus ein verändertes Bindungsvermögen zu ICA512 resultiert.Es wurde ein Funktionsmodel vorgestellt,in dem sich SGs durch die Interaktion des ICA512/b2-Syntrophin Komplexes an das Actinzytoskelett binden.Dabei wird die Bindedynamik durch Phosphorilierung reguliert.Um dieses Model zu etablieren,wurden stabile GFP-b2-Syntrophin produzierende INS-1-Zellklone erzeugt.Die zelluläre Lokalisation und das Expressionsmuster von GFP-b2-Syntrophin stimmen mit dem des endogenen Proteins überein.Elektronenmikroskopie zeigte eine größe Anzahl oval-verformter SGs in GFP-b2-Syntrophin INS-1-Zellen im Vergleich zu Kontrollzellen.Verglichen mit nicht-transfizierten INS-1 Zellen waren in drei GFP-b2-Syntrophin INS-1-Zellklonen der Insulingehalt der Zellen und die stimulierte Insulinsekretion erhöht.Die Werte korrelierten mit den unterschiedlichen GFP-b2-Syntrophin Expressionsmengen der Klone.Diese Ergebnisse untermauern die Hypothese,daß b2-Syntrophin den Transport und die Sekretion der SGs durch Modulation ihres Bindevermögens an Actin reguliert.Um das postulierte Model genauer zu prüfen,wurde die Phosphorilierung von b2-Syntrophin detaillierter untersucht.Das GFP-Protein wurde,ähnlich dem endogenen b2-Syntrophin,durch Stimulation der Insulinausschüttung dephosphoriliert.Diese Dephosphorilierung ist Ca2+-abhängig und Okadeinsäuresensitiv.Die stimulationsabhängige Dephosphorilierung wurde durch Immunoprezipitation von 32P-markiertem GFP-b2-Syntrophin bestätigt.Massenspektrometrie des präzipitierten Proteins ermöglichte die Identifikation von vier Serin-Phosphorilierungsstellen(S75,S90,S213,S373),welche die Bindung zu ICA512 beeinflussen könnten.Mutanten,in denen die vier Phosphoserine durch Asp beziehungsweise Ala ersetzt wurden,um entweder eine Phosphorilierung(S/D) oder Dephosphorilierung(S/A) nachzuahmen,wurden in INS-1-Zellen exprimiert.Alle S/D Mutanten blieben kortikal lokalisiert.Das Expressionsmuster des S75D Allels unterschied sich jedoch von denen des Wild-Typs(wt).Im Gegensatz dazu waren alle S/A Allele zytosolisch verteilt.Eine Ausnahme bildete S213A,das an der Zellkortex lokalisiert blieb.Im Vergleich zu wt b2-Syntrophin zeigten PullDown-Assays eine erhöhte Bindung von ICA512 zu den S75A und S90D Allelen.Das Gegenteil konnte für die S75D und S90A Mutanten nachgewiesen werden.S75,S90 und S213 sind in einer Konsensussequenz für Cdk5-Phosphorilierung enthalten.Diese Kinase kann die Insulinsekretion regulieren.Die Phosphorilierung von b2-Syntrophin,insbesondere des S75 Allels durch Cdk5 wurde durch pharmakologische Inhibitoren,in vitro-Phosphorilierung und RNAi demonstriert.Zusammenfassend stimmen diese Erkenntnisse mit dem Model überein,daß die Phosphorilierung von b2-Syntrophin die Vernetzung von SGs mit Actin und dadurch deren Mobilität und Exozytose moduliert.Im Speziellen postulieren die Ergebnisse dieser Arbeit eine Cdk5-abhängige Phosphorilierung der S75 Stelle des b2-Syntrophins.Durch eine verminderte Interaktion von b2-Syntrophin und ICA512 erleichtert diese Mutante vermutlich die Insulinsekretion,da der Einfluss des Actinzytoskeletts auf die Granulamobilität vermindert ist.Dieser Prozess ereignet sich möglicherweise in Kombination mit einer Dephosphorilierung des b2-Syntrophins.in Kombination mit einer Dephosphorilierung des b2-Syntrophins
APA, Harvard, Vancouver, ISO, and other styles
6

Schubert, Sandra. "The Role of [beta]2-Syntrophin Phosphorylation in Secretory Granule Exocytosis." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A23710.

Full text
Abstract:
The trafficking of insulin secretory granules(SGs) of pancreatic b-cells is a tightly controlled complex network. Increasing evidence indicates that the cortical actin cytoskeleton modulates the mobility and exocytosis of SGs,yet the mechanisms anchoring SGs to the cytoskeleton is not completely understood.It has been shown by Ort et al.(2000,2001) that the cytoplasmic tail of an intrinsic membrane protein of the SGs named ICA512/IA-2 binds the PDZ domain of b2-syntrophin,which in turn binds to the F-actin-binding protein utrophin. These data also indicate that stimulation of SG exocytosis affects the phosphorylation of b2-syntrophin,hence altering its binding to ICA512.Therefore a model was proposed whereby SGs are anchored to the actin cytoskeleton through the ICA512/b2-syntrophin complex, whose dynamics are regulated by phosphorylation.To test this model GFP-b2-syntrophin stable INS-1 cell clones were generated.GFP-b2-syntrophin expression and localization pattern were similar to those of the endogenous protein. Electron microscopy showed that in GFP-b2-syntrophin INS-1 cells the number of SGs with a pear-like shape was increased relative to control cells. Insulin content and stimulated secretion were increased in three GFP-â2-syntrophin INS-1 cell clones,compared to non-transfected INS-1 cells and INS-1 cells expressing GFP. These increments correlated with the different expression levels of GFP-b2-syntrophin in the three GFP-b2-syntrophin INS-1 cell clones. These findings support the hypothesis that b2-syntrophin regulates the trafficking and exocytosis of SGs by modulating their tethering to the actin cytoskeleton.In order to confirm the proposed model, the phosphorylation of b2-syntrophin was investigated in more detail. Similar to endogenous b2-syntrophin,GFP-b2-syntrophin underwent Ca2+-dependent and okadaic acid-sensitive dephosphorylation upon stimulation of insulin secretion. Stimulation-dependent dephosphorylation was confirmed by immunoprecipitation of 32P-labeled GFP-b2-syntrophin.Mass spectrometry of immunoprecipitated GFP-b2-syntrophin allowed the identification of four serine-phosphorylation sites (S75,S90,S213,S373) that could affect the binding to ICA512.Mutants,in which all four phosphoserines, were replaced by either asp or ala to mimic(S/D) or prevent(S/A) phosphorylation were expressed in INS-1 cells. All S/D mutants retained a cortical localization,but by immunoblotting the pattern of the S75D allele differed from wild type and all other S/D alleles.Conversely, all S/A alleles were diffused cytosolically, except S213A,which was still restricted to the cortex. Finally, pull down assays showed increased binding of ICA512 to the S75A and S90D alleles compared to wild type b2-syntrophin,while the opposite was observed with the S75D and S90A mutants.Additionally,both the S75 and the S213 allele conform a consensus for phosphorylation by Cdk5,which is known to modulate insulin secretion. The phosphorylation of GFP-b2-syntrophin and particularly the S75 allele by Cdk5 was exhibited with pharmacological inhibitors,by in vitro phosphorylation and by RNAi. Taken together, these findings are consistent with the model by which phosphorylation of b2-syntrophin modulates the tethering of SGs to the cytoskeleton, and thereby their mobility and exocytosis. Specifically, the data of this thesis suggest that Cdk5-dependent phosphorylation of the S75 site of GFP-b2-syntrophin facilitates insulin secretion by reducing the interaction of b2-syntrophin with ICA512,thereby decreasing the actin cytoskeleton constrain on SG mobility. This process could occur in combination with the phosphatase-dependent dephosphorylation of b2-syntrophin at phosphosites other than S75.
Der Transport Insulin-gefüllter sekretorische Granula(SG) ist ein streng kontrollierter komplexer Prozess.Es gibt vermehrt Beweise,dass das kortikale Actinzytoskelett die Ausschüttung der SGs beeinflusst.Bisher ist der Mechanismus der Verankerung von SGs am Zytoskelett noch nicht vollständig aufgeklärt.Ort et al.(2000,2001) haben gezeigt,daß der zytosoplasmatische Teil des trans-membranen SG-Proteins ICA512 mit der PDZ-Domäne von b2-Syntrophin interagiert.Dieses Protein bindet das F-Actin-Bindeprotein Utrophin.Die Ergebnisse zeigen außerdem,daß durch Stimulation der SG-Exozytose der Phosphorilierungsstatus von b2-Syntrophin beeinflusst wird,woraus ein verändertes Bindungsvermögen zu ICA512 resultiert.Es wurde ein Funktionsmodel vorgestellt,in dem sich SGs durch die Interaktion des ICA512/b2-Syntrophin Komplexes an das Actinzytoskelett binden.Dabei wird die Bindedynamik durch Phosphorilierung reguliert.Um dieses Model zu etablieren,wurden stabile GFP-b2-Syntrophin produzierende INS-1-Zellklone erzeugt.Die zelluläre Lokalisation und das Expressionsmuster von GFP-b2-Syntrophin stimmen mit dem des endogenen Proteins überein.Elektronenmikroskopie zeigte eine größe Anzahl oval-verformter SGs in GFP-b2-Syntrophin INS-1-Zellen im Vergleich zu Kontrollzellen.Verglichen mit nicht-transfizierten INS-1 Zellen waren in drei GFP-b2-Syntrophin INS-1-Zellklonen der Insulingehalt der Zellen und die stimulierte Insulinsekretion erhöht.Die Werte korrelierten mit den unterschiedlichen GFP-b2-Syntrophin Expressionsmengen der Klone.Diese Ergebnisse untermauern die Hypothese,daß b2-Syntrophin den Transport und die Sekretion der SGs durch Modulation ihres Bindevermögens an Actin reguliert.Um das postulierte Model genauer zu prüfen,wurde die Phosphorilierung von b2-Syntrophin detaillierter untersucht.Das GFP-Protein wurde,ähnlich dem endogenen b2-Syntrophin,durch Stimulation der Insulinausschüttung dephosphoriliert.Diese Dephosphorilierung ist Ca2+-abhängig und Okadeinsäuresensitiv.Die stimulationsabhängige Dephosphorilierung wurde durch Immunoprezipitation von 32P-markiertem GFP-b2-Syntrophin bestätigt.Massenspektrometrie des präzipitierten Proteins ermöglichte die Identifikation von vier Serin-Phosphorilierungsstellen(S75,S90,S213,S373),welche die Bindung zu ICA512 beeinflussen könnten.Mutanten,in denen die vier Phosphoserine durch Asp beziehungsweise Ala ersetzt wurden,um entweder eine Phosphorilierung(S/D) oder Dephosphorilierung(S/A) nachzuahmen,wurden in INS-1-Zellen exprimiert.Alle S/D Mutanten blieben kortikal lokalisiert.Das Expressionsmuster des S75D Allels unterschied sich jedoch von denen des Wild-Typs(wt).Im Gegensatz dazu waren alle S/A Allele zytosolisch verteilt.Eine Ausnahme bildete S213A,das an der Zellkortex lokalisiert blieb.Im Vergleich zu wt b2-Syntrophin zeigten PullDown-Assays eine erhöhte Bindung von ICA512 zu den S75A und S90D Allelen.Das Gegenteil konnte für die S75D und S90A Mutanten nachgewiesen werden.S75,S90 und S213 sind in einer Konsensussequenz für Cdk5-Phosphorilierung enthalten.Diese Kinase kann die Insulinsekretion regulieren.Die Phosphorilierung von b2-Syntrophin,insbesondere des S75 Allels durch Cdk5 wurde durch pharmakologische Inhibitoren,in vitro-Phosphorilierung und RNAi demonstriert.Zusammenfassend stimmen diese Erkenntnisse mit dem Model überein,daß die Phosphorilierung von b2-Syntrophin die Vernetzung von SGs mit Actin und dadurch deren Mobilität und Exozytose moduliert.Im Speziellen postulieren die Ergebnisse dieser Arbeit eine Cdk5-abhängige Phosphorilierung der S75 Stelle des b2-Syntrophins.Durch eine verminderte Interaktion von b2-Syntrophin und ICA512 erleichtert diese Mutante vermutlich die Insulinsekretion,da der Einfluss des Actinzytoskeletts auf die Granulamobilität vermindert ist.Dieser Prozess ereignet sich möglicherweise in Kombination mit einer Dephosphorilierung des b2-Syntrophins.in Kombination mit einer Dephosphorilierung des b2-Syntrophins.
APA, Harvard, Vancouver, ISO, and other styles
7

SAITTA, FRANCESCA. "THERMODYNAMIC STABILITY OF ISG-LIKE MODEL LIPID MEMBRANES: INSPECTING THE CONTRIBUTIONS OF LIPID-LIPID INTERACTION AND ACTION OF FREE FATTY ACIDS IN THE FRAME OF TYPE 2 DIABETES MELLITUS DISEASE." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/692503.

Full text
Abstract:
Allo scopo di comprendere il ruolo giocato da alcuni dei principali fattori che contribuiscono alla stabilità termodinamica delle membrane cellulari, è stato effettuato uno studio progressivo di vescicole con diversa morfologia e composizione lipidica a pH fisiologico mediante calorimetria a scansione differenziale ad alta sensibilità (High-Sensitivity DSC), raggiungendo la preparazione di vescicole lipidiche artificiali che rappresentano abbondantemente il doppio strato fosfolipidico dei granuli secretori di insulina (ISGs), vescicole presenti nelle cellule β di Langerhans del pancreas e addette alla conservazione e cosecrezione di insulina e amilina in seguito al consumo di alimenti. Tutte le vescicole sono state preparate allo scopo di rappresentare solamente la componente lipidica delle membrane delle ISGs, ovvero il bilayer fosfolipidico, ma per motivi di semplicità saranno tutte indicate come “membrane modello” in questa tesi. Gli effetti della curvatura di membrana sono stati considerati analizzando i profili micro-DSC di vescicole unilamellari piccole, grandi e giganti preparate come sistemi puri e misti di DMPC, DPPC e DSPC. Lo studio incrociato di sistemi binari composti da DMPC, DPPC, DSPC e DPPC, DPPS, DPPE ha consentito la discriminazione dei ruoli giocati dalle diverse teste e code fosfolipidiche riguardo al comportamento termotropico delle membrane cellulari, mentre l’aggiunta di DOPC, un fosfolipide insaturo, ad una membrane ternaria completamente satura e caratterizzata da solo una specifica testa fosfolipidica (colina) ha rivelato la forte influenza che le code insature hanno sull’organizzazione dei lipidi in membrana. Quindi, è stato possibile delineare una gerarchia di contributi alla stabilità complessiva delle membrane: curvatura di membrana < testa fosfolipidica < coda fosfolipidica < insaturazione fosfolipidica. La successiva inclusione di sfingomieline e lisofosfatidilcoline alla membrana ternaria DPPC:DPPE:DPPS, la cui composizione rifletteva già le proporzioni delle ISGs, insieme ad una distribuzione più completa di acidi grassi presenti nel bilayer fosfolipidico delle ISGs ha permesso di giungere alla preparazione di una membrana modello complessa costituita da quattordici componenti che riflette l’80% dei fosfolipidi presenti nel sistema reale. Infine, è stata considerata anche l’inclusione del colesterolo portando all’ottenimento della membrana simil-ISG finale. L’effetto di acidi grassi liberi (FFAs), i cui livelli sono spesso elevati in soggetti diabetici e/o obesi, sulla stabilità termodinamica di membrane selezionate è stato inoltre investigato. I risultati hanno evidenziato forti effetti stabilizzanti sulle membrane e pronunciate segregazioni di fase nel caso di acidi saturi (acidi palmitico e stearico), moderati effetti stabilizzanti per un acido insaturo trans (acido elaidico), mentre effetti opposti sono stati riscontrati per un acido insaturo cis (acido oleico). Infine, sono state effettuate misure calorimetriche e spettroscopiche allo scopo di investigare l’interazione tra membrane modello e un peptide in grado di formare pori (nisina). A tale scopo, è stata progettata una membrana modello semplificata rappresentante la termodinamica della membrana simil-ISG combinando specifiche percentuali di DMPC, DPPS e DOPC. L’interazione nisina-membrana è stata studiata sulla membrana semplificata mediante micro-DSC, anisotropia di fluorescenza e DLS a pH fisiologico, evidenziando inoltre il ruolo di sei diversi FFAs sull’interazione peptide-membrana, ossia due FFAs saturi (acidi palmitico e stearico), due monoinsaturi (acido oleico come acido insaturo cis e acido elaidico come acido insaturo trans) e due acidi grassi polinsaturi (l’acido linoleico come ω-6 e l’acido docosaesaenoico o DHA come ω-3).
A stepwise study of vesicles with different morphology and lipid composition was performed through high-sensitivity differential scanning calorimetry at physiological pH with the purpose of comprehending the role played by some of the main factors that contribute to the thermodynamic stability of cell membranes, achieving the preparation of artificial lipid vesicles that highly resembled the phospholipid bilayer of Insulin Secretory Granules (ISGs), vesicles located in the pancreatic Langerhans β-cells and which are responsible for insulin and amylin storage and secretion in response to nutrient intake. All the considered vesicle preparations were aimed at representing only the lipid component of ISGs membrane, i.e. the phospholipid bilayer, but we will refer to all as “model membranes” in this thesis for simplicity’ sake. Curvature effects were considered by analysing the micro-DSC profiles of small, large and giant unilamellar vesicles prepared as pure and mixed systems of DMPC, DPPC, DSPC. The cross-study of binary systems composed by DMPC, DPPC, DSPC and DPPC, DPPS, DPPE allowed the dissection of the role played by several phospholipid headgroups and tails on the thermotropic behaviour of cell membranes, whilst the addition of DOPC, an unsaturated phospholipid, to a completely saturated ternary membrane characterized by only a specific phospholipid headgroup (choline) revealed the strong influence of unsaturated tails on membrane lipid organization. Therefore, a hierarchy of contribution to the overall thermodynamic stability of membranes was depicted as membrane curvature < phospholipid headgroup < phospholipid tail < phospholipid unsaturation. The following inclusion of sphingomyelins and lysophosphatidylcholines to a DPPC:DPPE:DPPS ternary membrane, whose composition already reflected the proportions in ISGs, together with a more complete fatty acids distribution characterizing the phospholipid bilayer of the ISGs allowed us to achieve the preparation of a high-complexity fourteen-components model membrane that reflected the 80% of phospholipids present in such a real system. The inclusion of cholesterol was finally considered for the achievement of the final ISG-like membrane. Furthermore, the effect of Free Fatty Acids (FFAs), whose levels are recurrently altered in diabetic and/or obese subjects, on the thermodynamic stability of selected membranes was investigated. The results highlighted strong stabilizing effects on the membranes as well as pronounced phase segregations in the case of saturated acids (palmitic and stearic acids), moderate stabilizing effects for a trans-unsaturated FFA (elaidic acid), whereas the opposite effect was observed in the case of a cis-unsaturated one (oleic acid). Finally, in order to investigate the interaction between model membranes and a pore-forming peptide (nisin), calorimetric and spectroscopic measurements were carried out. With this purpose, a simplified model membrane that resembled the thermodynamics of the ISG-like membrane was modelled by combining specific percentages of DMPC, DPPS and DOPC. Nisin-membrane interaction was studied on the simplified membrane through micro-DSC, fluorescence anisotropy and DLS at physiological pH, also highlighting the role of six different FFAs on peptide-membrane interaction, namely two saturated FFAs (palmitic and stearic acids), two monounsaturated FFAs (the cis-unsaturated oleic acid and the trans-unsaturated elaidic acid) and two polyunsaturated FFAs (the ω-6 linoleic acid and the ω-3 docosahexaenoic acid or DHA).
APA, Harvard, Vancouver, ISO, and other styles
8

Arden, Catherine. "Compartmentation and function of glucokinase in insulin secretory granules." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giordano, Tiziana. "Insulin and chromogranin B secretory granules in β cell lines under physiological and stress conditions." Thesis, Open University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halušková, Petra. "Studium sekrečních granulí buněčných linií a tkání produkujících insulin." Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-348912.

Full text
Abstract:
Pancreas is known to be an organ producing a variety of exocrine and endocrine substances, where also insulin belongs. This hormone is produced in the body almost solely by specialized β-cells of the Langerhans islets and is stored here in secretory granules. As the β-cells contain large number of these vesicles, an organism can quickly respond to the glucose stimulation. Completely processed insulin is formed in the secretory granules probably as a hexamer, where six insulin molecules are coordinated along two zinc bivalent cations. Appropriate β-cell response to higher glucose level and following insulin secretion is one of the key processes that regulate metabolism in the body. In order to study insulin production, its effects or secretion, permanent pancreatic cell lines are often used as biological models, out of primary cells from islets of Langerhans. This diploma thesis is focused on two permanent cell lines INS-1E and BRIN-BD11. We searched for the ability of the cells to produce insulin, if the hormone is fully processed, as well as zinc content, which could have a great influence on insulin's processing. Using different methods we compared these two cell lines with cells from the Langerhans islets. We succeeded in isolation of secretory granules from all three cell types and we plan to...
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Insulin secretory granule"

1

Guest, Paul C. "Biogenesis of the Insulin Secretory Granule in Health and Disease." In Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders, 17–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12668-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hutton, J. C., M. Peshavaria, H. W. Davidson, K. Grimaldi, R. Pogge Von Strandmann, and K. Siddle. "The Insulin Secretory Granule: Features and Functions in Common with Other Endocrine Granules." In Advances in Experimental Medicine and Biology, 385–96. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5314-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guest, Paul C. "Multiplex Sequential Immunoprecipitation of Insulin Secretory Granule Proteins from Radiolabeled Pancreatic Islets." In Multiplex Biomarker Techniques, 177–85. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6730-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guest, Paul C. "2D Gel Electrophoresis of Insulin Secretory Granule Proteins from Biosynthetically Labelled Pancreatic Islets." In Advances in Experimental Medicine and Biology, 167–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52479-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guest, Paul C. "Two Dimensional Gel Electrophoresis of Insulin Secretory Granule Proteins from Biosynthetically-Labeled Pancreatic Islets." In Multiplex Biomarker Techniques, 187–94. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6730-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Miwa, I., Y. Toyoda, and S. Yoshie. "Glucokinase in β-Cell Insulin-Secretory Granules." In Frontiers in Diabetes, 350–59. Basel: KARGER, 2004. http://dx.doi.org/10.1159/000079029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nagamatsu, Shinya, and Mica Ohara-Imaizumi. "Imaging Exocytosis of Single Insulin Secretory Granules With TIRF Microscopy." In Methods in Molecular Biology, 259–68. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-178-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saito, Michiko, and Yoko Shiba. "ER Stress, Secretory Granule Biogenesis, and Insulin." In Ultimate Guide to Insulin. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.76131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Persaud, Shanta J., and Peter M. Jones. "Physiology of Glucose Homeostasis." In Oxford Textbook of Endocrinology and Diabetes 3e, edited by John A. H. Wass, Wiebke Arlt, and Robert K. Semple, 1917–22. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198870197.003.0241.

Full text
Abstract:
This chapter provides an overview of the physiological mechanisms underlying appropriate control of blood glucose levels. In particular, it focuses on the anatomy and cellular composition of islets of Langerhans; regulation of synthesis and storage of the anabolic hormone insulin in secretory granules of islet beta-cells; cellular mechanisms by which elevations in blood glucose levels stimulate insulin release from beta-cells by a process known as exocytosis; modulation of glucose-stimulated insulin secretion by hormones and neurotransmitters; and the physiological signal transduction pathways used by insulin to stimulate storage of fuels in adipose tissue, liver, and skeletal muscle. It also reviews the deleterious effects of chronic hyperglycaemia that are responsible for diabetic complications.
APA, Harvard, Vancouver, ISO, and other styles
10

"VITAMIN D-INDUCED INCREASE IN CALCIUM CONTENT IN SECRETORY GRANULES OF Β CELLS PLAYS A ROLE IN RECOVERY OF INSULIN SECRETION IN VITAMIN D-DEFICIENT RATS." In Vitamin D, 891–92. De Gruyter, 1988. http://dx.doi.org/10.1515/9783110846713.891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography