Academic literature on the topic 'Insulating-To-Metal transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Insulating-To-Metal transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Insulating-To-Metal transition"
CHEN, DONG-MENG, and LIANG-JIAN ZOU. "ORBITAL INSULATORS AND ORBITAL ORDER–DISORDER INDUCED METAL–INSULATOR TRANSITION IN TRANSITION-METAL OXIDES." International Journal of Modern Physics B 21, no. 05 (February 20, 2007): 691–706. http://dx.doi.org/10.1142/s0217979207036618.
Full textPustogow, A., A. S. McLeod, Y. Saito, D. N. Basov, and M. Dressel. "Internal strain tunes electronic correlations on the nanoscale." Science Advances 4, no. 12 (December 2018): eaau9123. http://dx.doi.org/10.1126/sciadv.aau9123.
Full textASOKAMANI, R., CH U. M. TRINADH, G. PARI, and S. NATARAJAN. "INSULATOR-TO-METAL TRANSITION IN LaRhO3 UNDER HIGH PRESSURE." Modern Physics Letters B 09, no. 11n12 (May 20, 1995): 701–9. http://dx.doi.org/10.1142/s0217984995000644.
Full textDriscoll, D. C., M. Hanson, C. Kadow, and A. C. Gossard. "Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, no. 4 (2001): 1631. http://dx.doi.org/10.1116/1.1388211.
Full textLiang, Yongcheng, Ping Qin, Zhiyong Liang, Lizhen Zhang, Xun Yuan, and Yubo Zhang. "Identification of a monoclinic metallic state in VO2 from a modified first-principles approach." Modern Physics Letters B 33, no. 12 (April 30, 2019): 1950148. http://dx.doi.org/10.1142/s0217984919501483.
Full textAllain, Adrien, Zheng Han, and Vincent Bouchiat. "Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids." Nature Materials 11, no. 7 (May 20, 2012): 590–94. http://dx.doi.org/10.1038/nmat3335.
Full textLee, Seung-Yong, Hyuneui Lim, Gyoung-Rin Choi, Jan-Di Kim, Eun-Kyung Suh, and Sang-Kwon Lee. "Metal-to-Insulating Transition of Single Polyaniline (PANI) Nanowire: A Dedoping Effect." Journal of Physical Chemistry C 114, no. 27 (June 22, 2010): 11936–39. http://dx.doi.org/10.1021/jp101424b.
Full textMorrow, Ryan, and Patrick Woodward. "Competing Superexchange Interactions in Double Perovskite Osmates." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1366. http://dx.doi.org/10.1107/s2053273314086331.
Full textCohen, Oded, and Zvi Ovadyahu. "1/f NOISE NEAR THE METAL-INSULATOR TRANSITION." International Journal of Modern Physics B 08, no. 07 (March 30, 1994): 897–903. http://dx.doi.org/10.1142/s0217979294000440.
Full textJager, Marieke F., Christian Ott, Peter M. Kraus, Christopher J. Kaplan, Winston Pouse, Robert E. Marvel, Richard F. Haglund, Daniel M. Neumark, and Stephen R. Leone. "Tracking the insulator-to-metal phase transition in VO2with few-femtosecond extreme UV transient absorption spectroscopy." Proceedings of the National Academy of Sciences 114, no. 36 (August 21, 2017): 9558–63. http://dx.doi.org/10.1073/pnas.1707602114.
Full textDissertations / Theses on the topic "Insulating-To-Metal transition"
Tothill, J. N. "An investigation into the magnetic properties of certain Mott insulating transition metal compounds close to delocalization." Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376619.
Full textAlzate, Banguero Melissa. "Towards neuromorphic computing on quantum many-body architectures : VO2 transition dynamics." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS021.
Full textAs AI demands grow, new computing paradigms are essential. Traditional von Neumann architectures struggle with intensive AI requirements. Neuromorphic computing, inspired by the brain, integrates processing and memory for faster, efficient computation, ideal for AI applications like deep learning and pattern recognition.Key materials for neuromorphic computing include synaptors and neuristors. Memristors, non-volatile memories made from oxides like HfO2 and TiO2, mimic synaptic behavior by switching states via nanoscale filaments or phase transitions. Neuristors emulate neuron spiking behavior using memristors and resistance-capacitance circuits to replicate the Leaky, Integrate, and Fire model. Mott insulators like VO2 mimic neuron-like behavior by forming volatile conductive pathways. However, synaptors and neuristors often require different materials. Optimizing VO2 for synaptic behavior could enable it to serve both functions at room temperature.Studying phase-separated systems like VO2 is complex due to inhomogeneities. Advances in infrared and optical microscopy now allow imaging these regions with nanometer-scale resolution. Near-field techniques, using atomic force microscopes coupled to IR lasers, can probe local conductivity at the nanoscale. However, these probes have limitations: (i) long scans for larger inhomogeneities and (ii) temperature-driven phase transitions causing temperature drifts and difficult imaging comparisons.To address these, we developed a far-field optical microscopy setup to study VO2 phase transitions. This setup leverages optical contrast between insulating and metallic phases, observable from nanometers to microns. We applied different temperature protocols while continuously imaging, counteracting temperature drift and aligning sharp images. This enables single-pixel time traces to indicate specific phase transition temperatures.We first mapped critical temperature (Tc), transition width (ΔTc), and transition sharpness (δTc) in VO2. These maps could enable tailoring VO2 properties for specific applications like memory devices and fast switching components.We also presented the first optical imaging of ramp reversal memory (RRM) in VO2, showing cluster evolution during thermal subloop training. Memory accumulation occurs at cluster boundaries and within patches, suggesting preferential diffusion of point defects. This could enhance memory effects through defect engineering, improving memory devices' robustness and stability.Additionally, we pursued a machine learning (ML) analysis of fractal patterns in VO2, using ML to classify the Hamiltonian driving pattern formation. Our convolutional neural network (CNN) achieved high accuracy with synthetic and experimental data, confirming pattern formation driven by proximity to a critical point of the two-dimensional random field Ising model. This framework, combined with symmetry reduction and confidence quantification, offers a new powerful tool for analyzing complex phase transitions in correlated materials.Our research provides a new optical characterization method for understanding VO2 transition dynamics and introduces innovative approaches for optimizing VO2 for non-memory applications. These insights lay a foundation for future studies that explore RRM's potential, and extend ML frameworks to other correlated materials
Book chapters on the topic "Insulating-To-Metal transition"
Cao, Gang, and Lance E. DeLong. "Introduction." In Physics of Spin-Orbit-Coupled Oxides, 3–30. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199602025.003.0001.
Full textKamimura, Hiroshi, and Hideo Aoki. "Electron-Electron Interactions In Impurity Bands." In Physics of Interacting Electrons in Disordered Systems, 43–75. Oxford University PressOxford, 1990. http://dx.doi.org/10.1093/oso/9780198520238.003.0004.
Full textKrishnaprasad, Adithi, and Tania Roy. "Memory Devices and Artificial Synapses with 2D Materials." In Advanced Memory Technology, 373–408. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169946-00373.
Full textConference papers on the topic "Insulating-To-Metal transition"
Tadokoro, Yuzuru, Keisuke Takano, and Masanori Hangyo. "Transition from insulating to conducting states induced by intense terahertz pulses in aggregate of metal particles." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956363.
Full textChervinskii, Semyon, Ibrahim Issah, Markus Lahikainen, Alireza R. Rashed, Kim Kuntze, Arri Priimagi, and Humeyra Caglayan. "Humidity- and Temperature- Stimuli-Responsive Tunable Metal-Hydrogel-Metal Reflective Filter." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fth5b.6.
Full textChang, Ruxia, Desong Fan, and Qiang Li. "Research on Thermal Properties of Insulator-Metal Transition at Room Temperature in Sm1-xCaxMnO3." In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3963.
Full textChain, Elizabeth E. "Optical properties of vanadium oxide films." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.ms2.
Full text