Academic literature on the topic 'InP/ZnS quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InP/ZnS quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "InP/ZnS quantum dots"

1

Wang, Juan, Shun Feng, Qingqing Sheng, and Ruilin Liu. "Influence of InP/ZnS Quantum Dots on Thermodynamic Properties and Morphology of the DPPC/DPPG Monolayers at Different Temperatures." Molecules 28, no. 3 (January 22, 2023): 1118. http://dx.doi.org/10.3390/molecules28031118.

Full text
Abstract:
In this work, the effects of InP/ZnS quantum dots modified with amino or carboxyl group on the characteristic parameters in phase behavior, elastic modulus, relaxation time of the DPPC/DPPG mixed monolayers are studied by the Langmuir technology at the temperature of 37, 40 and 45 °C. Additionally, the information on the morphology and height of monolayers are obtained by the Langmuir–Bloggett technique and atomic force microscope technique. The results suggest that the modification of the groups can reduce the compressibility of monolayers at a higher temperature, and the most significant effect is the role of the amino group. At a high temperature of 45 °C, the penetration ability of InP/ZnS-NH2 quantum dots in the LC phase of the mixed monolayer is stronger. At 37 °C and 40 °C, there is no clear difference between the penetration ability of InP/ZnS-NH2 quantum dots and InP/ZnS-COOH quantum dots. The InP/ZnS-NH2 quantum dots can prolong the recombination of monolayers at 45 °C and accelerate it at 37 °C and 40 °C either in the LE phase or in the LC phase. However, the InP/ZnS-COOH quantum dots can accelerate it in the LE phase at all temperatures involved but only prolong it at 45 °C in the LC phase. This work provides support for understanding the effects of InP/ZnS nanoparticles on the structure and properties of cell membranes, which is useful for understanding the behavior about the ingestion of nanoparticles by cells and the cause of toxicity.
APA, Harvard, Vancouver, ISO, and other styles
2

Kulakovich, O. S., L. I. Gurinovich, L. I. Trotsiuk, A. A. Ramanenka, Hongbo Li, N. A. Matveevskaya, and S. V. Gaponenko. "Manipulation of the quantum dots photostability using gold nanoparticles." Doklady of the National Academy of Sciences of Belarus 66, no. 2 (May 6, 2022): 148–55. http://dx.doi.org/10.29235/1561-8323-2022-66-2-148-155.

Full text
Abstract:
The effect of plasmonic films containing gold nanoparticles of different shape (nanospheres and nanorods) on the photostability of InP/ZnSe/ZnSeS/ZnS and CdSe/ZnCdS/ZnS quantum dots with core/shell structure has been determined. Gold nanospheres increase the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots when excited by blue LED radiation when reducing the average lifetime of the excited state of quantum dots and, accordingly, when reducing the probability of Auger processes. An increase in the average lifetime of the excited state of CdSe/ZnCdS/ZnS quantum dots in complexes with gold nanorods leads to a decrease in the photostability upon excitation at 449 and 532 nm.
APA, Harvard, Vancouver, ISO, and other styles
3

Lian, Linyuan, Youyou Li, Daoli Zhang, and Jianbing Zhang. "Synthesis of Highly Luminescent InP/ZnS Quantum Dots with Suppressed Thermal Quenching." Coatings 11, no. 5 (May 17, 2021): 581. http://dx.doi.org/10.3390/coatings11050581.

Full text
Abstract:
InP quantum dots (QDs) are promising down-conversion phosphors for white light LEDs. However, the mainstream InP QDs synthesis uses expensive phosphorus source. Here, economic, in situ-generated PH3 is used to synthesize InP QDs and a two-step coating of ZnS shells is developed to prepare highly luminescent InP/ZnS/ZnS QDs. The QDs show a photoluminescence quantum yield as high as 78.5%. The emission can be tuned by adjusting the halide precursor and yellow emissive InP/ZnS/ZnS QDs are prepared by judiciously controlling the synthetic conditions. The yellow QDs show suppressed thermal quenching and retain >90% room temperature PL intensity at 150 °C for the growth solution. Additionally, the PL spectrum matches with the eye sensitivity function, resulting in efficient InP QD white light LEDs.
APA, Harvard, Vancouver, ISO, and other styles
4

Harabi, Imen, Yousaf Hameed Khattak, Safa Jemai, Shafi Ullah, Hanae Toura, and Bernabe Mari Soucase. "InP/ZnS/ZnS core quantum dots for InP luminescence and photoelectrochemical improvement." Physica B: Condensed Matter 652 (March 2023): 414634. http://dx.doi.org/10.1016/j.physb.2023.414634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ayupova, Deanna, Garima Dobhal, Geoffry Laufersky, Thomas Nann, and Renee Goreham. "An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries." Nanomaterials 9, no. 2 (January 22, 2019): 135. http://dx.doi.org/10.3390/nano9020135.

Full text
Abstract:
Indium phosphide quantum dots (QDs) passivated with zinc sulphide in a core/shell architecture (InP/ZnS) with different surface chemistries were introduced to RAW 264.7 murine “macrophage-like” cells to understand their potential toxicities. The InP/ZnS quantum dots were conjugated with an oligonucleotide, a carboxylic acid, or an amino-polyethylene glycol ligand, and cell viability and cell proliferation were investigated via a metabolic assay. Membrane integrity was measured through the production of lactate dehydrogenase. Fluorescence microscopy showed cellular uptake. All quantum dots exhibited cytotoxic behaviour less than that observed from cadmium- or lead-based quantum dots; however, this behaviour was sensitive to the ligands used. In particular, the amino-polyethylene glycol conjugated quantum dots proved to possess the highest cytotoxicity examined here. This provides quantitative evidence that aqueous InP/ZnS quantum dots can offer a safer alternative for bioimaging or in therapeutic applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Shuai, Chunfeng Zhang, Yanjun Liu, Huaipeng Su, Lai Wei, Tony Huang, Nicholas Dellas, et al. "Lasing from colloidal InP/ZnS quantum dots." Optics Express 19, no. 6 (March 9, 2011): 5528. http://dx.doi.org/10.1364/oe.19.005528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Su, Yu Yang, Kai Ling Liang, and Chyi Ming Leu. "Cd-Free Quantum Dot Dispersion in Polymer and their Film Molds." Advances in Science and Technology 98 (October 2016): 38–43. http://dx.doi.org/10.4028/www.scientific.net/ast.98.38.

Full text
Abstract:
Indium phosphide (InP) quantum dots (QDs) with luminescence tunable over the entire visible spectrum were prepared by the conventional hot injection method. InP QDs are considered alternatives to Cadmium containing QDs for application in light-emitting devices because of showing similar optical properties to those containing toxic heavy metals. The multishell coating was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. QY values were more than 60% along with FWHM of 41-73 nm can be routinely achieved, making the optical performance of InP/ZnS/ZnS or InP/ZnS/SiO2 QDs comparable to that of InP/ZnS QDs. These QDs and the polymer dissolved in the appropriate solvent and deposited by casting to give homogeneous films and showed a good level of dispersion of the QDs within the polymer.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xinsu, Hao Lv, Weishuo Xing, Yanjun Li, Chong Geng, and Shu Xu. "Trioctylphosphine accelerated growth of InP quantum dots at low temperature." Nanotechnology 33, no. 5 (November 12, 2021): 055602. http://dx.doi.org/10.1088/1361-6528/ac3180.

Full text
Abstract:
Abstract Significant advance was realized on the economic synthesis of InP quantum dots (QDs) by using aminophosphines as phosphorus precursor. However, the low reaction activity and thermal degradation of aminophosphines bring severe difficulty for growth control of InP QDs. Here, we employed trioctylphosphine (TOP) as a surfactant to accelerate the growth of the InP QDs. The reaction mechanism study reveals that the TOP could form a reactive complex with indium halides that effectively accelerates the formation of InP monomer and reduces the demand for reaction temperature. On this basis, the effect of reaction temperature, precursors, and zinc halide additives on the growth of the TOP-InP QDs was explored. This strategy alleviates the difficulty in growth control of InP QDs and also benefits to the synthesis of luminescent InP/ZnS core–shell QDs within visible regime. A white-light emitting diode device was fabricated with the InP/ZnS QDs that demonstrates their application potential in light-emitting devices.
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, Xunqiang, Mingming Liu, Qinggang Zhang, Mengda He, Xinrong Liao, Qun Wan, Wenji Zhan, Long Kong, and Liang Li. "A Novel Strategy to Enhance the Photostability of InP/ZnSe/ZnS Quantum Dots with Zr Doping." Nanomaterials 12, no. 22 (November 17, 2022): 4044. http://dx.doi.org/10.3390/nano12224044.

Full text
Abstract:
Plentiful research of InP semiconductor quantum dots (QDs) has been launched over the past few decades for their excellent photoluminescence properties and environmentally friendly characteristics in various applications. However, InP QDs show inferior photostability because they are extremely sensitive to the ambient environment. In this study, we propose a novel method to enhance the photostability of InP/ZnSe/ZnS QDs by doping zirconium into the ZnS layer. We certify that Zr can be oxidized to Zr oxides, which can prevent the QDs from suffering oxidation during light irradiation. The InP/ZnSe/ZnS:Zr QDs maintained 78% of the original photoluminescence quantum yields without significant photodegradation under the irradiation of LED light (450 nm, 3.0 W power intensity) for 14 h, while conventional InP/ZnSe/ZnS QDs dramatically decreased to 29%.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Hwi-Jae, Jung-Ho Jo, Suk-Young Yoon, Dae-Yeon Jo, Hyun-Sik Kim, Byoungnam Park, and Heesun Yang. "Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme." Materials 12, no. 14 (July 15, 2019): 2267. http://dx.doi.org/10.3390/ma12142267.

Full text
Abstract:
The doping of transition metal ions, such as Cu+ and Mn2+ into a quantum dot (QD) host is one of the useful strategies in tuning its photoluminescence (PL). This study reports on a two-step synthesis of Cu-doped InP QDs double-shelled with ZnSe inner shell/ZnS outer shell. As a consequence of the double shelling-associated effective surface passivation along with optimal doping concentrations, Cu-doped InP/ZnSe/ZnS (InP:Cu/ZnSe/ZnS) QDs yield single Cu dopant-related emissions with high PL quantum yields of 57–58%. This study further attempted to tune PL of Cu-doped QDs through the variation of InP core size, which was implemented by adopting different types of Zn halide used in core synthesis. As the first application of doped InP QDs as electroluminescent (EL) emitters, two representative InP:Cu/ZnSe/ZnS QDs with different Cu concentrations were then employed as active emitting layers of all-solution-processed, multilayered QD-light-emitting diodes (QLEDs) with the state-of-the-art hybrid combination of organic hole transport layer plus inorganic electron transport layers. The EL performances, such as luminance and efficiencies of the resulting QLEDs with different Cu doping concentrations, were compared and discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "InP/ZnS quantum dots"

1

Carlini, Lina. "Photosensitization of InP/ZnS quantum dots for photodynamic therapy." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106430.

Full text
Abstract:
Photodynamic therapy (PDT) is a treatment that makes use of light and a photosensitizing drug to destroy malignant cells. Current clinically approved drugs suffer from many limitations; the most prevalent of these is due to the absorption coefficient of human tissues in the wavelength regime where these drugs are excitable. Semiconductor quantum dots (QDs) can overcome this drawback since they can be synthesized to become excited at any wavelength. The goal of this thesis is to explore the possibility of using core/shell Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dots (QDs) for photodynamic therapy applications. Electron paramagnetic resonance (EPR) spectroscopy and colorimetric assays were used to identify the nature of toxic species produced. From these findings, the physical mechanism by which these particles produce toxic species is discussed. It was found that InP/ZnS QDs produced superoxide anions and hydroxyl radicals, the levels of which depended on the ZnS shell thickness. Furthermore, the level of cellular uptake was studied in different cell lines using confocal microscopy. It was found that InP localized in the perinuclear region of all cell lines and that B16 melanoma cells showed the most efficient levels of uptake (2.5 times greater than the uptake from KB cells). Lastly, conjugation of InP QDs to the chemotherapeutic drug doxorubicin (Dox) was studied using flow cytometry and colorimetric assays. It was found that conjugation of Dox to InP led to enhanced levels of cell death; it is proposed that this was due to more efficient drug delivery by the conjugate. In summary, photosensitization processes in InP/ZnS QDs can be exploited for PDT applications; these particles also prove to be promising as a drug delivery agent. Despite this, photophysical processes of these QDs must be further explored to ameliorate their design for PDT.
La thérapie photodynamique (TPD) est un traitement médical qui détruit les cellules cancéreuses en utilisant des photons de lumière, typiquement en forme de laser, afin d'activer des drogues photosensibles. Présentement, les médicaments approuvés pour usage clinique ont d'importantes limitations. Particulièrement, le coefficient d'absorption des tissus humains se retrouve dans la même gamme de longueur d'onde où les médicaments sont excitables; par conséquent, leur efficacité est compromise. Les nanoparticules de matériaux semi-conducteurs, appelées aussi points quantiques (PQs), ont l'habilité de surpasser cette limitation parce qu'ils peuvent être produits pour absorber la lumière à n'importe quelle longueur d'onde. L'objectif de cette thèse est donc d'évaluer la possibilité d'utiliser les PQs pour la TPD. Plus spécifiquement, les PQs composés d'un cœur de phosphure d'indium (InP) avec une coquille du sulfure de zinc (ZnS) ont été examinés. La spectroscopie par résonance paramagnétique électronique (RPE) et les tests colorimétriques ont été utilisés pour identifier la nature des espèces toxiques produites, ainsi que le mécanisme responsable de leur formation. Les résultats ont montré que les particules de InP/ZnS produisent des anions de superoxyde et des radicaux d'hydroxyle; la quantité des radicaux formés dépend de l'épaisseur de la coquille ZnS. En plus, la microscopie confocale a été utilisée pour évaluer l'ingestion intracellulaire des PQs par divers types de cellules. Ces images ont démontré que les PQs se concentrent dans le cytoplasme autour du noyau et que les cellules mélanomes de type B16 sont celles qui absorbent le plus (2.5 fois plus que les cellules KB). Finalement, les PQs ont été conjuguées à un agent chimiothérapeutique (doxorubicin (Dox)) et leur toxicité a été explorée par cytométrie en flux et des tests colorimétriques. La mort cellulaire a augmenté avec l'attachement de PQs, ce qui s'explique par une amélioration de la livraison intracellulaire de Dox. En conclusion, les PQs InP/Zn révèlent être des candidats prometteurs en tant que médicaments et agents de livraison pour la TPD, cependant certains éléments de leur structure restent à être améliorés.
APA, Harvard, Vancouver, ISO, and other styles
2

Panzer, Rene, Chris Guhrenz, Danny Haubold, Rene Hübner, Nikolai Gaponik, Alexander Eychmüller, and Jan J. Weigand. "Tri(pyrazolyl)phosphane als Phosphorpräkursoren für die Synthese von hochemittierenden InP/ZnS Quantenpunkten." Technische Universität Dresden, 2018. https://tud.qucosa.de/id/qucosa%3A31166.

Full text
Abstract:
Tri(pyrazolyl)phosphane (5R1,R2) werden als alternative, kostengünstige und geringer toxische Phosphorpräkursoren in der Synthese von InP/ZnS Quantenpunkten (QP) eingesetzt. Ausgehend von diesen Vorläuferverbindungen konnten langzeitstabile (>6 Monate) P(OLA)3 (OLAH = Oleylamin) Stammlösungen synthetisiert werden, aus denen sich die entsprechenden Pyrazole einfach zurückgewinnen lassen. P(OLA)3 fungiert in der Synthese von hochemittierenden InP/ZnS QP sowohl als Phosphorquelle als auch als Reduktionsmittel. Die erhaltenen Kern/Schale-Partikel zeichnen sich durch hohe Photolumineszenz-Quantenausbeuten (PL-QA) von 51–62% in einem spektralen Bereich von 530–620 nm aus. Die Verarbeitung und Anwendung dieser InP/ZnS QP als Farbkonversionsschicht wurde als „proof-of-concept“ in einer weißen Leuchtdiode (LED) demonstriert
APA, Harvard, Vancouver, ISO, and other styles
3

Panzer, Rene, Chris Guhrenz, Danny Haubold, Rene Hübner, Nikolai Gaponik, Alexander Eychmüller, and Jan J. Weigand. "Versatile Tri(pyrazolyl)phosphanes – Application as phosphorus precursors for the synthesis of highly emitting InP/ZnS quantum dots." Technische Universität Dresden, 2018. https://tud.qucosa.de/id/qucosa%3A31156.

Full text
Abstract:
Tri(pyrazolyl)phosphanes (5R1,R2) are utilized as an alternative, cheap and low-toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long-term stable stock solutions (>6 months) of P(OLA)3 (OLAH = oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA)3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530–620 nm and photoluminescence quantum yields (PL QYs) between 51–62%. A proof-of-concept white light-emitting diode (LED) applying the InP/ZnS QDs as color conversion layer was built to demonstrate their applicability and processibility.
APA, Harvard, Vancouver, ISO, and other styles
4

Albahrani, Sayed Mohamed Baqer. "Photoluminescent CdSe/CdS/ZnS quantum dots for temperature and pressure sensing in elastohydrodynamic." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI016/document.

Full text
Abstract:
La température et la pression sont deux paramètres particulièrement importants pour l’optimisation des performances du régime de lubrification élastohydrodynamique (EHL). A ce jour, différentes méthodes expérimentales ont été développées, avec plus ou moins du succès, pour la mesure de ces deux paramètres. Ce travail présente, en continuité de ces approches, des investigations visant à développer une nouvelle technique in situ permettant de mesurer localement ces deux grandeurs dans les contacts élastohydrodynamiques (EHD). Cette technique exploite la sensibilité en photoluminescence (PL) des boîtes quantiques (ou en anglais « quantum dots (QDs)) de CdSe/CdS/ZnS aux variations de température et de pression. A cet égard, des calibrations ont été réalisées afin d’évaluer la sensibilité de ces QDs aux deux paramètres. De plus, la versatilité de ces QDs comme nanosondes a été examinée en testant deux lubrifiants différents : le squalane et un mélange de squalane et de cyclopentane. Des mesures ont été également effectuées sous conditions dynamiques afin d’étudier (i) l’influence de la présence des QDs sur la rhéologie du lubrifiant et (ii) l’influence du taux de cisaillement sur la PL des QDs. Bien que ces différents tests aient prouvé le potentiel des QDs de CdSe/CdS/ZnS, ils ont révélé l’existence d’autres paramètres qui peuvent, tout comme la température et la pression, en modifier la réponse. L’étude a été menée afin d’approfondir la compréhension des mécanismes responsables de tels effets. Plus important encore, une méthodologie a été définie pour minimiser ces effets indésirables, et pour in fine, permettre l’usage de ces QDs en tant que nanosondes fiables
Temperature and pressure are two relevant parameters for the optimization of lubrication performance in the elastohydrodynamic lubrication (EHL) regime. To date, various experimental methods have been developed to measure these two parameters with more or less success. In a continuation of these efforts, some investigations are presented in the current work in view of developing a new in situ technique allowing for local measurements of these two parameters throughout elastohydrodynamic (EHD) contacts. This technique exploits the photoluminescence (PL) sensitivity of CdSe/CdS/ZnS quantum dots (QDs) to changes in temperature and pressure. In this respect, calibrations have been carried out in order to establish the sensitivity of these QDs to the two parameters. Moreover, the versatility of these QDs for sensing applications have been examined by testing two different lubricants, namely squalane and a mixture of squalane and cyclopentane. Some measurements were also conducted under dynamic conditions, in order to study (i) the influence of the QDs presence on the lubricant rheology and (ii) the influence of shear rate on the PL of QDs. Although these different tests demonstrated the potential of CdSe/CdS/ZnS QDs, they revealed the existence of other parameters that affect, in addition to temperature and pressure, their response. A comprehensive study was thus conducted in order to elucidate the mechanisms behind these findings. More importantly, a methodology was defined in order to minimize these undesired influences and, in fine, enable these QDs to be used as reliable nanosensors
APA, Harvard, Vancouver, ISO, and other styles
5

Virieux, Heloise. "Nanocristaux luminescents de phosphures d'indium et de zinc : synthèse, enrobage et caractérisation." Thesis, Toulouse, INSA, 2013. http://www.theses.fr/2013ISAT0030/document.

Full text
Abstract:
Ce travail de thèse porte sur la synthèse organo-métallique de nanoparticules (NPs) semi-conductrices colloïdales de phosphures d’indium (InP), de zinc (Zn3P2) et de structures cœur/coquille obtenues par la croissance d’une couche de sulfure de zinc (ZnS) à la surface des NPs. Les objectifs consistent à comprendre et maîtriser la synthèse dans le but de décaler les longueurs d’onde d’absorption et d’émission vers le proche infra-rouge, domaine spectral intéressant pour l’imagerie biomédicale.Le premier chapitre présente l’état de l’art sur les nanocristaux (NCx) d’InP et d’InP/ZnS. Un bref rappel sur les propriétés physico-chimiques des NCx semi-conducteurs est présenté et différentes synthèses sont décrites. Une attention toute particulière a été portée sur la taille des NCx, le décalage de l’émission de fluorescence vers les plus grandes longueurs d’onde et l’optimisation des rendements quantiques. Les potentialités offertes par ces objets soit pour les diodes électroluminescentes (LED) blanches soit pour l’imagerie biomédicale montrent l’intérêt d’utiliser les NCx de type InP/ZnS plutôt que d’autres matériaux à base d’éléments toxiques (Cd, Pb, …).Le deuxième chapitre porte sur une synthèse à partir des carboxylates d’indium connue de la littérature. Le but est alors de caractériser la structure des NPs pour comprendre le déroulement de la synthèse et de l’enrobage. Des mesures par résonance magnétique nucléaire (RMN) en phase solide et spectroscopie photo-électronique par rayons X (XPS) révèlent l’oxydation des NPs d’InP. La couche d’oxyde qui se forme durant la synthèse des NPs d’InP s’épaissit lors de l’enrobage. Cette oxydation provient d’un couplage décarboxylant des acides carboxyliques à haute température en présence des NPs. Elle serait à l’origine de l’inhibition de croissance des objets, ce qui limiterait les gammes de longueurs d’onde atteignables.Le troisième chapitre concerne une nouvelle synthèse à partir d’amidinate d’indium au lieu des carboxylates d’indium. L’intérêt de cette approche est la possibilité d’abaisser considérablement la température de réaction (150°C au lieu de 280°C) et ainsi d’éviter la réaction secondaire de décarboxylation. Un enrobage à basse température (150°C) est aussi mis en place. La synthèse induit également une oxydation de la surface des NPs d’InP. Un nouveau couplage a lieu entre les ligands, l’acide palmitique et l’hexadécylamine, et donne de nouvelles conditions oxydantes. Le jeu sur les ratios des ligands montre qu’en bouleversant le milieu réactionnel, les NPs d’InP ne présentent pas de réponse en luminescence concluante. La synthèse et l’enrobage sont alors réalisés sous atmosphère de dihydrogène (H2) en réacteur Fisher-Porter dans le but de contrer ces conditions oxydantes. La synthèse et l’enrobage donnent des tailles de NPs de l’ordre de 3,4 nm (condition nécessaire pour s’approcher d’une émission dans l'infra-rouge) et un rendement quantique de 18-20 %, résultats encore jamais atteints lors de cette thèse.Le dernier chapitre est consacré à une étude exploratoire sur les NPs de Zn3P2. Le phosphure de zinc est un matériau prometteur du fait de l’abondance de ses constituants non toxiques et des longueurs d’onde potentiellement accessibles. Différents paramètres de synthèse sont étudiés et les propriétés structurales et optiques sont caractérisées. Des résultats préliminaires sur l’enrobage montrent des difficultés liées à la stabilité des NPs de Zn3P2. L’utilisation de l’oxyde de trioctylphosphine (TOPO) semble permettre la passivation de ces NPs à l’air et en travaillant sous H2 une meilleure stabilité est envisageable
Résumé de la thèse en anglais : This PhD investigation focuses on organometallic synthesis of indium phosphide (InP), zinc phosphide (Zn3P2) colloidal semiconductor nanoparticles (NPs) and core/shell structures which were obtained by the growth of a layer of zinc sulfide (ZnS) on the surface. The objectives are to understand and control the synthesis in order to shift the absorption and emission wavelengths to the near infra-red range, interesting for biomedical imaging.The first chapter presents the state of the art on the InP and InP/ZnS nanocrystals (NCx). A brief recall on the physical and chemical properties of semiconductor NCx is presented and various syntheses are described. Particular attention was paid to the size of NCx, the shift of the fluorescence emission to higher wavelengths and the optimization of quantum yields. The potential of these objects for white light emitting diodes (LED) or biomedical imaging shows the value added of using InP/ZnS NCx rather than other materials based on toxic elements such as cadmium, lead elements…The second chapter focuses on a synthesis from indium carboxylates known in the literature. The goal is to characterize the structure of NPs to understand the procedure of the synthesis and the coating. Measurements by Nuclear Magnetic Resonance (NMR) in solid state and Photoelectronic X-ray spectroscopy (XPS) revealed the oxidation of InP of the NPs. This oxide layer increases during the coating. This originates from a decarboxylating coupling of carboxylic acids at high temperature in the presence of NPs. This oxidation is believed to inhibit the growth of the object, which restricts the attainable range of wavelengths.The third chapter provides a novel synthesis from indium amidinate instead of indium carboxylate. The advantage of this approach is the potential to lower significantly the reaction temperature (150°C instead of 280°C) and to avoid secondary decarboxylation reaction. A coating with ZnS at low temperature (150°C) is also developed. The synthesis of InP NPs also causes an oxidation of the surface. A coupling takes place again between the ligands, palmitic acid and hexadecylamine providing new oxidizing conditions. The study of different ratios of ligands shows that when the reaction medium is modified, the InP NPs do not exhibit a conclusive luminescence response. Synthesis and coating are carried out under an atmosphere of hydrogen (H2) in Fisher-Porter reactor in order to counter these oxidizing conditions. NPs with diameters of the order of 3,4 nm (a necessary condition to approach the infra-red emission) and a quantum yield of 18-20% are thus obtained. These had never been observed before during this thesis.The last chapter is devoted to an exploratory study on Zn3P2 NPs. Zinc phosphide is a promising material because of non-toxic and abundant constituents, and potential access to near infra-red wavelengths. Different synthesis parameters are studied and the structural and optical properties are characterized. Preliminary results on the coating show instabilities of the Zn3P2 NPs. The use of trioctylphoshine oxide (TOPO) appears to allow the passivation of the NPs in the air and a better stability is possible under an atmosphere of H2
APA, Harvard, Vancouver, ISO, and other styles
6

Boonkoom, Thitikorn. "InP quantum dots for hybrid photovoltaic devices." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17778.

Full text
Abstract:
Significant research efforts have been directed towards the development of solar cells comprising blends of conjugated polymers and II-VI inorganic semiconductors (e.g. CdSe and CdS). Despite recent advances in the power conversion efficiency of such devices, the toxicity of Cd-based materials remains a concern with regard to widespread implementation. This thesis focuses on alternative (lower toxicity) InP nanocrystals for use as electron acceptors and light-harvesting materials in solution-processed polymer solar cells. In this thesis a combination of novel materials design/processing, transient absorption spectroscopy (TAS) and time-resolved photoluminescence spectroscopy (TRPL) is used to study the charge generation in InP:polymer photoactive layers. These studies are complimented by morphological characterisation of the photoactive layers as well as device studies. One aim of this thesis is the elucidation of quantitative structure function relationships that can be used to guide the design of new hybrid nanocomposite materials for photovoltaic devices. As such the data presented in this thesis helps to advance the present day understanding how hybrid solar cells work. The first chapter focuses on the synthesis of InP quantum dots (QDs) using an organometallic reaction. The aim of the work in this chapter was to prepare InP QDs with a size that provides an appropriate energy offset relative to the selected the electron donating polymer, poly(3-hexylthiophene) (P3HT). Detailed studies on the growth of InP QDs and how the reaction conditions affect the particle size are provided. The process of ligand exchange from hexadecylamine (HDA) to pyridine prior to blending with P3HT is also described. The second chapter focuses on charge transfer between the P3HT and the InP QDs which is a key process for achieving efficient photovoltaic device operation. Steady state and time-resolved photoluminescence and absorption spectroscopy were used to better understand the parameters influencing charge separation. After the blending and annealing conditions had been optimised to maximise the yield of photogenerated charges, the P3HT:InP blend was found to provide approximately twice yield of standard P3HT:PCBM blends. In addition, the decay lifetime of the polaron in P3HT:InP was found to be longer than that of P3HT:PCBM, suggesting the P3HT:InP blend is a promising active layer material for hybrid solar cells. The third chapter focuses on the fabrication and characterisation of hybrid solar cells. The fabrication conditions were optimised before carrying out detailed studies on the effect of thermal annealing. Although the device performance improved significantly with increasing annealing temperature, the net photocurrent was found to be low, compared to standard P3HT:PCBM devices, suggesting poor charge transport within the device. Nevertheless, if the charge transport can be improved, P3HT:InP still has potential to provide efficient hybrid solar cells. The last result chapter focuses on preliminary studies of quantum dot based light emitting diodes (QDLEDs) using InP QDs as light emitters. ZnO was used as electron transporting and hole blocking layer and poly(9,9-dioctylfluorene) (PFO) as a host medium and a hole transporting layer. The device structure and the PFO:InP blend composition were investigated to obtain QDLEDs with electroluminescence from the InP quantum dots. The findings suggest that ZnO plays a key role in suppressing the electroluminescence of PFO, most likely due to the hole blocking effect of the ZnO layer. Despite the low efficiencies of the InP-based QDLEDs, the results suggest that InP QDs are potential candidates for emitters in QDLEDs.
APA, Harvard, Vancouver, ISO, and other styles
7

Winzell, Ann. "Surface Modification of CdSe(ZnS) quantum dots for biomedical applications." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56022.

Full text
Abstract:

Quantum dots are inorganic nanocrystals of semiconductor metals that have unique light emitting properties. Due to their tunable and narrow emission profile, broad absorption spectra, resistance to photobleaching and high level of brightness they have emerged as inorganic fluorophores and numerous applicabilities for in vitro, in situ as well as in vivo studies are present. The chemical nature of the quantum dot surface needs to be altered in order to make the inorganic nanoparticles applicable to biological systems. Water soluble and biocompatible particles that limit unspecific binding to proteins can be obtained through functionalization of the surface coating with appropriate molecules.

 

In this pilot study, two surface modification strategies were performed upon two commercially available quantum dots in order to attach the zwitterionic molecules L-cysteine and thiolated sulfobetaine methacrylate, both shown to create non-fouling and biocompatible surfaces.

 

A biphasic exchange method was successfully used to perform ligand exchange of Qdot® ITK™ Organic Quantum Dots (QD-Organic) in order to exchange the structurally unknown, native lipophilic coating to one consisting of the amino acid L-cysteine (QD-Cysteine). The quantum dots transferred from the organic to the aqueous phase after the natively hydrophobic coating was changed to the hydrophilic L-cysteine. A characteristic mass fragment of protonated trioctylphosphine oxide (TOPO) was found for QD-Organic, using TOF-SIMS, suggesting TOPO is a part of the native coating. Further, the mentioned mass fragment was no longer present after the exchange. The C (1s) XPS-spectrum showed a new peak for carboxylic carbon, characteristic for L-cysteine, and expected changes in elemental composition were consistent with measured changes for all relevant elements. Large amounts of buffer remained after purification, suggesting the purification protocol needs further evaluation. Traces of the native coating were found in the C (1s) XPS-spectrum for QD-Cysteine, indicating not all ligands were exchange.   

 

Additionally, a strategy for surface functionalization of Qdot® 655 ITK™ amino (PEG) quantum dots (QD-PEG-NH2) with L-cysteine and thiolated sulfobetaine methacrylate was outlined and performed, using Michael addition and the heterobifunctional linker 3-Maleimidobenzoic acid N-hydroxysuccinimide ester. Unfortunately, no indications of successful attachment of the linker to the quantum dot have been found, neither by TOF-SIMS nor XPS, and thus functionalization with L-cysteine and tSBMA was not achieved. In theory, the proposed coupling chemistry used during the pilot study is promising, but further experiments are needed to obtain a successful and optimized protocol for the functionalization.

APA, Harvard, Vancouver, ISO, and other styles
8

Cheriton, Ross. "Electrostatic Control of Single InAs Quantum Dots Using InP Nanotemplates." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22758.

Full text
Abstract:
This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged exciton states from over thirty single quantum dots are calculated from the spectra. The g-factor shows a generally linear dependence on dot emission energy, in agreement with previous work on this subject. A positive linear correlation between diamagnetic coefficient and g-factor is observed.
APA, Harvard, Vancouver, ISO, and other styles
9

Kors, Andrei [Verfasser]. "InP - based quantum dots for telecom wavelengths ranges / Andrei Kors." Kassel : Universitätsbibliothek Kassel, 2020. http://d-nb.info/1222555239/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angell, Joshua James. "SYNTHESIS AND CHARACTERIZATION OF CdSe-ZnS CORE-SHELL QUANTUM DOTS FOR INCREASED QUANTUM YIELD." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/594.

Full text
Abstract:
Quantum dots are semiconductor nanocrystals that have tunable emission through changes in their size. Producing bright, efficient quantum dots with stable fluorescence is important for using them in applications in lighting, photovoltaics, and biological imaging. This study aimed to optimize the process for coating CdSe quantum dots (which are colloidally suspended in octadecene) with a ZnS shell through the pyrolysis of organometallic precursors to increase their fluorescence and stability. This process was optimized by determining the ZnS shell thickness between 0.53 and 5.47 monolayers and the Zn:S ratio in the precursor solution between 0.23:1 and 1.6:1 that maximized the relative photoluminescence quantum yield (PLQY) while maintaining a small size dispersion and minimizing the shift in the center wavelength (CWL) of the fluorescence curve. The process that was developed introduced a greater amount of control in the coating procedure than previously available at Cal Poly. Quantum yield was observed to increase with increasing shell thickness until 3 monolayers, after which quantum yield decreased and the likelihood of flocculation of the colloid increased. The quantum yield also increased with increasing Zn:S ratio, possibly indicating that zinc atoms may substitute for missing cadmium atoms at the CdSe surface. The full-width at half-maximum (FWHM) of the fluorescence spectrum did not change more than ±5 nm due to the coating process, indicating that a small size dispersion was maintained. The center wavelength (CWL) of the fluorescence spectrum red shifted less than 35 nm on average, with CWL shifts tending to decrease with increasing Zn:S ratio and larger CdSe particle size. The highest quantum yield was achieved by using a Zn:S ratio of 1.37:1 in the precursor solution and a ZnS shell thickness of approximately 3 monolayers, which had a red shift of less than 30 nm and a change in FWHM of ±3 nm. Photostability increased with ZnS coating as well. Intense UV irradiation over 12 hours caused dissolution of CdSe samples, while ZnS coated samples flocculated but remained fluorescent. Atomic absorption spectroscopy was investigated as a method for determining the thickness of the ZnS shell, and it was concluded that improved sample preparation techniques, such as further purification and complete removal of unreacted precursors, could make this testing method viable for obtaining quantitative results in conjunction with other methods. However, the ZnS coating process is subject to variations due to factors that were not controlled, such as slight variations in temperature, injection speed, and rate and degree of precursor decomposition, resulting in standard deviations in quantum yield of up to half of the mean and flocculation of some samples, indicating a need for as much process control as possible.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "InP/ZnS quantum dots"

1

Chithrani, Basnagge Devika. Spectroscopy of site selected InAs/InP quantum dots. 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "InP/ZnS quantum dots"

1

Savchenko, Sergey, Alexander Vokhmintsev, and Ilya Weinstein. "Exciton–Phonon Interactions and Temperature Behavior of Optical Spectra in Core/Shell InP/ZnS Quantum Dots." In Core/Shell Quantum Dots, 165–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46596-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, C. L., L. W. Lu, W. K. Ge, Z. H. Ma, I. K. Sou, and J. N. Wang. "Investigation of the properties of molecular beam epitaxy grown self-organized ZnSe quantum dots embedded in ZnS." In Springer Proceedings in Physics, 405–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rodhuan, Mirza Basyir, Rosmila Abdul-Kahar, and Amira Saryati Ameruddin. "Simulation on Optical Absorption for Amorphous Silicon Thin Film Solar Cell with CdSe/ZnS Quantum Dots." In Springer Proceedings in Physics, 81–93. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8903-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meng, Hong-Min, Juan Chen, Lingbo Qu, and Zhaohui Li. "Detection of Tetanus Antibody Applying a Cu-Zn-In-S/ZnS Quantum Dot-Based Lateral Flow Immunoassay." In Quantum Dots, 285–92. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hung-Chia, and Ru-Shi Liu. "Synthesis of InP Quantum Dots and Their Application." In Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications, 473–83. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1590-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Höfling, C., C. Schneider, and A. Forchel. "6.5.5 Epitaxial quantum dots grown on InP substrate." In Growth and Structuring, 139–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kostić, Radmila, Dušanka Stojanović, Jelena Trajić, and P. Balaž. "Off-Resonant Raman Spectroscopy of ZnS Quantum Dots." In Proceedings of the IV Advanced Ceramics and Applications Conference, 203–15. Paris: Atlantis Press, 2017. http://dx.doi.org/10.2991/978-94-6239-213-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stroyuk, Oleksandr, Oleksandra Raievska, and Dietrich R. T. Zahn. "Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots." In Core/Shell Quantum Dots, 67–122. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46596-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kurtenbach, A., K. Eberl, K. Brunner, and G. Abstreiter. "Self-Assembling InP/In0.48Ga0.52P Quantum Dots Grown by MBE." In Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 59–67. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Kwangmin, Pilkyung Moon, Eungjin Ahn, Sukwon Hong, Euijoon Yoon, Jeong Won Yoon, Hyeonsik Cheong, and Jean-Pierre Leburton. "Effects of Thin GaAs Insertion Layer on InAs/(InGaAs)/InP(001) Quantum Dots Grown by Metalorganic Chemical Vapor Deposition." In Physical Models for Quantum Dots, 701–8. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "InP/ZnS quantum dots"

1

Li, Cheng-Sun, Wen-Jui Chiang, Nan-Ming Lin, Jia-Huei Lyu, Yi-Zhen Liu, Bo-Yi Wu, and Shih-Chang Shei. "White LEDs with InP-ZnS quantum dots." In 2016 5th International Symposium on Next-Generation Electronics (ISNE). IEEE, 2016. http://dx.doi.org/10.1109/isne.2016.7543304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Doudou, Yuxian Yan, Fan Cao, Gongli Lin, Xuyong Yang, Wanwan Li, Luqiao Yin, and Jianhua Zhang. "High color rendering index white LEDs fabricated using InP/ZnS green-emitting quantum dots and InP/ZnSe/ZnS red-emitting quantum dots." In 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2019. http://dx.doi.org/10.1109/sslchinaifws49075.2019.9019770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greco, Tonino, Christian Ippen, and Armin Wedel. "InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency." In SPIE Photonics Europe. SPIE, 2012. http://dx.doi.org/10.1117/12.922885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, Gang, Nicholas Harris, Nabil Dawahre, David S. Wilbert, William Baughman, Elmer Rivera, David Nikles, Tony L. Bryant, Seongsin Margaret Kim, and Patrick Kung. "InP/ZnS core-shell quantum dots sensitized ZnO nanowires for photovoltaic devices." In 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Massadeh, Salam, Shu Xu, and Thomas Nann. "Synthesis and exploitation of InP/ZnS quantum dots for bioimaging." In SPIE BiOS: Biomedical Optics, edited by Marek Osinski, Thomas M. Jovin, and Kenji Yamamoto. SPIE, 2009. http://dx.doi.org/10.1117/12.816892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Savchenko, S. S., A. S. Vokhmintsev, and I. A. Weinstein. "Photoluminescence thermal quenching of yellow-emitting InP/ZnS quantum dots." In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2018): Proceedings of the V International Young Researchers’ Conference. Author(s), 2018. http://dx.doi.org/10.1063/1.5055158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Möbius, Martin, Xiangyu Ma, Jörg Martin, Matthew F. Doty, Thomas Otto, and Thomas Gessner. "Photoluminescence quenching of InP/ZnS quantum dots by charge injection." In SPIE OPTO, edited by Manijeh Razeghi, Eric Tournié, and Gail J. Brown. SPIE, 2015. http://dx.doi.org/10.1117/12.2185047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nadeau, Jay, Hicham Chibli, and Lina Carlini. "Photosensitization of InP/ZnS quantum dots for anti-cancer and anti-microbial applications." In SPIE BiOS, edited by Wolfgang J. Parak, Kenji Yamamoto, and Marek Osinski. SPIE, 2012. http://dx.doi.org/10.1117/12.913648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Litvinov, I. K., T. N. Belyaeva, E. A. Leontieva, A. O. Orlova, and E. S. Kornilova. "Influence of microenvironment on the optical properties of quantum dots based on InP/ZnS and CdSe/ZnS." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

CHENG, CHENG, QINGHAO ZHANG, and HAIZHEN YAN. "SPECTRAL STABILITY OF CDSE/ZNS QUANTUM DOTS." In Proceedings of the 6th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2007). WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812832344_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "InP/ZnS quantum dots"

1

Scholtes, Kevin T., Christopher B. Jacobs, Eric S. Muckley, Patrick M. Caveney, and Ilia N. Ivanov. Scalable processing of ZnS nanoparticles for high photoluminescence efficiency quantum dots. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1482456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography