Dissertations / Theses on the topic 'Inorganic light-emitting diodes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Inorganic light-emitting diodes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
White, Wade M. "Synthesis and photoluminescent properties of linear and starburst compounds based on benzimidazole, 2-(2'-pyridyl)benzimidazole and 2,2'-dipyridylamine." Thesis, Kingston, Ont. : [s.n.], 2007. http://hdl.handle.net/1974/495.
Full textKrautz, Danny [Verfasser]. "Hybrid organic-inorganic structures for solution processed organic light emitting diodes (OLEDs) / Danny Krautz." Wuppertal : Universitätsbibliothek Wuppertal, 2014. http://d-nb.info/1053771452/34.
Full textSellappan, Raja. "Light emitting diodes based on n-type ZnO nanorods and p-type organic semiconductors." Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11197.
Full textThe aim of this thesis work was to fabricate a hybrid LED using organic-inorganic ZnO materials. The goal of the project was to get an efficient white light emission from zinc oxide (ZnO) nanorods active layer. Since most of the organic materials are good for hole mobility and most of the inorganic materials are good for electron mobility, it is possible to fabricate a high performance heterostructure electroluminescence device from organic-inorganic materials. This thesis work was an attempt towards fabricating such a high electroluminescence LED from hybrid materials in which polymer acts as a p-type material and ZnO acts as a n-type material. The growth mechanism of ZnO nanorods using low-temperature aqueous solution method has been studied and nanorods (NRs) growth was examined with scanning electron microscope (SEM). Optimum hole injection polymers have been studied. Finally, the fabricated device was characterized using parameter analyzer. The fabricated device worked as a diode i.e. it rectified current as expected and the desirable light emission has almost been achieved.
Ates, Elif Selen. "Hydrothermally Grown Zinc Oxide Nanowires And Their Utilization In Light Emitting Diodes And Photodetectors." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614374/index.pdf.
Full textFernandes, Ricardo Liz de Castilho. "Green emitting diodes for solid state lighting." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17763.
Full textNos anos recentes a iluminação de estado sólido impulsionou alternativas de iluminação efí cientes e ecológicas. Os desafi os correntes envolvem o desenvolvimento de materiais emissores de luz que convertem radiação de uma determinada energia para radiação de energia mais baixa, na gama do visível. Esta tese estuda um complexo novo, Tb(NaI)3(H2O)2 onde NaI é o ácido nalidíxico, que emite na região do verde e é estável sob iluminação no ultravioleta. Este foi incorporado em materiais híbridos orgânico-inorgânico tripodais com dois pesos moleculares médios (3000 e 5000 g.mol-1, denominados t- U(3000) e t-U(5000) respetivamente) que permitem o processamento de monólitos e fi lmes com forma e espessura controlada. Estes híbridos também aumentam o rendimento quântico absoluto de emissão de 0.11 medidos para o Tb(NaI)3(H2O)2 isolado para ~0.82 após incorporação no t-U(5000). Foi também demonstrado o potencial de usar estes materiais híbridos como emissores na região verde para uso em iluminação de estado sólido através do revestimento do díodo emissor na região ultravioleta (365 nm). Este LED apresenta uma efi cácia de 1.3 lm.W1.
In the last few years, solid state light-emitting diodes (LEDs) have been driving the lighting industry towards energy e cient and environmental friendly lighting. Current challenges encompass e cient and low-cost downconverting photoluminescent phosphors with emission in the visible region. This thesis will cover a novel UV-photostable green emitting complex, Tb(NaI)3(H2O)2 where NaI is nalidixic acid, was incorporated into organic-inorganic tripodal hybrid materials with two average molecular weights (3000 and 5000 g.mol{1, termed as t- U(5000) and t-U(3000), respectively) which enable the easy shaping of monoliths and lms with controlled thickness. Moreover, the hybrid hosts boost the Tb3+ green absolute emission quantum yield from 0.11 measured for the isolated Tb(NaI)3(H2O)2 complex to 0.82 after incorporation into t-U(5000). The potential use of the hybrid materials as UV-down converting green-emitting phosphors for solid state lighting was demonstrated by means of coating a near-UV LED (365 nm). This LED shows an e cacy of 1.3 lm.W1.
Chelawat, Hitesh. "Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59248.
Full textIncludes bibliographical references.
Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones typically crystallize readily and overcoming the resultant heat of crystallization makes them difficult to dissolve. Poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were obtained through oxidative chemical vapor deposition (oCVD) by using a new oxidant- bromine. The use of bromine eliminates any post processing rinsing step required with other oxidants like iron chloride and hence makes the process completely dry. Accelerated aging experiments show longer retention of electrical conductivity for the PEDOT films obtained using bromine as the oxidant. Conductivities as high as 380 S/cm were obtained for PEDOT films deposited using bromine as the oxidant at 80 'C, which is significantly higher than that for PEDOT films deposited using iron chloride as the oxidant at the same temperature. Cross-sectional SEM of the PEDOT films deposited using bromine on silicon trench wafers demonstrates high conformal deposition of the films. All the results show the possibility of depositing highly conducting, conformal PEDOT films on any substrate including silicon, glass, paper, plastic. One of the many applications of conducting polymer is as hole-transport layer in light emitting diode. To be competitive in the LED market, improvements in hybrid-LED quantum efficiencies as well as demonstrations of long-lived HLED structures are necessary. In this work, we consider improvement in the stability of the HLED. The device fabricated can be configured as ITO/ Poly (EDOT-co-TAA)/CdSe (ZnS)/ Au. All the materials used in the device synthesis are stable in ambient conditions and all the synthesis steps on ITO substrate are done either in air or in very moderate pressure conditions. This significantly reduces the cost of the device fabrication by obviating the need of packaging layers and ultrahigh vacuum tools. The operating voltage as low as 4.3 V have been obtained for red-LEDs. We believe that with optimization of various layers in the device, further improvements can be made. For green LEDs we obtained the characteristic IV curve of a diode, but we still need to work on getting a functioning green LED.
by Hitesh Chelawat.
S.M.
Sit, Jon Wai Yu. "Growth and characterization of organic/inorganic thin films for photonic device applications." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/179.
Full textSahin, Tiras Kevser. "Magnetic field effect and other spectroscopies of organic semiconductor and hybrid organic-inorganic perovskite devices." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6495.
Full textLeysour, de Rohello Erwan. "Synthèse et étude des propriétés luminescentes de composés carbodiimides en vue d’application comme luminophores pour diodes blanches." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S062.
Full textThe role that nitrogen plays on the luminescent properties of luminescent centers (nephelauxetic effect, crystal field) has already been widely demonstrated in (oxy)nitride materials. This thesis work focuses on the search of new nitrogen-containing phosphors, i.e. inorganic carbodiimides, for WLED applications. Thus, a versatile synthesis method based on carbon nitride has been developed for the synthesis of various carbodiimide compounds doped with rare earth or transition metal ions. The structural and optical properties of SrCN2 :Eu2+ (λem = 620 nm ; red), CaCN2 :Mn2+ (λem = 680 nm ; red), CaCN2 :Ce3+ (λem = 462 nm ; blue) and ZnCN2 :Mn2+ (λem = 585 nm ; orange) compounds are discussed. The modulation of the emission from blue to red is made achiveable by Ce3+/Mn2+ co-doping in CaCN2. The intrinsic blue luminescence of ZnCN2 is also reported
Liu, Ying. "Piezo-phototronics: from experiments to theory." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54013.
Full textJama, Mariel Grace. "Semiconductor composites for solid-state lighting." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0207/document.
Full textLuminescent organic phases that are embedded in a conductive inorganicmatrix is proposed in this study for the active layer of a hybrid light-emitting diode. Inthis composite, the organic dye acts as the radiative recombination site for chargecarriers that are injected into the inorganic ambipolar transporting matrix. As one ofthe candidate material combinations, bilayer and composite thin films of ZnSe and ared iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHVthermal evaporation technique. The energy band alignments measured byphotoelectron spectroscopy (PES) for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA)composite reveal that the HOMO and LUMO of the organic dye are positioned in theZnSe bandgap. This lineup provides the required energetic driving forces for electronand hole transfers from ZnSe to Ir(BPA). By interpreting PES data, the chemicalcomposition of the interfaces were also determined. The ZnSe/Ir(BPA) interface isreactive even though it is of high material purity. Meanwhile, the Ir(BPA)/ZnSeinterface does not exhibit material purity. This is accounted to the nature of ZnSeevaporation as individual Zn and Se2 fluxes, coupled with chemical interactions withthe Ir(BPA) substrate. The interface is, thereby, composed of an abundance of Se0phases, sparse ZnSe phases, reduced Se and oxidized dye molecules, and Znatoms that are intercalated into the Ir(BPA) substrate. PES of the ZnSe+Ir(BPA)composites reveals similar trends to the Ir(BPA)/ZnSe interface. A faded areal andintermittent red light emissions were observed from devices that incorporatedalternating layer sequences of ZnSe and Ir(BPA) for the active layer
Lubuna, Beegum Shafeek. "Organic-Inorganic Hetero Junction White Light Emitting Diode : N-type ZnO and P-type conjugated polymer." Thesis, Linköping University, Department of Science and Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11195.
Full textThe purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material is n- type ZnO and organic material is p-type conjugated polymer. The first task was to synthesise vertically aligned ZnO nano-rods on glass as well as on plastic substrates using aqueous chemical growth method at a low temperature. The second task was to find out the proper p- type organic material that gives cheap and high efficient WLED operation. The proposed polymer shouldn’t create a high barrier potential across the interface and also it should block electrons entering into the polymer. To optimize the efficiency of WLED; charge injection, charge transport and charge recombination must be considered. The hetero junction organic-inorganic structures have to be engineered very carefully in order to obtain the desired light emission. The layered structure is composed of p-polymer/n-ZnO and the recombination has been desired to occur at the ZnO layer in order to obtain white light emission. Electrical characterization of the devices was carried out to test the rectifying properties of the hetero junction diodes.
iv
Provost, Marion. "Intégration de couches hybrides de base sol-gel dans les architectures de passivation de dispositifs OLED." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT056.
Full textDue of the ongoing growth of smartphones and TVs displays markets, the application of OLED (Organic Light Emitting Diode) technology for displays has become a major center of interest. The materials and substrates used in such architectures allow to develop lightweight, compact and even foldable displays, demonstrating an excellent image quality and fast refresh rates. Currently, the technological drawbacks restricting the exploitation on industrial scale mainly concern the lifespan of the devices. First, materials used in OLED architecture are highly sensitive to moisture and oxygen ingress and require a high barrier encapsulation. In addition, a specific protection needs to be included to secure the device from mechanical failures. As so various options from glass lids to flexible barriers are likely to be considered depending on the intended use. This work deals with the production of OLED microdisplays deposited on silicon substrates, and aims to develop an alternative packaging solution, based on organic-inorganic nanocomposite layers, both on top and embedded into the multi-barrier passivation architecture previously developed at the CEA-LETI. Synergistic properties can be obtained from composite materials, enhancing the advantages of both the organic (flexibility, processability) and inorganic phase (barrier properties, mechanical and chemical resistance). As a high control on the morphology in required, the sol-gel process was therefore selected for its versatility. Several composite materials were designed. One selected formulation, based on silica nanoparticles dispersed in a polymer matrix, proved to be fully compatible with the monolithic encapsulation of OLED circuits, including, among other properties, the recovery of the electrical bonding. Passivation architectures using the composite as interface layer showed improved barrier properties as well as an enhanced durability of devices stored in warm and damp environment. Obviously, a thin hard-coat layer does not equal a glass lid in terms of mechanical resistance, yet our formulation provided a sufficient protection during the overall process and handling of the displays. The main advantages of this alternative packaging rely on the reduced thickness, increasing the contrast by minimizing the loss of luminous efficacy through guided mode and offering the prospect of flexible substrate manufacturing
DUPONT-NIVET, ERIC. "Epitaxie en phase vapeur aux organometalliques de gainp et algainp sur gaas : application a la realisation de diodes et de lasers a heterojonctions." Paris 7, 1987. http://www.theses.fr/1987PA077108.
Full textKao, Wei-Cheng, and 高偉城. "Inorganic lead perovskite nanostructures for light-emitting diodes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/4pnepx.
Full text中原大學
物理研究所
105
Perovskite materials have demonstrate high power conversion ef-ficiency (> 20%) in the field of solar cells. In addition, recently, per-ovskite materials were also used for light-emitting diodes, which are important solid-state lighting device. In this work, thin film and quantum dots based on CsPbX3 were prepared and the optoelectronic characteristics of quantum dots were also investigated by using X-ray diffraction, scanning electron microscope, tunneling electron micro-scope, photoluminescence spectra and absorption spectra. We further use CsPbX3 thin film and quantum dots to realize light-emitting diodes.
Tang, An-Cih, and 湯安慈. "All-Inorganic Perovskite Quantum Dots for Light-Emitting Diodes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/92c5k8.
Full text國立臺灣大學
化學研究所
105
White light-emitting diodes (LEDs) is widely used as backlighting components in the modern liquid-crystal display (LCD). For high-quality backlight, color saturation and color gamut are the key indicators, which affect the color performance display devices. Perovskite CsPbBr3 quantum dots (QDs) are regarded as the most promising narrow-band green-emitting material for wide-color-gamut backlight displays because of their high photoluminescence quantum yield (PLQY) and the narrow-band emission with a full width at half maximum (FWHM) of ∼20 nm. Despite their growing popularity, CsPbBr3 QDs have several shortcomings such as the existence of surface trap states, poor thermal and aqueous stability, and the solution QDs are unsuitable for direct use in on-chip white LEDs. Here, a three-step treatment of perovskite CsPbBr3 QDs toward high brightness and stable narrow-band green emission was investigated. After the treatment, a robust and stable narrow-band perovskite mesoporous-CsPbBr3/SDDA@ PMMA powder was obtained. The powder exhibited several advantages, including high absolute PLQY of 63%, improved thermal stability, and water resistance. A white LED used in backlight display was successfully fabricated with color coordinates of (0.271, 0.232) that passed through RGB color filters with an NTSC value of 102%. Moreover, CsPbBr3 perovskite QDs are potential emitters for QLED electroluminescent displays. However, balancing their performance and their environmentally friendly property is challenging. To achieve such balance, we demonstrated an easy hot-injection method to synthesize Cs(Pb1-xSnx)Br3 QDs by partially replacing the toxic Pb2+ with the highly stable Sn4+. Meanwhile, the absolute PLQY of Cs(Pb0.67Sn0.33)Br3 QDs increased from 45% to 83% compared with CsPbBr3. Based on a femtosecond transient absorption, time-resolved PL, and single-dot spectroscopies, we conclude that the PLQY enhancement is due to the reduction of trion formation in perovskite QDs with Sn4+ substitution. This trion-formation suppression by Sn4+ substitution consequently increased the performance of QLED devices based on these highly luminescent Cs(Pb0.67Sn0.33)Br3 QDs, exhibiting a central emission wavelength of 517 nm, a current efficiency of 11.63 cd/A, and an external quantum efficiency of 4.13%, which to date are the highest values among the reported Sn-based perovskite QLED devices.
Tsai, Hsin-Yu, and 蔡欣妤. "All-Inorganic Perovskite Quantum Dots for Organic Light-Emitting Diodes." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/wj8eqf.
Full text國立臺灣大學
化學研究所
106
White light-emitting diodes (LEDs) is widely used as backlighting components in the modern liquid-crystal display (LCD). For high-quality backlight, color saturation and color gamut are the key indicators, which affect the color performance display devices. Perovskite CsPbBr3 quantum dots (QDs) are regarded as the most promising narrow-band green-emitting material for wide-color-gamut backlight displays because of their high photoluminescence quantum yield (PLQY) and the narrow-band emission with a full width at half maximum (FWHM) of ∼20 nm. Despite their growing popularity, CsPbBr3 QDs have several shortcomings such as the existence of surface trap states, poor thermal and aqueous stability, and the solution QDs are unsuitable for direct use in on-chip white LEDs. Here, the surface treatment of perovskite CsPbBr3 QDs with thiocyanate salts (SCN-) toward high brightness and stable narrow-band green emission was investigated. After the treatment, a high quantum yield and stable narrow-band perovskite CsPbX3-SCN was obtained. The product exhibited several advantages, including high absolute PLQY of 94%, enhaced photoluminescence intensity, and air stability. Moreover, CsPbBr3-SCN perovskite QDs are potential emitters for QLED electroluminescent displays. However, balancing their performance and their environmentally friendly property is challenging. To achieve such balance, we demonstrated an easy hot-injection method to synthesize Cs(Pb1-xSnx)Br3 QDs by partially replacing the toxic Pb2+ with the highly stable Sn4+. Meanwhile, the absolute PLQY of Cs(Pb0.67Sn0.33)Br3 QDs increased from 45% to 83% compared with CsPbBr3. Based on a femtosecond transient absorption, time-resolved PL, and single-dot spectroscopies, we conclude that the PLQY enhancement is due to the reduction of trion formation in perovskite QDs with Sn4+ substitution. Moreover, the CsPbBr3-SCN solution that surface treatment with thiocyanate salt increased the performance of QLED devices based on these highly luminescent cesium lead halide perovsike QDs, exhibiting a central emission wavelength of 516 nm, a current efficiency of 4.2 cd/A, and an external quantum efficiency of 1.4% which is the higher values among the CsPbBr3 perovskite QLED devices.
LIAO, YI-CHUN, and 廖苡君. "Stretchable Transparent Electrode Employed In Inorganic Perovskite Light-Emitting Diodes." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/bjm49t.
Full text國立臺北科技大學
分子科學與工程系有機高分子碩士班
107
All-Inorganic cesium lead bromide perovskite combine with stretchable transparent electrodes for light emitting diodes using spray-coated Silver nanowires (AgNWs) onto the stretchable Polyurethane (PU) to develop the highly conductive and transparent electrodes. The fabricated transparent electrodes were blessed with very low sheet resistance of about 0~10 ohm, high transparent (89%), and high mechanical endurance properties (100% strain sustainability). Even under 100% strain, the fabricated transparent stretchable electrode remains stable and conductive. Furthermore, it can be used on a variety of transparent electronic applications such as light emitting diodes (LEDs), solar cells, field effect transistors, pain alleviating devices. This thesis describes the blending of Poly(ethylene oxide) (PEO) and Polyvinylpyrrolidone (PVP) polymer into CsPbBr3 emitting layer with different weight ratios and their influence on surface morphology and optical properties. Addition of Poly (ethylene oxide) (PEO) and Polyvinylpyrrolidone (PVP) polymer into the CsPbBr3 (1:0.125:0.0225) films induced the prominent luminance and current efficiency and External Quantum Efficiency (EQE) enhancement higher than that of recently trending CsPbBr3-PEO based device. Incorporated PVP polymer can potentially alter the work function of Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), thereby promoting the hole injection by enhancing the energy level alignments. Perovskite emissive layer with optimized PEO and PVP (1:0.125:0.0225) engenders the luminance (3600 cd m-2), current efficiency (3.18 cd A-1), and EQE (0.824 %) at 6.5 V. On using the as-fabricated stretchable transparent electrode, luminance of 380 cd m-2 was achieved. Still there is a big room to explore the new generation stretchable optoelectronics in various fields to make innovations in energy sectors.
HSU, YIN-CHIA, and 許殷嘉. "Research on Organic/Inorganic Multilayer Encapsulation of Organic Light-Emitting Diodes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/dk2sm7.
Full text國立雲林科技大學
電子工程系
105
In this paper, the organic light-emitting diode structure is PET / ITO / NPB / Alq3 / LiF / Al, where NPB is the hole transport layer and Alq3 is the fluorescent green host. Since the research topic is encapsulation layer, the structure of the devices are simple. The encapsulation materials are inorganic SiO and organic polyethylene terephthalate (PET). The thermal evaporators in the lab are not linked to a glove boxes or sputtering machines. This research tried to carry out the encapsulation of SiO and polyethylene terephthalate (PET) by thermal vapor deposition to achieve a one chamber process. So that the encapsulation was completed before it comes into contact with the atmosphere. The cost and the producing time could be substantially reduced. The research teams or the industry's flexible film encapsulation usually require a sputtering machine or an atomic layer deposition method (ALD) to deposit. In the experiment of the order of organic and inorganic packaging layer, the one was encapsulated with inorganic first has a longer lifetime. The next experiment will be multi-layer stacking and then stacking with different organic/inorganic film thickness to the composition. The lifetime of the optimized device is about 105 minutes.
Singh, Kasturi. "Exploration of New Lanthanide Based Inorganic Phosphors Intended for Light Emitting Diodes." Thesis, 2019. http://ethesis.nitrkl.ac.in/10053/1/2019_PhD_SKasturi_513CY6002_Exploration.pdf.
Full textLei, I.-Ann, and 雷以安. "Development of Silicone Inorganic Oxide Encapsulating Materials for Light Emitting Diodes (LEDs) Applications." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/26070135764460940296.
Full text國立臺灣大學
化學工程學研究所
102
In our research, development of encapsulating material of light emitting diodes (LEDs) is the mainly purpose. In the first part (Chapter 2), optical hybrid materials with high refractive index were synthesis by in-situ production of titanium dioxide (TiO2) directly in a commercial-grade silicone resin via a sol-gel reaction. The optical transparency of the prepared TiO2/silicone hybrid film was investigated by UV-visible spectroscopy. These hybrid films with various TiO2 contents exhibited different refractive indices; the refractive index could reach 1.66 for the hybrid with 30 wt% of the TiO2. In addition, refractive index, thermal stability of the cured hybrid materials was also investigated. In the second part (Chapter 3), novel ZrO2/silicone hybrid materials (ZrO2/AB) useful for the encapsulation of light-emitting diodes (LEDs) are synthesized by an in situ sol-gel reaction of zirconium propoxide directly in a commercial-grade silicone resin by an in situ sol-gel reaction. By the chelation of the acetic acid, the ZrO2/AB hybrids exhibit high transparency owing to the well-dispersed ZrO2 particles in the silicone material, and their refractive index value also increased with increasing weight percentage of the ZrO2 in the hybrid. These high-refractive-index ZrO2/AB hybrids were then used as encapsulating materials to improve the luminous flux of the LEDs. From the results of the luminous flux measurement, the LED encapsulated with the pure silicone material has luminous flux of 3.97 lm. After encapsulated with the ZrO2/AB hybrid, the luminous flux of the LED was enhanced to a value of 4.35, which revealing that the increase in the refractive index of the encapsulating material by the incorporation of the ZrO2 could effectively improved the luminous flux of the LED, and these novel ZrO2/AB hybrids could also be considered as a suitable candidate as the encapsulating material for the LED. In the third part (Chapter 4), ZrO2 particles are synthesized directly in a commercial-grade silicone resin (AB) with the addition of a vinyl monomer (glycidyl methacrylate, GMA) by an in situ sol-gel reaction to obtain the silicone hybrid material (ZrO2/ABG). In addition to use the acetic acid as chelating agent, the addition of the GMA is able to retard the gelation rate of the metal alkoxide compound as well as the growing rate of ZrO2 during the sol-gel reaction, and also enhance the interfacial strength of the inorganic fillers with the silicone matrix by reacting with the silicone resin through a hydrosilation reaction via its vinyl group. The ZrO2/ABG hybrids thus exhibit excellent transparency and high refractive index. These ZrO2/ABG hybrids were then used as encapsulating materials to help the LEDs reach a higher luminous flux. Furthermore, according to the optical theory and the structure of the high-power LEDs, a simple simulation model was developed to estimate the luminous flux of the LEDs encapsulated with the ZrO2/ABG hybrids and the influence of the refractive index of the passivation layer on the luminous flux of the LEDs. Finally, with the help of this simulation model, an optimum combination of the encapsulating material and the passivation layer with appropriate refractive index values was obtained for achieving the highest luminous flux of LED. In the fourth part (Chapter 5), the purpose is to improve thermal mechanical property of the encapsulating materials in a very large temperature difference condition., thus decreasing the influence of the encapsulation on the reliability performance of the LED. The PBA(polybutylacrylate) oliogomer was firstly synthesized by a telomerization using 2-mercaptoethanol as a chain transfer agent. By the absorption to the inorganic particles and the carbonyl groups, the ZrO2 particles were produced on the oligomer chains of the PBA via an in situ sol-gel reaction to obtain the ZrO2-PBA composite particles, and subsequently mixed with a commercial-grade silicone resin to obtain the ZrO2-PBA/silicone hybrid materials (ZrO2-PBA/AB). The well-dispersed ZrO2-PBA domains lead to a high transparency and high refractive index of the ZrO2-PBA/AB hybrids, resulting in a higher luminous flux than the pristine silicone material. In addition to discuss the transmittance, refractive index, thermal resistance, and the water uptake of the ZrO2-PBA/AB hybrids, thermal stress evaluation of the LEDs encapsulated with the ZrO2-PBA/AB hybrids was also carried out in a thermal shock experiment with a temperature change from -35 °C to 125 °C within 15 mins. The results show that these ZrO2-PBA/AB hybrids have a lower thermal stress and exhibit a better mechnical resistance against the thermal shock, and the reliability performance of the LEDs are also greatly improved as encapsulated with the ZrO2-PBA/AB hybrids.
Hui-CiYan and 顏慧慈. "Investigation of Color Conversion microcavity Organic Light-Emitting Diodes with Inorganic Quantum Dots." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/13609230519604159751.
Full text國立成功大學
微電子工程研究所碩博士班
100
In this study, the color conversion organic light-emitting diodes (OLEDs) were fabricated by using the blue-green OLEDs and red emitting CdSe/ZnS core/shell quantum dots (QDs). The basic structure of the OLEDs was composed by indium tin oxide (ITO)/ N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′ biphenyl)-4,4′-diamine (NPB)/ 2-methyl-9,10- di(2-napthyl)anthracene:p-bis(p-N,N-diphenyl-aminostyryl)benzene (MADN:DSA-Ph)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/ lithium fluoride (LiF)/ aluminum (Al). All of the devices were deposited on glass substrates. NPB, MADN:DSA-Ph, Alq3, LiF, and Al were used as the hole transporting layer, emitting layer, electron transporting layer, electron injection layer and cathode, respectively. To improve the light emitting efficiency of our blue-green emitting devices, the microcavity OLEDs consist of the semi-transparent silver (Ag) thin film as the bottom mirror and Al film as the top mirror was fabricated. Besides, the molybdenum trioxide (MoO3) thin film could be well-deposited on the Ag film by thermal evaporation, result in the enhancement of light emitting efficiency and decreaseing the turn on voltage for microcavity OLEDs. Finally, the QD-PMMA composite film was wiped on the backside of the glass substrates to be used as the color conversion layer. The red emitting QDs were successfully excited by blue-green light emitting devices and the pure white organic light-emitting diodes (WOLEDs) were achieved by introducing the intensity adjustment of the three-band spectra. Both WOLEDs showed high color stability, despite the increase of the operation current. WOLEDs with microcavity structures also exhibited higher light efficiency. Nevertheless, the pure white light wasn’t easily obtained. The luminous efficiency and luminance was 1.93 cd/A and 9904 cd/m2 at 6 mA, respectively, which was enhanced by 42.9 % and 64 % in comparison with that of 1.35 cd/A and 6047cd/m2 for WOLEDs based on basic structures, respectively. The CIE coordinates were (0.306, 0.323), and the correlated color temperature (CCT) was 6910.
Huang, Ming-Yi, and 黃明義. "Ultra-performance polymer and small molecule-base of Inorganic perovskite light emitting diodes." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/a7c6da.
Full text國立臺北科技大學
分子科學與工程系有機高分子碩士班
106
The formation of high-quality dense CsPbBr3 perovskite thin films by employing polyethylene oxide (PEO) dielectric polymer matrix and a organic molecule moieties (TPBi). A simple facile spin coating based method is developed to obtain high quality CsPbBr3 emitting layers with low defects by mixing different weight ratio between PEO:TPBi and CsPbBr3 in the premixed solutions. Presence of PEO matrix facilitated CsPbBr3-PEO films with high surface coverage, especially the film synthesized with CsPbBr3:PEO 1:0.09 weight ratio appeared exceptionally smooth without large crystallites. The results displayed on SEM and AFM images. Pure CsPbBr3 perovskite device exhibits very low luminance and EQE (363 cd m−2 and 0.01%). CsPbBr3:PEO 1:0.09 film based device exhibits a peak luminance and EQE of 3500 cd m−2 and 0.11% at 5.1 V. While the Addition of TPBi, into the CsPbBr3-PEO (1:0.09) films induced the prominent luminance and EQE enhancement (approximately 10-fold increase) higher than that of recently trending CsPbBr3-PEO based device. The TPBi based optimized device harvested exceptionally high luminance of 6800 cd m−2 and EQE of 0.25% at 6 V. This work highlights that the film quality is not only a key factor to promote the luminescence in CsPbBr3, but it also pays some significant contribution to achieve higher performance on Perovskite LEDs and also applied in touch response device.
You-XuanZhao and 趙又暄. "Investigation and Fabrication of All Inorganic Solution-Process Quantum Dot Light-Emitting Diodes." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6xm247.
Full textYing-ChihChen and 陳應誌. "Investigation of Inorganic Quantum Dots in Light-Emitting Diodes and Nonvolatile Organic Memory Elements." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/20046002711054135721.
Full textChien, Ping-Cheng, and 簡炳丞. "Efficiency Enhancement of Organic-Inorganic Perovskite Quantum-Dot Light-emitting Diodes Employing Polyethylene Glycol." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/h5nyay.
Full text國立交通大學
光電工程研究所
106
The advantages of perovskite quantum dots (QDs) include low cost, easy fabrication and high luminescent efficiencies. In this thesis, we used emulsion synthesis technique, which is convenient and versatile for the production of CH3NH3PbBr3 QDs at room temperature. We blended polyethylene glycol (PEG) in the perovskite light-emitting layer, in with PEG were used to reduce the injection of electrons. After blending PEG, the device (QDs:PEG=1:1, 2.5 mg/mL) exhibited the highest brightness and current efficiency. The brightness was increased by 160 times, and the current efficiency was significantly improved from 0.000257 to 1.06 cd/A.
Yao-YuanHsu and 許耀元. "The Function of Ionic Additives in All-Inorganic Cesium Halide Perovskite Light-Emitting Diodes." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/739v9r.
Full textSu, Min-Ju, and 蘇敏如. "White Light Emitting Diodes by Encapsulating InGaN with UV Curable Transparent Polysiloxane/Inorganic Hybrid Materials." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/40568877740156016377.
Full text逢甲大學
化學工程學系
104
Polysiloxane based organic-inorganic hybrid (O-I hybrid) encapsulants with high transparency, high refractive index, and thermal resistance were prepared by the sol-gel and UV curing reaction. The chemical structures of the encapsulants were analyzed by Fourier Transform Infrared Spectroscopy (FT-IR) and Si29 NMR. The effects of chemical structure on the refractive index, surface hardness, thermal resistance, and transmittance of encapsulants were investigated through refractometer, nanoindenter, thermogravimetric analysis, and UV/Vis spectrometer. In the second part, graphene was mixed with UV-curable encapsulant to prepare the composite material .The O-I hybrid oligomer encapsulants with and without graphene were mixed with phosphor, and photoinitiator. The mixture was coated on InGaN devices and UV-cured to fabricate white light emitting diodes (WLEDs). The optical, mechanical, and thermal properties of the encapsulants can be tuned by changing their chemical structures. The O-I hybrid materials are encapsulants with high refractive index (n=1.56), good transparency and thermal resistance. After being baked at 150 oC for 48h, the transmittance of encapsulant at 470 nm wavelength decreased from 87% to 86%. Effects of encapsulants on the performance of white light emitting diodes were measured. After continuous lighting, the changes in surface temperature, luminous efficiency, color rendering index, the Commission Internationale de l’Éclairage coordinates, and correlated color temperature (CCT), were investigated to evaluate the stability of the WLED. The WLED surface temperatures of V7g10r1, V7g10r1.5, and V7G4g10r1.5 were 47.5, 46.4, and 44.4℃, respectively. The luminous efficiency, color rendering index, and CCT of V7g10r1 WLED are 130 lm/W(20mA), 84.1, and 4951 K, respectively. After continuous lighting for 20 days, the luminous efficiency, color rendering index, and CCT of V7g10r1 WLED are 113 lm/W(20mA), 82.9, and 4772 K, respectively. For the V7g10r1.5 samples without graphene, the luminous efficiency, color rendering index, and CCT of V7g10r1 WLED are 97.3 lm/W (20mA), 89.8, and 4653 K, respectively. After continuous lighting for 10 days, the luminous efficiency, color rendering index, and CCT of V7g10r1 WLED are 91.5 lm/W (20mA), 86.8, and 3983 K, respectively. For the encapsulants with graphene, the luminous efficiency, color rendering index, and CCT of V7G4g10r1 WLED are 90.1 lm/W (20mA), 89.5, and 4555 K, respectively. After continuous lighting for 10 days, the luminous efficiency, color rendering index, and CCT of V7G4g10r1 WLED are 89.5 lm/W (20mA), 89.2, and 4566 K, respectively. Incorporation of graphene helps to improve the stability of WLED.
Sharma, Pratibha. "Design and evaluation of inorganic and organic light-emitting diode displays for signage application." Thesis, 2005. http://hdl.handle.net/1828/1860.
Full textZheng, Xiaopeng. "Defect Passivation and Surface Modification for Efficient and Stable Organic-Inorganic Hybrid Perovskite Solar Cells and Light-Emitting Diodes." Diss., 2020. http://hdl.handle.net/10754/662092.
Full textFang, Ming. "Lanthanide-doped inorganic materials and organic-inorganic hybrids for solid-state lighting." Doctoral thesis, 2020. http://hdl.handle.net/10773/30894.
Full textA Agência Internacional de Energia estimou que o sector de iluminação representa cerca de 19% do consumo total de energia mundial. Os díodos emissores de luz (LEDs) têm maior eficiência em comparação com as fontes de iluminação convencionais. Os LEDs brancos comerciais (WLEDs) são baseados na combinação de LEDs azuis baseados em InGaN com o luminóforo Y3Al5O12:Ce3+ (YAG:Ce). Este material, que é um emissor de banda larga na região espectral do amarelo. é depositado de forma simples e a baixo custo sobre o LED azul. No entanto, a emissão deste WLEDs baseia-se na adição de duas cores tendo um índice de reprodução de cor baixo (CRI, geralmente <75), elevada temperatura de cor (CCT, > 6500 K) e variação de cromaticidade, que são claras desvantagens em aplicações de iluminação e retroiluminação. Para além destas desvantagens, estes LEDs ainda apresentam emissão na região do verde relativamente menos eficiente (usualmente designado em linguagem inglesa como ³green gap issue´). Uma estratégia alternativa a estes LEDs baseia-se na utilização de dispositivos emissores nas regiões espectrais do ultravioleta próximo (NUV) e do azul combinados com um material capaz de desviar esta emissão para a região do visível. Assim, novos materiais emissores eficientes quer de luz verde quer de luz branca para as aplicações em LEDs são necessários. Nesta tese, híbridos orgânicos-inorgânicos (ureasils, d-U(600)) dopados com complexos à base de Tb3+ emissores no verde foram combinados com NUV-LED comerciais para fabricar protótipos de LED verdes eficientes. Para melhorar o CRI e CCT dos WLEDs comerciais, novos luminóforos de La2Ce2O7:Eu3+ com emissão no vermelho e excitados com LEDs azuis foram, também, sintetizados e caracterizados. Na parte final da tese discute-se a contribuição de novos materiais emissores de luz branca sintonizável baseados em híbridos d-U(600) dopados com complexos de iões lantanídeos (Ln3+=Tb3+, Eu3+), corantes fluorescentes e pontos de carbono com propriedades óticas (CCT, CRI e fotoestabilidade) melhoradas, face ao estado da arte.
Programa Doutoral em Ciência e Engenharia de Materiais
Gopal, Ashwini. "Multicolor colloidal quantum dot based inorganic light emitting diode on silicon : design, fabrication and biomedical applications." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-12-2209.
Full texttext
Glaz, Micah Sivan. "Morphological effects of organic and inorganic semiconducting materials by scanning probe microscopy." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-12-6702.
Full texttext
Hsiao, Ming-Chuan, and 蕭明荃. "Bidentate chelating ligands as effective passivating materials for improving performance of organic-inorganic hybrid perovskite light-emitting diodes." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ter86f.
Full text國立交通大學
光電工程研究所
106
Organic-inorganic hybrid perovskites are recognized as a promising candidate for photovoltaic applications. More recently, this emerging type of perovskite materials also becomes highly attractive as active materials for other optoelectronic devices, including lasers, light-emitting diodes (LEDs) and photodetectors. The aim of this thesis is to develop high-performance LEDs based on solution processes. We have found the efficiency of photoluminescence (PL) of CH3NH3PbBr3 thin films can be enhanced after post-deposition surface treatments with bidentate chelating ligands, including 1,10-phenanthroline, 4,4'-bipyridine and 4,7-diphenyl-1,10-phenanthroline (Bphen). The PL intensities of were improved significantly after we spin-coated 1,10-phenanthroline and 4,4'-bipyridine on the thin film surfaces. Meanwhile, the treatments also resulted prolonged PL lifetimes, suggesting the passivation of the defects in the perovskite thin films. The unsaturated or under-coordination Pb ions, which are also Lewis acids, has been considered as one of the origins of the electronic traps in perovskite thin films. Therefore, the chelating ligands, which behaved as Lewis bases, could effectively react with the Lewis acids and passivate the defects. The morphologies of the perovskite films were also examined using X-ray diffraction, atomic force microscopy, and scanning electron microscopy; the results indicated that the surface treatments did not significantly affect the films. Moreover, the lower defect densities, which were deduced from the current-voltage curves of the hole-only devices, after the treatments supported the functions of the above ligands. Finally, perovskite LEDs were fabricated and the device passivated with 1,10-phenanthroline exhibited a nearly doubled quantum efficiency. We anticipate that this approach proposed in this thesis could lead to a general method for improving the PL efficiencies and the device performance.
Liu, Ming-Hsuan, and 劉明軒. "Fabrication and Characterization of Inorganic Lead Halide Perovskite Quantum Dot Light Emitting Diodes with Electron Transporting Zinc Oxide Nanoparticles." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8j9pn7.
Full text國立臺東大學
應用科學系
105
The development of light-emitting diodes has changed the way of life today, the replacement of light bulb and other traditional light source. The scope of application covers lighting systems, backlight, display systems and mobile devices, has been hailed as the twenty-first century The most watched technology. QLED (Quantum Dot Light-emitting diode), which has a narrow half-width, high-purity purity quantum dot technology. It will be a new wave of displays in the future when pursuing high-quality, high-performance displays. Perovskite CsPbX3 (X = Cl, Br, I) was synthesized by chemical hot injection method using colloidal solution as the inorganic luminescent layer. Color of green CsPbBr3 to red CsPbBrxI (3-x) can be synthesized by regulating the different proportions of Group VII A anions; and green CsPbBr3 to blue CsPbCl(3-x) Brx, which covers the color of all visible spectral regions. The inorganic lead halide perovskite quantum dots solution is purified to obtain a very narrow half width (FWHM, Full width at half maximum). In this study, we synthesized four color quantum dots, its half width and width blue: 16.6 nm blue and green: 17.4 nm green: 21.4 nm orange: 25.6 nm. Which is very narrow compared to the CdSe quantum dots material; it also has better color purity for the phosphor material. And then inorganic lead halide perovskite quantum dots made of components of the performance of light color, and the solution is very close to the fluorescent position. Although a little shift, speculation is affected by the other layers of the component, but still can be used to determine the wavelength of the solution fluorescent light color components. In the production of components, our team to the whole fabrication as the goal of development. In this study, in addition to the synthesis of light-emitting layer of inorganic lead halide perovskite quantum dots also contains the element of the electron injection layer of zinc oxide nanoparticles. However, the size of zinc oxide nanoparticles determines the energy gap. This paper provides a method for the synthesis of different sizes of zinc oxide nanoparticles. Small size of zinc oxide nanoparticles with energy gap at 3.32 eV~7.1 eV, Big size of zinc oxide nanoparticles with energy gap at 3.52 eV~7.0 eV. It can be found that the smaller the particle size, the lower the energy gap contributes to the electron injection of the cathode. As the hole blocking layer more effectively block the loss of holes, so the smaller the particle size of the components of the efficiency can be improved. This work established three different parameter sets for the production of zinc oxide nanoparticles. Can match the different luminescent layer material with the appropriate zinc oxide nanoparticles, so that components have better efficiency. In the QLEDs with zinc oxide nanoparticles and inorganic lead halide perovskite quantum dots by type IV structure with organic hole- and inorganic electron-transport layers. With the support of very few papers, QLEDs successful release of green light. Even the brightness is only 60 cd/m2. There is still a long distance away from becoming a product, but it is definitely a very promising outcome.
Su, Yong-Ming, and 蘇永明. "Investigation of the effects of titanium dioxide interfacial layer on the optoelectronic characteristics of all-inorganic perovskite light-emitting diodes." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/s9yy2p.
Full textLin, Cha-Shin, and 林哲歆. "Studies of Si-Based Metal-Semiconductor-Metal Photodetectors with Amorphous/Crystalline Si Heterointerface and Polymer Light-Emitting Diodes with Inorganic Amorphous Electron/Hole Injection Layers." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/43609875309532456376.
Full text國立中央大學
電機工程研究所
91
Abstract The Si-based metal-semiconductor-metal photodetectors (MSM-PDs) had been extensively studied to improve their performances. Firstly, the effects of trap-states in a composition-graded intrinsic hydrogenated amorphous silicon-germanium (i-a-Si1-xGex:H) film on MSM-PDs’ performances were studied. The experimental results indicated that the fall time of the device transient response could be reduced significantly by employing the i-a-Si1-xGex:H layer. Secondly, the higher dark-current temperature-dependence for trench-electrode Si-based MSM-PD having an i-a-Si:H dark-current suppressing layer had been studied and improved. The poor dark-current temperature-dependence could be improved significantly by reducing the trap-states in the depletion region of the reverse-biased crystalline/amorphous Si heterojunction. Thirdly, an one-mask self-aligned technique was successfully used to fabricate trench (U-grooved)-electrode Si-based MSM-PDs. Only one photolithography mask was needed during fabrication and could drastically facilitate this device to be integrated with other devices. At last, the a-Si:H/a-SiC:H (hydrogenated amorphous silicon carbide) multi-layers were employed to enhance the sensitivity of a MSM-PD. By employing the a-Si:H/a-SiC:H multi-layers, the device dark-current could be suppressed drastically and hence when the device was illuminated under a very weak incident light power (0.5μW), the device photo to dark current ratio ( under 4 V bias voltage) could be 103 times higher than that of conventional one. Also, in order to investigate the feasibility of combining polymer and inorganic films for LED fabrication, the inorganic p-a-Si:H (or p-a-SiC:H) / n-a-SiCGe:H layers were employed as hole/electron injection layers (HILs/EILs) in the MEH-PPV polymer LEDs (PLEDs). By employing the amorphous HIL/EIL, the PLED’s threshold voltage could be reduced and brightness could be enhanced.
Chih-JuiNi and 倪智銳. "Development of functional inorganic semiconductor materials for organic light emitting diode devices." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/u27k6q.
Full text國立成功大學
化學工程學系
103
Silver nanowire (Ag NW)/inorganic semiconductor composite films and gallium nitride (GaN) films were fabricated for the application of organic light emitting diode (OLED) devices. The Ag NW ink was prepared using a simplified polyol method. After synthesis, a reusable porous membrane was utilized to purify the Ag NW solution. Nearly 90% of silver nanoparticles (Ag NPs) could be removed. In order to increase the conductivity of Ag NW films, antimony tin oxide (ATO) nanoparticles were added to form composite films. By emitting infrared (IR) light for 30 sec, the sheet resistance of the composite film could be decreased to 34 ohm/sq with a light transmittance of 91%. For the OLED devices using composite films as anodes, the maximum luminance and efficiency could reach 7020 cd/m2 and 2.7 cd/A, respectively, which was better than that of the device with indium tin oxide (ITO) anode. Next, the growth of GaN (0002) films deposited on sapphire substrates by inductively coupled-plasma (ICP)-enhanced reactive magnetron sputtering was investigated. X-ray diffraction (XRD) measurements confirmed that the high quality GaN crystallites could be obtained at a temperature as low as 500°C. The N:Ga ratio of the film grown at 500°C was almost 1:1. Afterwards, the crystalline GaN film was applied to the OLED device as a carrier transporting layer. The hybrid OLED that could be operated at high voltage showed the improved device durability. The maximum luminance of the hybrid OLED was 3451 cd/m2, higher than that of the conventional device.
Guo, Jin-Ting, and 郭晉廷. "Applying solution-processable electron transport layer on all-inorganic perovskite light-emitting diode and process parameters optimizing." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/hs4rn5.
Full text國立交通大學
影像與生醫光電研究所
107
All-inorganic perovskites such as CsPbX3 (X=Cl, Br, I) are less susceptible to moisture and oxygen than organic-inorganic hybrid perovskites. With such chemical stability and excellent optical properties, e.g. narrow spectral width and adjustable emission wavelength, it has attracted much attention for optoelectronic applications. In this thesis, we focus on the CsPbBr3 light-emitting diode, and try to simplify the fabrication processes–a nearly fully coating processes. More specifically, ZnO nanoparticles dispersed in Propylene glycol methyl ether acetate (PGMEA, obtained from TWNC) were spin-coated on top of the emission layer of CsPbBr3, serving as an electron transport layer. The experimental results show that this method does not damage the CsPbBr3 film surface, thereby improving the survival time of device and reducing current value. Finally, by adjusting the concentration and dispersed solvent of CsPbBr3 and the speed of ZnO nanoparticle spin coating to optimize the fabrication parameters, the devices with the relatively higher external quantum efficiency were obtained.