Academic literature on the topic 'Inland waters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inland waters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inland waters"
Jozić, Slaven, Vanja Baljak, Arijana Cenov, Dražen Lušić, Dominik Galić, Marin Glad, Daniel Maestro, et al. "Inland and Coastal Bathing Water Quality in the Last Decade (2011–2020): Croatia vs. Region vs. EU." Water 13, no. 17 (September 5, 2021): 2440. http://dx.doi.org/10.3390/w13172440.
Full textStalcup, Dana, Gary Yoshioka, Ellen Mantus, and Brad Kaiman. "CHARACTERISTICS OF OIL SPILLS: INLAND VERSUS COASTAL." International Oil Spill Conference Proceedings 1997, no. 1 (April 1, 1997): 939–40. http://dx.doi.org/10.7901/2169-3358-1997-1-939.
Full textMurphy, K. M., and J. J. Symoens. "Vegetation of Inland Waters." Journal of Applied Ecology 28, no. 1 (April 1991): 365. http://dx.doi.org/10.2307/2404144.
Full textALLAN, J. DAVID, ROBIN ABELL, ZEB HOGAN, CARMEN REVENGA, BRAD W. TAYLOR, ROBIN L. WELCOMME, and KIRK WINEMILLER. "Overfishing of Inland Waters." BioScience 55, no. 12 (2005): 1041. http://dx.doi.org/10.1641/0006-3568(2005)055[1041:ooiw]2.0.co;2.
Full textMouw, Colleen, and Steven Greb. "Inland and coastal waters." Eos, Transactions American Geophysical Union 93, no. 39 (September 25, 2012): 375. http://dx.doi.org/10.1029/2012eo390006.
Full textTranvik, Lars J. "Acidification of inland waters." Ambio 50, no. 2 (December 8, 2020): 261–65. http://dx.doi.org/10.1007/s13280-020-01441-6.
Full textLestari, Maria Maya. "ARTI PENTING DELIMITASI PERAIRAN PEDALAMAN SETIAP PULAU DI INDONESIA." Jurnal Ilmiah Hukum LEGALITY 25, no. 1 (July 14, 2018): 69. http://dx.doi.org/10.22219/jihl.v25i1.5990.
Full textWen, Zhidan, Yingxin Shang, Lili Lyu, Sijia Li, Hui Tao, and Kaishan Song. "A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology." Remote Sensing 13, no. 23 (December 3, 2021): 4916. http://dx.doi.org/10.3390/rs13234916.
Full textSugahara, Isao. "Sediment Bacteria in Inland Waters." NIPPON SUISAN GAKKAISHI 64, no. 2 (1998): 301–2. http://dx.doi.org/10.2331/suisan.64.301.
Full textKaya, Murat, Sibel Yiğit, and Ahmet Altndağ. "Rotifers in Turkish inland waters." Zoology in the Middle East 40, no. 1 (January 2007): 71–76. http://dx.doi.org/10.1080/09397140.2007.10638206.
Full textDissertations / Theses on the topic "Inland waters"
Quibell, G. E. "Remote sensing of algae in inland southern African waters." Thesis, Rhodes University, 1992. http://hdl.handle.net/10962/d1005440.
Full textKlaus, Marcus. "Land use effects on greenhouse gas emissions from boreal inland waters." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134767.
Full textPoonlapthawee, Sirirat. "Gene expression and antibiotic resistance in Escherichia coli from Swedish inland waters." Licentiate thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-28741.
Full textHarries, Julie Elizabeth. "A study of the extent of estrogenic contamination of English inland waters." Thesis, Brunel University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336703.
Full textLundin, Erik. "The role of inland waters in the carbon cycle at high latitudes." Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-84541.
Full textCarmo, Alisson Fernando Coelho do. "Three-dimensional modeling of inland waters optical properties from aerial hyperspectral images /." Presidente Prudente, 2019. http://hdl.handle.net/11449/191338.
Full textAbstract: The acquisition of data using Remote Sensing and in-situ sampling allows several data sources to be integrated for the analysis and observations of environmental characteristics and may require computational methods to support the data processing, exploration and analysis. The need to integrate data from different sources is highlighted in studies of dynamic and complex environments that frequently change, such as hydroelectric reservoirs. Reservoirs are artificial ecosystems, which influence directly the regional characteristics, mainly because of their multipurpose use. The interactions of the electromagnetic energy with the optically active components occur along the entire water column, so that the behavior of the light field reflects the changes applied along the entire euphotic zone. However, the values taken from images are used accordingly to a plane and associated with the respective point or area of surface. The calibration of bio-optical models considering only the surface sampling data can not deliver fully effective results because the electromagnetic radiation interacts with the components located along the water column and the response captured by the sensors does not only represent the value associated with the surface. Considering this scenario, this work proposes an investigation on the influence of the vertical distribution of the optical properties along the water column, in order to contemplate records about the interaction in different levels of depth, b... (Complete abstract click electronic access below)
Resumo: A aquisição de dados por meio da combinação de Sensoriamento Remoto e amostragens in-situ permite que várias fontes de dados sejam integradas para a análise e observação de características do alvo de interesse e pode exigir métodos computacionais para apoiar o processamento, exploração e análise de dados. A necessidade de integrar dados de diferentes fontes é destacada em estudos de ambientes dinâmicos e complexos que se alteram frequentemente, como os reservatórios hidrelétricos. Os reservatórios são ecossistemas artificiais, que influenciam diretamente nas características regionais, principalmente devido ao seu uso múltiplo uso. As interações da energia eletromagnética com os componentes opticamente ativos ocorrem ao longo de toda a coluna d’água, de modo que o comportamento do campo de luz reflete as mudanças aplicadas ao longo da zona eufótica. No entanto, as grandezas registradas nas imagens são usados de acordo com o plano e limitadas ao respectivo ponto ou área da superfície. A calibração de modelos bio-ópticos, considerando apenas os dados de amostragem da superfície, pode não fornecer resultados totalmente eficazes, porque a radiação eletromagnética interage com os componentes localizados ao longo da coluna de água e, consequentemente, a resposta capturada pelos sensores não representa apenas o valor associado à superfície. Este trabalho propõe uma investigação sobre a influência da distribuição vertical das propriedades ópticas ao longo da coluna d’água, a fim de co... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Obiri-Danso, Kwasi. "Seasonal variation of indicator and pathogenic bacteria in coastal and inland bathing waters." Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301090.
Full textRodrigues, Thanan Walesza Pequeno. "From oligo to eutrophic inland waters : advancements and challenges for bio-optical modeling /." Presidente Prudente, 2017. http://hdl.handle.net/11449/150315.
Full textBanca: Deepak Ranjan Mishra
Banca: Arcilan Trevenzoli Assireu
Banca: Maria de Lourdes Bueno Trindade Galo
Banca: Fernanda Sayuri Yoshino Watanabe
Resumo: O presente trabalho teve como objetivo realizar um levantamento detalhado das características bio-ópticas nos reservatórios de Barra Bonita (BB) e Nova Avanhandava (Nav) com o intuito de avaliar o desempenho de uma única abordagem voltada para a estimativa das propriedades ópticas inerentes (POIs), assim como, a concentração de totais sólidos suspensos (TSS). A investigação foi realizada utilizando dados coletados no campo entre 2014 e 2016, incluindo, as POIs, componentes opticamente significativos (COSs) e reflectância de sensoriamento remoto (R_rs). Os dados apresentados dos COSs confirmaram que BB é um ambiente mais túrbido que Nav por apresentar maior produção fitoplanctônica em função do recebimento de altas cargas de nutrientes provenientes da bacia de drenagem. Por outro lado, Nav é um ambiente mais transparente e com maior influência de material inorgânico, o que favorece o surgimento de macrófitas submersas. A concentração de clorofila-a (Chl-a) em BB alcançou máximo de 797.8 µg l-1 em outubro/2014, enquanto Nav apresentou máximo de 38.6 µg l-1 em maio/2016. A variabilidade nos COS esteve altamente vinculada a frequência de chuvas, sendo que no ano de 2014, ocorreu um evento extremo de seca alterando as características biogeoquímicas dos ambientes. BB reagiu de forma mais abrupta que Nav por apresentar um sistema de operação do tipo acumulação e por estar mais próxima das regiões potencialmente poluidoras, diferente de Nav que apresenta um sistema fio-d'água em que ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The objective of the present work was to perform a detailed survey of the bio-optical characteristics of the reservoirs of Barra Bonita (BB) and Nova Avanhandava (Nav) in order to evaluate the performance of a single approach aimed at estimating the inherent optical properties (IOPs), as well as the concentration of total suspended solids (TSS). The research was carried out using data collected in the field between 2014 and 2016, including the IOPs, optically significant components (OSCs) and remote sensing reflectance (R_rs). The data presented from the OSCs confirmed that BB is more turbid than Nav because it presents higher phytoplankton production due to the input of high nutrient loads from the drainage basin. On the other hand, Nav is more transparent with greater influence of inorganic matter, which favors the appearance of submerged macrophytes. The concentration of chlorophyll-a (Chl-a) in BB reached a maximum of 797.8 μg l-1 in October/2014, while Nav presented a maximum of 38.6 μg l-1 in May/2016. The variability in the COS was highly related to the frequency of rainfall, in the year 2014, an extreme drought event occurred, altering the biogeochemical characteristics ... (Complete abstract click electronic access below)
Doutor
Rodrigues, Thanan Walesza Pequeno [UNESP]. "From oligo to eutrophic inland waters: advancements and challenges for bio-optical modeling." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/150315.
Full textApproved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-18T19:10:58Z (GMT) No. of bitstreams: 1 rodrigues_twp_dr_prud.pdf: 5871584 bytes, checksum: 622c90a26db9966bfc3a2c9aaf97e829 (MD5)
Made available in DSpace on 2017-04-18T19:10:58Z (GMT). No. of bitstreams: 1 rodrigues_twp_dr_prud.pdf: 5871584 bytes, checksum: 622c90a26db9966bfc3a2c9aaf97e829 (MD5) Previous issue date: 2017-03-09
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O presente trabalho teve como objetivo realizar um levantamento detalhado das características bio-ópticas nos reservatórios de Barra Bonita (BB) e Nova Avanhandava (Nav) com o intuito de avaliar o desempenho de uma única abordagem voltada para a estimativa das propriedades ópticas inerentes (POIs), assim como, a concentração de totais sólidos suspensos (TSS). A investigação foi realizada utilizando dados coletados no campo entre 2014 e 2016, incluindo, as POIs, componentes opticamente significativos (COSs) e reflectância de sensoriamento remoto (R_rs). Os dados apresentados dos COSs confirmaram que BB é um ambiente mais túrbido que Nav por apresentar maior produção fitoplanctônica em função do recebimento de altas cargas de nutrientes provenientes da bacia de drenagem. Por outro lado, Nav é um ambiente mais transparente e com maior influência de material inorgânico, o que favorece o surgimento de macrófitas submersas. A concentração de clorofila-a (Chl-a) em BB alcançou máximo de 797.8 µg l-1 em outubro/2014, enquanto Nav apresentou máximo de 38.6 µg l-1 em maio/2016. A variabilidade nos COS esteve altamente vinculada a frequência de chuvas, sendo que no ano de 2014, ocorreu um evento extremo de seca alterando as características biogeoquímicas dos ambientes. BB reagiu de forma mais abrupta que Nav por apresentar um sistema de operação do tipo acumulação e por estar mais próxima das regiões potencialmente poluidoras, diferente de Nav que apresenta um sistema fio-d’água em que não há acumulação e sim fluxo constante da água. Além disso, no âmbito óptico, a absorção em Nav apresentou maior influência do particulado não-algal (NAP) enquanto que em BB, a absorção foi dominada por fitoplâncton. Com base nesses resultados pode-se concluir que os dois ambientes apresentam não só diferenças na qualidade da água, mas também nas propriedades ópticas, o que leva a afirmação de que um modelo único baseado nos dois ambientes pode não ter um bom resultado quando se pretende utilizar uma abordagem empírica. Um algoritmo quase-analítico (QAA) parametrizado para as condições de Nav (QAAOMR) apresentou resultados significativos com erros (erro médio percentual absoluto – MAPE) inferiores a 17% para o coeficiente de absorção total (a_t), 19% para o coeficiente de absorção orgânico detrital (a_CDM) e 47% para o coeficiente de absorção do fitoplâncton (a_ϕ). O respectivo modelo foi utilizado para verificar seu desempenho em um ambiente eutrofizado como BB e a versão parametrizada por Watanabe et al. (2016) e denominada QAABBHR foi aplicada aos dados de Nav. Como resultado, observamos que as duas versões foram adequadas para estimar a_t com erros inferiores a 40%, no entanto, existe ainda a necessidade de melhorar as etapas para estimativa de a_CDM e a_ϕ. No caso de se aplicar um modelo empírico de única abordagem para estimar concentração de TSS para ambos os reservatórios, observamos que essa abordagem não apresentou resultados satisfatórios, portanto, modelos específicos baseados na banda do vermelho do MODIS foram utilizados para mapear TSS em cada um dos reservatórios. Pode-se concluir então, que o conhecimento acerca das propriedades ópticas da água se mostrou determinante para a modelagem bio-óptica, principalmente no que diz respeito aos ambientes altamente contrastantes como BB e Nav.
The objective of the present work was to perform a detailed survey of the bio-optical characteristics of the reservoirs of Barra Bonita (BB) and Nova Avanhandava (Nav) in order to evaluate the performance of a single approach aimed at estimating the inherent optical properties (IOPs), as well as the concentration of total suspended solids (TSS). The research was carried out using data collected in the field between 2014 and 2016, including the IOPs, optically significant components (OSCs) and remote sensing reflectance (R_rs). The data presented from the OSCs confirmed that BB is more turbid than Nav because it presents higher phytoplankton production due to the input of high nutrient loads from the drainage basin. On the other hand, Nav is more transparent with greater influence of inorganic matter, which favors the appearance of submerged macrophytes. The concentration of chlorophyll-a (Chl-a) in BB reached a maximum of 797.8 μg l-1 in October/2014, while Nav presented a maximum of 38.6 μg l-1 in May/2016. The variability in the COS was highly related to the frequency of rainfall, in the year 2014, an extreme drought event occurred, altering the biogeochemical characteristics. BB reacted more abruptly than Nav because it presented an accumulation type operation system and because it is closer to the potentially polluting region. Nav presents a water system in which there is no accumulation but constant flow of water. In addition, in the optical context, the absorption in Nav presented greater influence of the non-algal particulate (NAP) while in BB, the absorption was dominated by phytoplankton. Based on these results, it can be concluded that the two environments present not only differences in water quality but also in optical properties, which leads to the assertion that a single model based on the two environments may not have a good result when it is intended to use empirical approach. A quasi-analytical algorithm (QAA) parameterized for Nav conditions (QAAOMR) presented significant results with errors (mean absolute percentage error - MAPE) lower than 17% for the total absorption coefficient (a_t), 19% for the carbon detrital matter absorption coefficient (a_CDM) and 47% for the absorption coefficient of phytoplankton (a_ϕ). The respective model was used to verify its performance in a eutrophic environment such as BB and the version parameterized by Watanabe et al. (2016) and named QAABBHR was applied to the Nav data. Thus, we note that the two versions were suitable for estimating a_t with errors (MAPE) less than 40%, however, improvements must be carried out for estimating a_CDM and a_ϕ. In the case of applying a single empirical model to estimate TSS concentration for both reservoirs, we observed that it did not present satisfactory results, so specific models based on the MODIS red band were used to map TSS in each of the reservoirs. It can be concluded, therefore, that knowledge about the optical properties of water has proved to be determinant for the bio-optical modeling, especially with respect to highly contrasting environments such as BB and Nav.
CNPq: 200152/2015-7
Darracq, Amélie. "Long-term development, modeling and management of nutrient loading to inland and coastal waters /." Stockholm : Department of Physical Geography and Quaternary Geology, Stockholm university, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7108.
Full textBooks on the topic "Inland waters"
Dwight, Kuhn, ed. Inland waters. Detroit, Mich: Blackbirch Press, 2005.
Find full textPassages on inland waters. Wolcott, NY: Whiskey Hill Press, 2004.
Find full textSymoens, J. J., ed. Vegetation of inland waters. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2.
Full textLikens, Gene E. Biogeochemistry of inland waters: A derivative of Encyclopedia of inland waters. Amsterdam: Elsevier/Academic Press, 2010.
Find full textLikens, Gene E. Biogeochemistry of inland waters: A derivative of Encyclopedia of Inland Waters. Amsterdam: Academic Press, 2010.
Find full textPlankton of inland waters: A derivative of encyclopedia of inland waters. Burlington, MA: Academic Press, 2010.
Find full textBiró, P., and J. F. Talling, eds. Trophic Relationships in Inland Waters. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0467-5.
Full textRuddle, Kenneth, and Arif Satria, eds. Managing Coastal and Inland Waters. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9555-8.
Full textJ, Lemoalle, ed. Ecological dynamics of tropical inland waters. Cambridge: Cambridge University Press, 1998.
Find full textBoschet, A.-F. Inland waters: Annual topic update 1999. Luxembourg: Office for Official Publications of the European Communities, 2000.
Find full textBook chapters on the topic "Inland waters"
Geladze, Vakhtang, Nana Bolashvili, Tamaz Karalashvili, and Nino Machavariani. "Inland Waters." In The Physical Geography of Georgia, 101–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90753-2_10.
Full textNew, Tim R. "Australian Inland Waters." In Insect conservation and Australia’s Inland Waters, 19–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57008-8_3.
Full textDawson, F. H. "Water Flow and the Vegetation of Running Waters." In Vegetation of inland waters, 283–309. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2_9.
Full textNew, Tim R. "Macroinvertebrates of Inland Waters." In Insect conservation and Australia’s Inland Waters, 161–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57008-8_7.
Full textLaanbroek, Hendrikus J., and Annette Bollmann. "Nitrification in Inland Waters." In Nitrification, 385–403. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817145.ch15.
Full textAlcocer, Javier, and Verónica Aguilar-Sierra. "Biodiversity in Inland Waters." In Mexican Aquatic Environments, 43–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11126-7_2.
Full textWetzel, Robert G. "Water as an Environment for Plant Life." In Vegetation of inland waters, 1–30. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2_1.
Full textWiegleb, Gerhard. "Analysis of Flora and Vegetation in Rivers: Concepts and Applications." In Vegetation of inland waters, 311–40. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2_10.
Full textMelack, John M. "Aquatic Plants in Extreme Environments." In Vegetation of inland waters, 341–78. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2_11.
Full textGolterman, H. L., R. S. Clymo, E. P. H. Best, and J. Lauga. "Methods of Exploration and Analysis of the Environment of Aquatic Vegetation." In Vegetation of inland waters, 31–61. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3087-2_2.
Full textConference papers on the topic "Inland waters"
Vidot, Jerome, and Richard P. Santer. "Atmospheric correction for inland waters." In Remote Sensing, edited by Charles R. Bostater, Jr. and Rosalia Santoleri. SPIE, 2004. http://dx.doi.org/10.1117/12.511439.
Full textPrónay, Z., T. Cserny, and E. Törös. "Environmental seismic measurements on inland waters." In 8th EEGS-ES Meeting. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609.201406175.
Full textGuesnet, T. "Modern Concepts In The Design of Vessels For Inland Waters." In Coastal Ships and Inland Waterways. RINA, 1999. http://dx.doi.org/10.3940/rina.cs.1999.11.
Full textChapala, Lake, Lake Patzcuaro, Lake Cuitzeo, and Alejandra A. Lopez-Caloca. "Inpainting restoration for inland waters Mexico ecosystems." In 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp). IEEE, 2015. http://dx.doi.org/10.1109/multi-temp.2015.7245782.
Full textGudelj, Marina. "ACCURACY ANALYSIS OF THE INLAND WATERS DETECTION." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018v/1.5/s02.025.
Full textGudelj, Marina. "ACCURACY ANALYSIS OF THE INLAND WATERS DETECTION." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593//sgem2018v/1.5/s02.025.
Full text"Front Matter: Volume 7150." In Remote Sensing of Inland, Coastal, and Oceanic Waters. SPIE, 2009. http://dx.doi.org/10.1117/12.823180.
Full textZavorotny, Valery, and Eric Loria. "Scattering Models for Gnss-R in Inland Waters." In IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9553909.
Full textPahlevan, Nima, John R. Schott, and Giuseppe Zibordi. "Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)." In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016, edited by Charles R. Bostater, Stelios P. Mertikas, Xavier Neyt, Caroline Nichol, and Oscar Aldred. SPIE, 2016. http://dx.doi.org/10.1117/12.2240713.
Full textGupana, Remika S., Daniel Odermatt, Abolfazl Irani Rahaghi, Camille Minaudo, and Alexander Damm. "Remote sensing of fluorescence in inland waters: improvements from using hyperspectral data." In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2021, edited by Charles R. Bostater and Xavier Neyt. SPIE, 2021. http://dx.doi.org/10.1117/12.2599128.
Full textReports on the topic "Inland waters"
Butman, D., R. Striegl, S. Stackpoole, P. del Giorgio, Y. Prairie, D. Pilcher, P. Raymond, et al. Chapter 14: Inland Waters. Second State of the Carbon Cycle Report. Edited by N. Cavallaro and G. Shrestha. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch14.
Full textWalker, Randy M., Ian G. Gross, Cyrus M. Smith, and David E. Hill. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1030617.
Full textElias, Joan, Richard Axler, Elaine Ruzycki, and David VanderMeulen. Water quality monitoring protocol for inland lakes: Great Lakes Inventory and Monitoring Network, version 1.2. National Park Service, January 2022. http://dx.doi.org/10.36967/nrr-2290010.
Full textPease, Leonard, and Michael Minette. Mesofluidic Inline Separation for Produced Water Treatment - CRADA 537. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1867335.
Full textPetersen, Keri M. Inline Monitoring of Free Water and Particulate Contamination of Jet A Fuel. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada623664.
Full textSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42240.
Full textSaltus, Christina, Molly Reif, and Richard Johansen. waterquality for ArcGIS Pro Toolbox : user's guide. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45362.
Full textCrystal, Victoria, Justin Tweet, and Vincent Santucci. Yucca House National Monument: Paleontological resource inventory (public version). National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293617.
Full textCooper, Christopher, Jacob McDonald, and Eric Starkey. Wadeable stream habitat monitoring at Congaree National Park: 2018 baseline report. National Park Service, June 2021. http://dx.doi.org/10.36967/nrr-2286621.
Full textRine, Kristin, Roger Christopherson, and Jason Ransom. Harlequin duck (Histrionicus histrionicus) occurrence and habitat selection in North Cascades National Park Service Complex, Washington. National Park Service, April 2022. http://dx.doi.org/10.36967/nrr-2293127.
Full text