Journal articles on the topic 'Inhomogeneous fluids'

To see the other types of publications on this topic, follow the link: Inhomogeneous fluids.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Inhomogeneous fluids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Slattery, John C. "Fundamentals of Inhomogeneous Fluids." Chemical Engineering Journal and the Biochemical Engineering Journal 53, no. 3 (February 1994): 201. http://dx.doi.org/10.1016/0923-0467(93)02819-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Varea, C., and A. Robledo. "Stress tensor of inhomogeneous fluids." Physica A: Statistical Mechanics and its Applications 233, no. 1-2 (November 1996): 132–44. http://dx.doi.org/10.1016/s0378-4371(96)00244-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Myrzakulov, Ratbay, and Lorenzo Sebastiani. "Inhomogeneous viscous fluids for inflation." Astrophysics and Space Science 356, no. 1 (December 4, 2014): 205–13. http://dx.doi.org/10.1007/s10509-014-2203-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boudh-Hir, M. E. "New developments for inhomogeneous fluids." Molecular Physics 63, no. 5 (April 10, 1988): 939–49. http://dx.doi.org/10.1080/00268978800100671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoang, Hai, and Guillaume Galliero. "Shear viscosity of inhomogeneous fluids." Journal of Chemical Physics 136, no. 12 (March 28, 2012): 124902. http://dx.doi.org/10.1063/1.3696898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Todd, B. D., Denis J. Evans, and Peter J. Daivis. "Pressure tensor for inhomogeneous fluids." Physical Review E 52, no. 2 (August 1, 1995): 1627–38. http://dx.doi.org/10.1103/physreve.52.1627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Das, Subir K., and Sanjay Puri. "Inhomogeneous cooling in inelastic granular fluids." Physica A: Statistical Mechanics and its Applications 318, no. 1-2 (February 2003): 55–62. http://dx.doi.org/10.1016/s0378-4371(02)01403-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Godin, Oleg A. "Acoustic energy streamlines in inhomogeneous fluids." Journal of the Acoustical Society of America 135, no. 4 (April 2014): 2362. http://dx.doi.org/10.1121/1.4877784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parry, A. O., and P. S. Swain. "Correlation function algebra for inhomogeneous fluids." Journal of Physics: Condensed Matter 9, no. 11 (March 17, 1997): 2351–73. http://dx.doi.org/10.1088/0953-8984/9/11/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sokolowski, Stefan, and Johann Fischer. "Density functional theory for inhomogeneous fluids." Molecular Physics 68, no. 3 (October 20, 1989): 647–57. http://dx.doi.org/10.1080/00268978900102431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Junfang, B. D. Todd, and Karl P. Travis. "Viscosity of confined inhomogeneous nonequilibrium fluids." Journal of Chemical Physics 121, no. 21 (December 2004): 10778–86. http://dx.doi.org/10.1063/1.1809582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Melchionna, S., and U. Marini Bettolo Marconi. "Lattice Boltzmann method for inhomogeneous fluids." EPL (Europhysics Letters) 81, no. 3 (December 21, 2007): 34001. http://dx.doi.org/10.1209/0295-5075/81/34001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Schlijper, A. G., and C. K. Harris. "Distribution function theory for inhomogeneous fluids." Journal of Chemical Physics 95, no. 10 (November 15, 1991): 7603–11. http://dx.doi.org/10.1063/1.461386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Massoudi, Mehrdad, and Ashwin Vaidya. "Unsteady flows of inhomogeneous incompressible fluids." International Journal of Non-Linear Mechanics 46, no. 5 (June 2011): 738–41. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Boulanger, Ph, and M. Hayes. "Inhomogeneous plane waves in viscous fluids." Continuum Mechanics and Thermodynamics 2, no. 1 (1990): 1–16. http://dx.doi.org/10.1007/bf01170952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Manneville, S�bastien, Jean-Baptiste Salmon, Lydiane B�cu, Annie Colin, and Fran�ois Molino. "Inhomogeneous flows in sheared complex fluids." Rheologica Acta 43, no. 5 (April 6, 2004): 408–16. http://dx.doi.org/10.1007/s00397-004-0366-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hoang, Hai, and Guillaume Galliero. "Shear Viscosity of Inhomogeneous Hard-Sphere Fluids." Applied Mechanics and Materials 330 (June 2013): 27–31. http://dx.doi.org/10.4028/www.scientific.net/amm.330.27.

Full text
Abstract:
Using molecular dynamics on Hard-Sphere-like fluids subject to an external sinusoidal field inducing density inhomogeneities and undergoing a bi-periodical shear flow, we have studied the local viscosity of the inhomogeneous fluid. It has been shown that for a slowly varying density profile the local average density model combined with the well-known models proposed in the density function theory yields a good description of the viscosity profile obtained by molecular simulation. However, for a rapidly varying density profile these models are unable to describe correctly the viscosity profile obtained by molecular simulations. So, to overcome the weakness of these models we have proposed a simple model that takes into account the effect of the angle formed by the colliding molecules and the direction of the flow.
APA, Harvard, Vancouver, ISO, and other styles
18

Godin, Oleg A. "Finite-amplitude acoustic-gravity waves: exact solutions." Journal of Fluid Mechanics 767 (February 12, 2015): 52–64. http://dx.doi.org/10.1017/jfm.2015.40.

Full text
Abstract:
AbstractWe consider strongly nonlinear waves in fluids in a uniform gravity field, and demonstrate that an incompressible wave motion, in which pressure remains constant in each fluid parcel, is supported by compressible fluids with free and rigid boundaries. We present exact analytic solutions of nonlinear hydrodynamics equations which describe the incompressible wave motion. The solutions provide an extension of the Gerstner wave in an incompressible fluid with a free boundary to waves in compressible three-dimensionally inhomogeneous moving fluids such as oceans and planetary atmospheres.
APA, Harvard, Vancouver, ISO, and other styles
19

Tjøtta, Jacqueline Naze, Edel Reiso, and Sigve Tjøtta. "Nonlinear equations of acoustics in inhomogeneous fluids." Journal of the Acoustical Society of America 83, S1 (May 1988): S5. http://dx.doi.org/10.1121/1.2025430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ashcroft, NW. "Density Functional Descriptions of Classical Inhomogeneous Fluids." Australian Journal of Physics 49, no. 1 (1996): 3. http://dx.doi.org/10.1071/ph960003.

Full text
Abstract:
Microscopically inhomogeneous states such as crystals and amorphous phases are wide-spread in nature, and it has become relatively common to attempt to describe the thermodynamic functions of such structured systems by utilising the corresponding properties of their homogeneous counterparts. One route is via density functional theory, some aspects of which are reviewed and developed here for single-component systems. In particular the possible applicability of coarse-graining or weighted density approximations to the theory of the liquid–crystal transition are discussed in terms of physical implications stemming from the crucial change in symmetry that occurs. Some insight into the apparent inconsistency of weighted-density approaches can be gained by examination of the role of anharmonic terms in the structured phase, and their relation to the nature of the interactions which also control the range of the weight-functions.
APA, Harvard, Vancouver, ISO, and other styles
21

Schlijper, A. G., and B. Smit. "A simple theory of weakly inhomogeneous fluids." Fluid Phase Equilibria 76 (August 1992): 11–20. http://dx.doi.org/10.1016/0378-3812(92)85074-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Marra, Valerio, and Mikko Pääkkönen. "Exact spherically-symmetric inhomogeneous model withnperfect fluids." Journal of Cosmology and Astroparticle Physics 2012, no. 01 (January 9, 2012): 025. http://dx.doi.org/10.1088/1475-7516/2012/01/025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Percus, Jerome K., Liudmila A. Pozhar, and Keith E. Gubbins. "Local thermodynamics of inhomogeneous fluids at equilibrium." Physical Review E 51, no. 1 (January 1, 1995): 261–65. http://dx.doi.org/10.1103/physreve.51.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pozhar, Liudmila A., and Keith E. Gubbins. "Transport theory of dense, strongly inhomogeneous fluids." Journal of Chemical Physics 99, no. 11 (December 1993): 8970–96. http://dx.doi.org/10.1063/1.465567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Scott, N. H. "Inhomogeneous plane waves in compressible viscous fluids." Wave Motion 22, no. 4 (December 1995): 335–47. http://dx.doi.org/10.1016/0165-2125(95)00031-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Podgornik, Rudolf. "Theory of Inhomogeneous Rod-like Coulomb Fluids." Symmetry 13, no. 2 (February 5, 2021): 274. http://dx.doi.org/10.3390/sym13020274.

Full text
Abstract:
A field theoretic representation of the classical partition function is derived for a system composed of a mixture of anisotropic and isotropic mobile charges that interact via long range Coulomb and short range nematic interactions. The field theory is then solved on a saddle-point approximation level, leading to a coupled system of Poisson–Boltzmann and Maier–Saupe equations. Explicit solutions are finally obtained for a rod-like counterion-only system in proximity to a charged planar wall. The nematic order parameter profile, the counterion density profile and the electrostatic potential profile are interpreted within the framework of a nematic–isotropic wetting phase with a Donnan potential difference.
APA, Harvard, Vancouver, ISO, and other styles
27

Calleja, M., and G. Rickayzen. "A model for homogeneous and inhomogeneous hard molecular fluids: ellipsoidal fluids." Journal of Physics: Condensed Matter 7, no. 47 (November 20, 1995): 8839–56. http://dx.doi.org/10.1088/0953-8984/7/47/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

HUBENY, VERONIKA E., MUKUND RANGAMANI, SHIRAZ MINWALLA, and MARK VAN RAAMSDONK. "THE FLUID–GRAVITY CORRESPONDENCE: THE MEMBRANE AT THE END OF THE UNIVERSE." International Journal of Modern Physics D 17, no. 13n14 (December 2008): 2571–76. http://dx.doi.org/10.1142/s0218271808014084.

Full text
Abstract:
We establish an explicit connection between the evolution of generic inhomogeneous black brane solutions in asymptotically AdS space–times and the evolution of relativistic conformal fluids in one lower dimension. Specifically, given any solution to a particular set of fluid-dynamical equations, one can construct an inhomogeneous black brane solution with a regular event horizon. This connection is reminiscent of the membrane paradigm for black holes; in our case the dynamics of the entire space–time is encoded in a fluid living at the boundary. This fluid–gravity correspondence leads to interesting implications for both gravitational physics and fluid dynamics.
APA, Harvard, Vancouver, ISO, and other styles
29

Lazaridis, Themis. "Inhomogeneous Fluid Approach to Solvation Thermodynamics. 2. Applications to Simple Fluids." Journal of Physical Chemistry B 102, no. 18 (April 1998): 3542–50. http://dx.doi.org/10.1021/jp972358w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Egorov, S. A. "Adsorption of Supercritical Fluids and Fluid Mixtures: Inhomogeneous Integral Equation Study†." Journal of Physical Chemistry B 105, no. 28 (July 2001): 6583–91. http://dx.doi.org/10.1021/jp010007i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ihm, Yungok, Valentino R. Cooper, Lukas Vlcek, Pieremanuele Canepa, Timo Thonhauser, Ji Hoon Shim, and James R. Morris. "Continuum Model of Gas Uptake for Inhomogeneous Fluids." Journal of Physical Chemistry C 121, no. 33 (August 9, 2017): 17625–32. http://dx.doi.org/10.1021/acs.jpcc.7b04834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Groot, R. D. "Density functional models for inhomogeneous hard sphere fluids." Molecular Physics 60, no. 1 (January 1987): 45–63. http://dx.doi.org/10.1080/00268978700100041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Götzelmann, B., and S. Dietrich. "Pair correlation function of inhomogeneous hard sphere fluids." Fluid Phase Equilibria 150-151 (September 1998): 565–71. http://dx.doi.org/10.1016/s0378-3812(98)00303-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bryk, P., S. Sokołowski, and O. Pizio. "Density functional theory for inhomogeneous associating chain fluids." Journal of Chemical Physics 125, no. 2 (July 14, 2006): 024909. http://dx.doi.org/10.1063/1.2212944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

TED DAVIS, H. "KINETIC THEORY OF FLOW IN STRONGLY INHOMOGENEOUS FLUIDS." Chemical Engineering Communications 58, no. 1-6 (August 1987): 413–30. http://dx.doi.org/10.1080/00986448708911979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pozhar, Liudmila A., Keith E. Gubbins, and Jerome K. Percus. "Generalized compressibility equation for inhomogeneous fluids at equilibrium." Physical Review E 48, no. 3 (September 1, 1993): 1819–22. http://dx.doi.org/10.1103/physreve.48.1819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Henderson, J. R. "Three-particle direct correlation function of inhomogeneous fluids." Physical Review A 36, no. 9 (November 1, 1987): 4527–28. http://dx.doi.org/10.1103/physreva.36.4527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yu, Yang-Xin, and Jianzhong Wu. "A fundamental-measure theory for inhomogeneous associating fluids." Journal of Chemical Physics 116, no. 16 (April 22, 2002): 7094–103. http://dx.doi.org/10.1063/1.1463435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

BUSH, MICHAEL R., M. J. BOOTH, A. D. J. HAYMET, and A. G. SCHLIJPER. "Integral equation approximations for inhomogeneous fluids: functional optimization." Molecular Physics 95, no. 3 (October 20, 1998): 601–19. http://dx.doi.org/10.1080/00268979809483194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

R. BUSH M. J. BOOTH A. D. J. HAYMET, MICHAEL. "Integral equation approximations for inhomogeneous fluids: functional optimization." Molecular Physics 95, no. 3 (October 20, 1998): 601–19. http://dx.doi.org/10.1080/002689798166936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tang, Yiping. "First-order mean spherical approximation for inhomogeneous fluids." Journal of Chemical Physics 121, no. 21 (December 2004): 10605–10. http://dx.doi.org/10.1063/1.1810473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Todd, B. D., Peter J. Daivis, and Denis J. Evans. "Heat flux vector in highly inhomogeneous nonequilibrium fluids." Physical Review E 51, no. 5 (May 1, 1995): 4362–68. http://dx.doi.org/10.1103/physreve.51.4362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Krishnan, S. H., and K. G. Ayappa. "Model for dynamics of inhomogeneous and bulk fluids." Journal of Chemical Physics 124, no. 14 (April 14, 2006): 144503. http://dx.doi.org/10.1063/1.2183312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tang, Zixiang, L. E. Scriven, and H. T. Davis. "Density‐functional perturbation theory of inhomogeneous simple fluids." Journal of Chemical Physics 95, no. 4 (August 15, 1991): 2659–68. http://dx.doi.org/10.1063/1.460918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kwon, Jihoe, and Joseph J. Monaghan. "Sedimentation in homogeneous and inhomogeneous fluids using SPH." International Journal of Multiphase Flow 72 (June 2015): 155–64. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Caviglia, G., and A. Morro. "Inhomogeneous waves and sound absorption in viscous fluids." Physics Letters A 134, no. 2 (December 1988): 127–30. http://dx.doi.org/10.1016/0375-9601(88)90948-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Loss, D. "Linear quantum enskog equation II. Inhomogeneous quantum fluids." Journal of Statistical Physics 61, no. 1-2 (October 1990): 467–93. http://dx.doi.org/10.1007/bf01013976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Stiehl, Olivia, and Matthias Weiss. "Diffusion and Biochemical Reactions in Inhomogeneous Crowded Fluids." Biophysical Journal 110, no. 3 (February 2016): 639a. http://dx.doi.org/10.1016/j.bpj.2015.11.3419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tomimura, Nazira A., and Demison C. Motta. "Evolution of inhomogeneous cosmological models with viscous fluids." Astrophysics and Space Science 165, no. 2 (1990): 231–36. http://dx.doi.org/10.1007/bf00653292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Buchert, Thomas. "On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid Cosmologies." General Relativity and Gravitation 33, no. 8 (August 2001): 1381–405. http://dx.doi.org/10.1023/a:1012061725841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography