Dissertations / Theses on the topic 'Insulator-to-metal transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Insulator-to-metal transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Madaras, Scott. "Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films." W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1616444322.
Full textProskuryakov, Yuri. "Interactions, localisation and the metal to insulator transition in two-dimensional semiconductor systems." Thesis, University of Exeter, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288367.
Full textLiu, Mengkun. "Ultrafast far-infrared studies of Vanadates - multiple routes for an insulator to metal transition." Thesis, Boston University, 2012. https://hdl.handle.net/2144/12484.
Full textThe metal insulator transition in vanadates has been studied for decades and yet new discoveries still spring up revealing new physics, especially among two of the most studied members: Vanadium sesquioxide (V203) and Vanadium dioxide (V02). Although subtleties abound, both of the materials have first order insulator to metal phase transitions that are considered to be related to strong electron-electron (e-e) correlation. Further, ultrafast spectroscopy of strongly correlated materials has generated great interest in the field given the potential to dynamically distinguish the difference between electronic (spin) response versus lattice responses due to the associated characteristic energy and time scales. In this thesis, I mainly focus on utilizing ultrafast optical and THz spectroscopy to study phase transition dynamics in high quality V203 and V02 thin films epitaxially grown on different substrates. The main findings of the thesis are: (1) Despite the fact that the insulator to metal transition (IMT) in V203 is electron-correlation driven, lattice distortion plays an important role. Coherent oscillations in the far-infrared conductivity are observed resulting from coherent acoustic phonon modulation of the bandwidth W. The same order of lattice distortion induces less of an effect on the electron transport in V02 in comparison to V203. This is directly related to the difference in latent heat of the phase transitions in V02 and V203. (2) It is possible for the IMT to occur with very little structural change in epitaxial strained V02 films, like in the case of Cr doped or strained V203. However, in V02, this necessitates a large strain which is only possible by clamping to a substrate with larger c axis parameter through epitaxial growth. This is demonstrated for V02 films on Ti02 substrates. (3) Initiating an ultrafast photo-induced insulator-to-metal transition (IMT) is not only possible with above bandgap excitation, but also possible with high-field far-infrared excitation. With the help of the field enhancement in metamaterial split ring resonator gaps, we obtain picosecond THz electric field transients of several MVIem which is sufficient to drive the insulator to metal transition in V02.
Spitzig, Alyson. "The importance of Joule heating on the voltage-triggered insulator-to-metal transition in VO₂." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62808.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Weerasinghe, Hasitha C. "Electrical characterization of metal-to-insulator transition in iron silicide thin films on sillicone substrates." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001677.
Full textWatson, Deborah Lee. "Quantum interference effects in the magnetoresistance of semiconductor structures near the metal to insulator transition." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286547.
Full textO'Neal, Jared. "A Numerical Study of a Disorder-driven 2D Mott Insulator-to-Metal Quantum Phase Transition." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492701913534985.
Full textRead, Daniel Edward. "Electrical and magnetic properties of n-Cd(_1-x)Mn(_x) Te close to the metal-insulator transition." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3783/.
Full textHumbert, Vincent. "Etude des états fondamentaux dans des systèmes supraconducteurs désordonnés de dimension 2." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS149/document.
Full textAn initially superconducting 3D material can have different ground states, depending on its disorder : superconducting, metallic or insulating. At lower dimensionality, Anderson localization theoretically forbids any metallic state. A change in disorder then induces a direct Superconductor-to-Insulator Transition (SIT). The presence of strong Coulomb interactions, which are not taken into account in conventional theories, may disrupt this paradigm and enable the emergence of 2D metallic phases, thus complicating the generally admitted picture for the SIT. Indeed, recent work has revealed the existence of two distinct metallic phases in a-NbxSi1-x thin films, in between the superconducting and insulating states.During this work, we have studied the low frequency transport properties of amorphous NbxSi1-x films at low temperatures (T<1K), in order to characterize the evolution of their ground state with disorder. In our films, disorder has been tuned by varying the heat treatment temperature, the thickness or the composition. We have then focused on the destruction of these metallic states, giving rise to an insulating state. Through the analysis of conduction laws in the insulating regime, we have quantified the evolution of its properties – in particular its characteristic energies – as disorder is varied. We could then conclude that the insulating phase can essentially be accounted for by a fermionic model. At lower disorder level, in the 2D metallic phase neighboring the insulator, we have evidenced precursor signs of the insulating state which continuously evolve until and through the 2D Metal-to-Insulator Transition. We offer an interpretation of all our results implying the existence of two parallel channels which relative importance is determined by the sample disorder level : one is fermionic, the other governed by superconducting fluctuations which persist even when the macroscopic phase coherence is lost. The metallic state is then dominated by the latter, whereas, in the insulator, fermionic excitations prevail.In a second part, we report on the experimental development of a calibration device for the broadband reflectometry measurement of thin films at microwave frequencies (GHz) and low temperatures (T<4K). This apparatus aims at measuring, during a single cool down, the reflection of known references as well as of the sample. The obtained calibration enables to obtain the absolute value of the films complex impedance, independently of the microwave environment. The results obtained on superconducting Vanadium films, compared with theories of superconductivity, enabled a first validation of the setup and of its working principle. This calibration device is therefore operational to measure more complex systems, such as thin films in the vicinity of the SIT
Golalikhani, Maryam. "Structure and electronic properties of atomically-layered ultrathin nickelate films." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/353844.
Full textPh.D.
This work presents a study on stoichiometry and structure in perovskite-type oxide thin films and investigates the role of growth–induced defects on the properties of materials. It also explores the possibility to grow thin films with properties close or similar to the ideal bulk parent compound. A novel approach to the growth of thin films, atomic layer-by-layer (ALL) laser molecular beam epitaxy (MBE) using separate oxide targets is introduced to better control the assembly of each atomic layer and to improve interface perfection and stoichiometry. It also is a way to layer materials to achieve a new structure that does not exist in nature. This thesis is divided into three sections. In the first part, we use pulsed laser deposition (PLD) to grow LaAlO3 (LAO) thin films on SrTiO3 (STO) and LAO substrates in a broad range of laser energy density and oxygen pressure. Using x-ray diffraction (θ-2θ scan and reciprocal space mapping), transmission electron microscopy (TEM) and x-ray fluorescence (XRF) we studied stoichiometry and structure of LAO films as a function of growth parameters. We show deviation from bulk–like structure and composition when films are grown at oxygen pressures lower than 10-2 Torr. We conclude that the discussion of LAO/STO interfacial properties should include the effects of growth–induced defects in the LAO films when the deposition is conducted at low oxygen pressures, as is typically reported in the literature. In the second part, we describe a new approach to atomically layer the growth of perovskite oxides: (ALL) laser MBE, using separate oxide targets to grow materials as perfectly as possible starting from the first atomic layer. We use All laser MBE to grow Ruddlesden–Popper (RP) phase Lan+1NinO3n+1 with n = 1, 2, 3 and 4 and we show that this technique enables us to construct new layered materials (n=4). In the last and main section of this thesis, we use All laser MBE from separate oxide targets to build the LaNiO3 (LNO) films as near perfectly as possible by depositing one atomic layer at a time. We study the thickness dependent metal-insulator transition (MIT) in ultrathin LNO films on an LAO substrate. In LNO, the MIT occurs in thin films and superlattices that are only a few unit cells in thickness, the understanding of which remains elusive despite tremendous effort devoted to the subject. Quantum confinement and structure distortion have been evoked as the mechanism of the MIT; however, first-principle calculations show that LaNiO3 remains metallic even at one unit cell thickness. Here, we show that thicknesses of a few unit cells, growth–induced disorders such as cation stoichiometry, oxygen vacancies, and substrate-film interface quality will impact the film properties significantly. We find that a film as thin as 2 unit cells, with LaO termination, is metallic above 150 K. An oxygen K-edge feature in the x-ray absorption spectra is clearly inked to the transition to the insulating phase as well as oxygen vacancies. We conclude that dimensionality and strain are not sufficient to induce the MIT without the contribution of oxygen vacancies in LNO ultrathin films. Dimensionality, strain, crystallinity, cation stoichiometry, and oxygen vacancies are all indispensable ingredients in a true control of the electronic properties of nanoscale strongly–correlated materials.
Temple University--Theses
Seidemann, Johanna. "Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY075/document.
Full textIonic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode
Meling, Artur. "Scattering of vibrationally excited NO from vanadium dioxide." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-12F9-E.
Full textMasunaga, Sueli Hatsumi. "Preparação e caracterização de manganitas (La,Pr)CaMnO." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04012011-123031/.
Full textPolycrystalline samples of La(5/8-y)Pr(y)Ca(3/8)MnO(3); 0 y 0.625; were synthesized by the solid-state reaction method and sintered in air at 1400 oC. These compounds were studied by measurements of X-ray powder diffraction, magnetic susceptibility chi(T), and electrical resistivity rho(T, H). X-ray powder diffraction measurements indicated single phase materials and an effective substitution of La by Pr. Results from rho(T) and chi(T) revealed that increasing y in this series results in a rapid reduction of both the insulator to metal transition temperature TMI and the Curie temperature TC. Such a rapid decrease in TMI with increasing y is also accompanied by the occurrence of a new transition temperature, termed TCO, which is related to the transition to the charge ordered CO state. Such a temperature, which is essentially independent of y, occurs at TCO ~ 194 K and is mainly observed in samples with y 0.35. The other feature is the presence of a large residual resistivity electrical rho(0 = (10 K)) for large y (y 0.35) at low-T even though rho(T) suggests a metallic behavior below TMI. The temperature for the maximum magnetoresistance effect occurs near TMI, that shifts to higher T with increasing field. The MR is defined here as (rho(H = 0)-rho(H = 50 kOe))/rho(H = 50 kOe) and is enhanced by seven orders of magnitude from ~ 0.75 up to ~ 3.4x106 in samples with y = 0 and y = 0.625, respectively. Some features like the thermal hysteresis observed in both rho(T) and chi(T) curves indicate the coexistence of different phases in a range of y concentration, i. e., the ferromagnetic-metallic FMM and the charge ordered-insulating COI domains. The FMM is stable for y 0.25, but the COI state becomes dominant for y 0.40. There is a critical region in the phase diagram, ranging from y = 0.30 to 0.40, where the magnitude of the TMI, TC, MR, and 0 were found to display abrupt changes with increasing y. Some anomalous features like a second peak in rho(T) below TMI, a two-step increasing in chi(T), a colossal MR effect and others are observed for compositions belonging to this critical region. Our combined data suggest that the general physical properties of these compounds in such a critical region are dominated by the strong competition between coexisting ferromagnetic-metallic and charge ordered-insulating phases.
Lange, Matthias Michael [Verfasser], and Dieter [Akademischer Betreuer] Kölle. "A High-Resolution Polarizing Microscope for Cryogenic Imaging : Development and Application to Investigations on Twin Walls in SrTiO3 and the Metal-Insulator Transition in V2O3 / Matthias Michael Lange ; Betreuer: Dieter Kölle." Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1174583703/34.
Full textDoyle, Suzanne Martha. "Phase transitions in low dimensional materials close to the metal-insulator boundary." Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358783.
Full textNájera, Ocampo Oscar. "Study of the dimer Hubbard Model within Dynamical Mean Field Theory and its application to VO₂." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS462/document.
Full textWe study in detail the solution of a basic strongly correlated model,namely, the dimer Hubbard model. This model is the simplest realization ofa cluster DMFT problem.We provide a detailed description of the solutions in the ``coexistentregion'' where two (meta)stable states of the DMFT equations are found, onea metal and the other an insulator. Moreover, we describe in detail howthese states break down at their respective critical lines. We clarify thekey role played by the intra-dimer correlation, which here acts in additionto the onsite Coulomb correlations.We review the important issue of the Mott-Peierls insulator crossoverwhere we characterize a variety of physical regimes. In a subtle change inthe electronic structure the Hubbard bands evolve from purely incoherent(Mott) to purely coherent (Peierls) through a state with unexpected mixedcharacter. We find a singlet pairing temperature T* below which thelocalized electrons at each atomic site can bind into a singlet and quenchtheir entropy, this uncovers a new paradigm of a para-magnetic Mottinsulator.Finally, we discuss the relevance of our results for the interpretation ofvarious experimental studies in VO₂. We present a variety of argumentsthat allow us to advance the conclusion that the long-lived (meta-stable)metallic phase, induced in pump-probe experiments, and the thermallyactivated M₁ meta-stable metallic state in nano-domains are the same.In fact, they may all be qualitatively described by the dimerizedcorrelated metal state of our model
Le, Bourdais David. "Microcapteurs de pression à base de manganites épitaxiées." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112021/document.
Full textFunctional perovskite oxides are of great interest for fundamental and applied research thanks to the numerous physical properties and inherent mechanisms they display. With the maturation of thin film deposition techniques, research teams are able to reproduce oxide films and nanostructures of great crystalline quality with some of the most remarkable properties found in physics, a state leading now to upper-level thoughts like their ability to fulfill industrial needs. This thesis work is an answer to some of the problematics that arise when considering the oxide transition from the research to the industrial world, by focusing on their integration for micromechanical devices (MEMS) such as sensors. In order to ease the access to MEMS manufacturing, it is of importance to allow the deposition of thin oxide films on semiconductor substrates. A first study show that these access bridges can be crossed when using appropriate buffer layers such as SrTiO3 deposited on Silicon or gallium arsenide – produced in close collaboration with INL by Molecular Beam Epitaxy - and yttria-stabilized zirconia directly grown on silicon by pulsed laser deposition, which adapts the surface properties of the substrate to perovksite-based materials. Formation of thin epitaxial and monocristalline films of functional oxides is thus allowed on such buffer layers. As an example, characterization of two mixed-valence manganites La0.80Ba0.20MnO3 and La0.67Sr0.33MnO3 demonstrates that both materials are of excellent crystalline quality on these semiconducting substrates and that their physical characteristics match the one found on classical oxide substrates like SrTiO3. Stress evolution in thin films, which has a major effect in epitaxial materials, is then addressed to quantify its impact on oxide microstructure viability. This work gives an identification of the most significant factors favoring stress generation in the case of the films we produced. Then, based on the deformation measurement of free-standing cantilevers made of manganites on pseudo-substrates, and with the support of appropriate analytical models, a new state of equilibrium is established, giving new information about the evolution of static stress from deposition to MEMS device manufacturing. Solutions to manage their reproducibility is then studied. From another perspective, free-standing microstructures made of monocristaline manganites were used to display the effect of dynamical strain on their electrical resistivity (piezoresistivity) and their inherent structures.Finally, a specific example of the capabilities of reproducible free-standing microbridges made of manganites is presented through the conception of a pressure gauge based on Pirani effect. Indeed, it is shown that the abrupt resistivity change this material exhibits near their metal-to-insulating transition creates high temperature coefficients in standard application environments that can be taken as an advantage to improve the sensibility and power consumption of such gauges whose development had significantly slowed down over the past years. A set of improvements on their sensitivity range and their signal acquisition is also presented. Combined to a specific and innovative package, it is also demonstrated that Pirani gauge capabilities can be enhanced and that the complete devices fulfill embedded application requirements
FRANCESCHINI, PAOLO. "NOVEL SCHEMES FOR ULTRAFAST MANIPULATION OF QUANTUM MATERIALS." Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/111822.
Full textThe possibility to control the electronic properties on-demand on an ultrafast time scale represents one of the most exciting challenges towards the realization of new generation photonic and electronic devices. Triggered by this, in the last decades the research activity focused its attention to different solid-state platforms. Among all, dielectric nanostructures (and metamaterials) and correlated materials represent the most promising candidate for the implementation of devices endowed by new functionalities. Apart from the specific features making dielectrics more suitable for photonic applications and correlated materials for electronic devices, both categories exhibit new functionalities if subjected to an external stimulus in the form of excitation light pulses shorter than the relaxation timescale of the internal degrees of freedom of the system. Indeed, the out-of-equilibrium state achieved upon photoexcitation exhibits electronic and optical properties highly different from those at equilibrium. Therefore, the aim of this thesis work consists in the development of new methods and experimental approaches capable to induce, measure, and control new functionalities in complex materials on an ultrafast time scale.
Amow, Gisele. "Structural and physical properties of the vacancy-doped systems R¦1¦-¦x TiO (R = Nd for 0.00 < or equal to x < or equal 0.33 and Sm for 0.00 < or equal to x < or equal to 0.17), an investigation of metal-insulator transitions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0019/NQ50976.pdf.
Full textSantos, Ana Filipa Alves Rodrigues dos. "Investigation of VO2 Metal-to-Insulator Transition for application in memory devices." Master's thesis, 2020. http://hdl.handle.net/10362/129483.
Full textOs óxidos de vanádio têm sido bastante estudados devido às suas múltiplas formas e fases. Em particular, o VO2 apresenta uma transição metal-isolante (MIT) reversível e ultrarrápida que ocorre a ~68ºC que altera o material de estrutura monoclínica para tetragonal rutile. Um estímulo externo (térmico, químico ou elétrico) pode provocar esta transição, alterando-a de um estado de alta resistência para baixa resistência, significando que pode ser usado como interruptor elétrico. Neste trabalho, foram estudadas as condições ótimas para produzir filmes finos de VO2 (~200 nm de espessura). Foram depositados por e-beam evaporation e rf magnetron sputtering (a diferentes pressões de O2), seguidos de um tratamento RTA a diferentes temperaturas. A composição estrutural dos filmes finos de VO2 foi caracterizada por XRD, XPS e AFM. Os filmes depositados por e-beam não são reproduzíveis devido a contaminações do cadinho de tungsténio e foi difícil evaporar os “pellets” de VO2. Os filmes eram amorfos depois da deposição e o recozimento realizado mostrou que a fase monoclínica de VO2 foi atingida com sucesso a 500ºC. O substrato utilizado foi Vidro/ITO. À medida que a temperatura aumentava e a pressão de O2 diminuía, a cristalização e rugosidade dos filmes aumentava. As condições ótimas por sputtering foi obtida para 3x10-5 mbar de pressão de O2 e temperatura de 450ºC num ambiente de N2 com uma pressão base de 250 mbar. Dispositivos MIM foram fabricados por sputtering onde Molibdénio (Mo) foi o metal depositado por cima do VO2, usando máscaras com contactos circulares e usando filmes de ITO como contacto de baixo. A caracterização in-situ com aquecimento foi realizada no XRD e XPS para se analisar a transição in termos de diferenças de fase assim como as propriedades químicas e elétricas. A caracterização elétrica preliminar foi realizada para explorar a MIT em filmes finos de VO2 otimizados.
Kądzielawa, Andrzej. "First-principle approach to electronic states and metal-insulator transition in selected correlated model systems." Praca doktorska, 2015. https://ruj.uj.edu.pl/xmlui/handle/item/278054.
Full textKübler, Carl [Verfasser]. "Femtosecond terahertz studies of many body correlations : from ultrafast phonon plasmon dynamics to an insulator metal transition / vorgelegt von Carl Kübler." 2007. http://d-nb.info/986197246/34.
Full text"Metal-insulator Transition And Cross Over From Coherent Band-like Transport To Incoherent Transport In Ferrimagnetic Epitaxial Spinel Nico2o4 Thin Films." Tulane University, 2014.
Find full textTeubert, Jörg [Verfasser]. "Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys / vorgelegt von Jörg Teubert." 2009. http://d-nb.info/993324347/34.
Full textChaitanya, Lekshmi I. "In-situ Synthesis Of AxWO3(A=Na,K), SrMoO3, La1-xSrxVO3, LaNi1-x(Mn3Co)xO3 And La1-xCexNiO3 Thin Films By Pulsed Laser Deposition: Study Of Electrical Conductivity And Metal To Insulator Transition." Thesis, 2004. http://etd.iisc.ernet.in/handle/2005/1362.
Full textMessina, Troy Christopher. "Steric effects in the metallic-mirror to transparent-insulator transition in YHx." Thesis, 2002. http://wwwlib.umi.com/cr/utexas/fullcit?p3110658.
Full textShamin, Saquib. "Electrical Transport in Si:P and Ge:P δ-doped Systems." Thesis, 2015. http://etd.iisc.ernet.in/2005/3915.
Full textTANZI, LUCA. "One-dimensional disordered bosons from weak to strong interactions: the Bose glass." Doctoral thesis, 2014. http://hdl.handle.net/2158/850906.
Full textMünzenberg, Markus. "X-ray magnetic circular dichroism in iron/rare-earth multilayers and the impact of modifications of the rare earth's electronic structure." Doctoral thesis, 2000. http://hdl.handle.net/11858/00-1735-0000-0006-B411-2.
Full text