Academic literature on the topic 'Inhibiteurs de JAK/STAT'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inhibiteurs de JAK/STAT.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Inhibiteurs de JAK/STAT":

1

El Jammal, Thomas, Mathieu Gerfaud-Valentin, Pascal Seve, and Yvan Jamilloux. "Inhibiteurs de la signalisation JAK/STAT au cours des maladies rhumatologiques : un spectre grandissant." Revue du Rhumatisme 87, no. 4 (July 2020): 261–72. http://dx.doi.org/10.1016/j.rhum.2020.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sagez, F., M. Sawaf, J. Sibilia, H. Dumortier, F. Monneaux, and J. E. Gottenberg. "Nouveau mécanisme d’action des inhibiteurs de la voie JAK/STAT : l’inhibition de la différenciation et de la fonction des lymphocytes T folliculaires auxiliaires." Revue du Rhumatisme 83 (November 2016): A215. http://dx.doi.org/10.1016/s1169-8330(16)30522-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Colonne, Punsiri M., Marina E. Eremeeva, and Sanjeev K. Sahni. "Beta Interferon-Mediated Activation of Signal Transducer and Activator of Transcription Protein 1 Interferes with Rickettsia conorii Replication in Human Endothelial Cells." Infection and Immunity 79, no. 9 (June 20, 2011): 3733–43. http://dx.doi.org/10.1128/iai.05008-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
ABSTRACTInfection of the endothelial cell lining of blood vessels withRickettsia conorii, the causative agent of Mediterranean spotted fever, results in endothelial activation. We investigated the effects ofR. conoriiinfection on the status of the Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling pathway in human microvascular endothelial cells (HMECs), the most relevant host cell type, in light of rickettsial tropism for microvascular endotheliumin vivo.R. conoriiinfection induced phosphorylation of STAT1 on tyrosine 701 and serine 727 at 24, 48, and 72 h postinfection in HMECs. Employing transcription profile analysis and neutralizing antibodies, we further determined that beta interferon (IFN-β) production and secretion are critical for STAT1 activation. Secreted IFN-β further amplified its own expression via a positive-feedback mechanism, while expression of transcription factors interferon regulatory factor 7 (IRF7) and IRF9, implicated in the IFN-β–STAT1 feedback loop, was also induced. Metabolic activity of rickettsiae was essential for the IFN-β-mediated response(s) because tetracycline treatment inhibitedR. conoriireplication, IFN-β expression, and STAT1 phosphorylation. Inclusion of IFN-β-neutralizing antibody during infection resulted in significantly enhancedR. conoriireplication, whereas addition of exogenous IFN-β had the opposite inhibitory effect. Finally, small interfering RNA-mediated knockdown further confirmed a protective role for STAT1 against intracellularR. conoriireplication. In concert, these findings implicate an important role for IFN-β-mediated STAT1 activation in innate immune responses of vascular endothelium toR. conoriiinfection.
4

Barry, Sean P. "JAK-STAT." JAK-STAT 1, no. 2 (April 2012): 90–91. http://dx.doi.org/10.4161/jkst.20939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galli Sanchez, Ana Paula, Tatiane Ester Aidar Fernandes, and Gustavo Martelli Palomino. "The JAK-STAT Pathway and the JAK Inhibitors." Journal of Clinical Research in Dermatology 7, no. 5 (November 30, 2020): 1–6. http://dx.doi.org/10.15226/2378-1726/7/5/001128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dozens of cytokines that bind Type I and Type II receptors use the Janus Kinases (JAK) and the Signal Transducer and Activator of Transcription (STAT) proteins pathway for intracellular signaling, orchestrating hematopoiesis, inducing inflammation, and controlling the immune response. Currently, oral JAK inhibitors are being used to treat many inflammatory and myeloproliferative diseases and are also under investigation in several clinical trials for skin diseases. Thus, dermatologists should understand how the JAK-STAT pathway works as well as the mechanism of action of the JAK inhibitors which will certainly become an important part of the dermatologist’s treatment armamentarium in the next few years. Keywords: JAK inhibitors; Janus Kinases; JAK-STAT Pathway List of Abbreviations: AD: Atopic Dermatitis ADP: Adenosine diphosphate Dmards: Disease-Modifying Antirheumatic Drugs JAK: Janus kinase(s) Jaki: Janus kinase Inhibitor(s) PIAS: Protein Inhibitor of Activated STAT P-STAT: Phosphorylated STAT STAT: Signal Transducer and Activator of Transcription TYK2: Tyrosine Kinase 2 Wsxws: Tryptophan-Serine-X-Tryptophan-Serine
6

Minaudo, Carla. "Vía JAK-STAT e inhibidores JAK." Dermatología Argentina 28, no. 2 (June 1, 2022): 55–62. http://dx.doi.org/10.47196/da.v28i2.2324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La vía JAK-STAT (Janus Kinasas) es una cadena de traducción de señales intracelulares, que se activa a través de receptores de citoquinas I y II. Mediante esta vía, varias moléculas de importancia en dermatología ejercen sus efectos: IL2, IL4, IL7, IL5, IL6, IL9, IL12, IL13, IL15, IL21, IL23, INFa e INFb, entre otras. También es la señal intracelular de hormonas como la prolactina y la hormona de crecimiento. La inhibición de distintos componentes de esta vía es utilizada como terapéutica en enfermedades reumatológicas y un número cada vez mayor de patologías cutáneas. Los inhibidores JAK surgieron en la práctica médica hace aproximadamente 11 años, con el ruxolitinib y poco tiempo después el tofacitinib. En la actualidad, se dispone de varias moléculas aprobadas y muchas otras en etapa experimental. En este artículo se desarrollarán la organización intracelular y las funciones de la vía JAK-STAT con sus variantes principales relacionadas a enfermedades inmunomediadas, así como las características más relevantes de los inhibidores JAK.
7

Liu, Jia, Faping Wang, and Fengming Luo. "The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms." Biomolecules 13, no. 1 (January 6, 2023): 119. http://dx.doi.org/10.3390/biom13010119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
There are four members of the JAK family and seven of the STAT family in mammals. The JAK/STAT molecular pathway could be activated by broad hormones, cytokines, growth factors, and more. The JAK/STAT signaling pathway extensively mediates various biological processes such as cell proliferation, differentiation, migration, apoptosis, and immune regulation. JAK/STAT activation is closely related to growth and development, homeostasis, various solid tumors, inflammatory illness, and autoimmune diseases. Recently, with the deepening understanding of the JAK/STAT pathway, the relationship between JAK/STAT and the pathophysiology of fibrotic diseases was noticed, including the liver, renal, heart, bone marrow, and lung. JAK inhibitor has been approved for myelofibrosis, and subsequently, JAK/STAT may serve as a promising target for fibrosis in other organs. Therefore, this article reviews the roles and mechanisms of the JAK/STAT signaling pathway in fibrotic diseases.
8

Mirault, Tristan. "Risques cardiovasculaires des inhibiteurs de JAK." JMV-Journal de Médecine Vasculaire 47 (March 2022): S40. http://dx.doi.org/10.1016/j.jdmv.2022.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schieler, Jarod M., and Jeffrey O. Henderson. "Treating a Dysregulated JAK/STAT Pathway in Cancer Cells." Journal of Student Research 5, no. 1 (April 14, 2016): 11–17. http://dx.doi.org/10.47611/jsr.v5i1.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The JAK/STAT pathway is induced by the binding of a cytokine to its cognate receptor. The receptor’s engagement with the cytokine recruits a JAK protein, which activates itself via auto/trans-phosphorylation. In turn, the activated JAKs recruit and phosphorylate STAT proteins. The phosphorylated STAT proteins form a dimer, translocate to the cell nucleus and acts as a transcription factor to induce gene expression. In this way, the JAK/STAT pathway can mediate a cell’s response to extracellular signals. The proteins ultimately induced by the JAK/STAT pathway contribute to processes such as inflammatory response, differentiation, proliferation, and apoptosis. When the JAK/STAT pathway becomes dysregulated, proto-oncogenes and/or tumor-suppressor genes are often inappropriately expressed, commonly resulting in oncogenesis. This review discusses how SOCS, PIAS, and PTPS proteins modulate the JAK/STAT pathway ensuring that it remains cyclic and transient. The use of jakibins, STAT inhibitors, decoy oligonucleotides, RNA interference and genome editing to synthetically regulate a dysregulated JAK/STAT pathway in cancer cells are also considered.
10

Zhan, Xinliang, Yan Wang, and Jing Yang. "Janus Kinase/Signal Converters, and the Transcriptional Activator Signaling Pathway Promotes Lung Cancer Through Increasing M2 Macrophage." Journal of Biomaterials and Tissue Engineering 11, no. 4 (April 1, 2021): 605–11. http://dx.doi.org/10.1166/jbt.2021.2566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Accumulating evidence highlights the salient function of JAK/STAT signaling pathway in tumorigenesis and development. But the mechanism of JAK/STAT signaling in lung cancer remains elusive. This study assessed the impact of JAK/STAT on lung tumorigenesis and its interaction with microenvironment. Mouse model of primary lung cancer was established and then treated with JAK/STAT inhibitor. Immunofluorescence was performed to analyze fluorescent labels. Transwell assay determined the cell migration ability, and Western blot, immunohistochemistry, and immunofluorescence to detect the expression of JAK/STAT key proteins. Cell proliferation was measured by Kit-8 and colony formation. JAK/STAT key proteins were upregulated in lung cancer models. Inhibition of JAK/STAT led to a decrease in proliferative, migratory and invasive capability of lung cancer cells and macrophages from bone marrow and spleen. The cell invasion ability in the bone marrow and the proliferation of macrophages in the treatment group was weakened. When co-cultured with the treated macrophages, the proliferation of LLC1 cells was inhibited. Furthermore, in vitro flow cytometry indicated that JAK/STAT affected lung cancer progression by affecting the polarization of M1/M2 macrophages. Taken altogether, JAK/STAT signal enhances M2 macrophage expression and promotes lung cancer progression.

Dissertations / Theses on the topic "Inhibiteurs de JAK/STAT":

1

Berrabah, Sofia. "Etude de nouvelles cibles thérapeutiques dans les lymphomes compliquant la maladie cœliaque." Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La maladie cœliaque réfractaire de type II (MCRII), autrement appelé lymphome intraépithélial, est une complication rare mais sévère de la maladie cœliaque caractérisée par une expansion clonale d'une population particulière de lymphocytes intraépithéliaux (LIE) innés, présents dans l'intestin normal chez l'Homme comme chez la souris. Notre laboratoire a montré que cette population particulière de LIE innés partage des caractéristiques communes à celles des lymphocytes T et des cellules NK. Ces « LIE iCD3+ innés » sont caractérisées par une expression de CD3 au niveau intracellulaire mais pas à la surface, de récepteurs NK et présentent des réarrangements des gènes codant le récepteur T. En outre, le laboratoire a montré que ces cellules se développent dans l'épithélium intestinal à partir de précurseurs de la moëlle osseuse en réponse à une combinaison de signaux induits à travers la voie NOTCH et l'interleukine 15. Durant la lymphomagénèse, les LIE iCD3+ innés acquièrent des mutations somatiques gain-de-fonction dans JAK1et/ou STAT3. Ces mutations pourraient favoriser l'expansion clonale des LIE iCD3+ mutés aux dépens des lymphocytes T normaux résidents en leur conférant une sensibilité accrue à l'interleukine 15 (IL-15), une cytokine surexprimée dans l'intestin des patients. Ainsi, notre hypothèse est que ces mutations ont un rôle central dans l'initiation de la lymphomagénèse dans un contexte de production chronique d'IL-15 et, de ce fait, représentent une cible thérapeutique. Le premier objectif de ma thèse a été d'étudier l'intérêt des inhibiteurs de la voie JAK/STAT dans le traitement de la MCRII. Dans un premier temps, nous avons testé in vitro différents inhibiteurs de JAK/STAT sur des lignées cellulaires IL-15-dépendantes issues soit de LIE de MCRII soit de LIE T normaux. Nous avons démontré que ces drogues inhibent la prolifération et la phosphorylation de STAT3 et augmentent l'apoptose cellulaire aussi bien dans les LIE MCRII que dans les LIE T normaux. Dans un second temps, nous avons généré un modèle de xénogreffe en injectant des cellules issues de biopsies intestinales ou du sang d'un patient MCRII dans des souris immunodéficientes surexprimant l'IL-15 humaine dans l'épithélium intestinal (Rag-/-Gc-/-IL-15TgE ou IRGC) afin de tester l'efficacité des inhibiteurs de JAK/STAT in vivo. Le traitement des souris xénogreffées par le ruxolitinib, inhibiteur de JAK1/JAK2, a permis une diminution de la fréquence et du nombre ainsi que de l'activité cytotoxique des cellules tumorales humaines et une amélioration de l'état général des souris. Ces résultats encourageants restent à confirmer. Le second objectif de ma thèse a été de vérifier si la mutation pD661V de STAT3 était suffisante pour induire le développement de la MCRII dans un contexte de surproduction d'IL-15 dans des souris IRGC. Nous avons généré avec succès les LIE iCD3+ innés murins semblables aux LIE iCD3+ innés humaines à partir de précurseurs communs aux cellules lymphoïdes (CLP) en combinant un signal NOTCH et IL-15. Nous avons ensuite transduit les CLP avec un vecteur rétroviral contenant Stat3 sauvage ou muté (D661V). Les cellules transduites ont alors été injectées chez des souris IRGC suivies pendant 8 semaines. Les résultats préliminaires ont montré que les LIE iCD3+ innés se logent préférentiellement dans l'intestin mais aucun développement d'un lymphome intraépithélial n'a été observé au bout de 8 semaines suggérant que la mutation pD661V de STAT3 seule ne suffit pas en présence d'IL-15 à induire in vivo un lymphome intraépithélial. Ces résultats préliminaires sont toutefois à reproduire et à confirmer. Le modèle mise en place pour l'étude de STAT3 va désormais être utilisé afin d'évaluer la contribution respective de mutations canoniques de JAK1 et STAT3 et des autres mutations récurrentes retrouvées dans le lymphome intraépithélial
Refractory coeliac disease type II (RCDII), also called intraepithelial lymphoma, is a rare but severe complication of coeliac disease characterized by the clonal expansion of a small subset of innate intraepithelial lymphocytes (IEL), present in the normal human and murine intestine. Our lab has shown that this population displays shared features between T and natural killer (NK) cells. These so-called iCD3+ innate IEL are mainly characterized by intracellular expression of CD3, which is not detected at the cell surface, expression of NK receptors as well as DNA rearrangement of T cell receptor genes. Our lab has also shown that iCD3+ innate IEL originate from bone marrow precursors through coordinated NOTCH1 and interleukin (IL)-15 signals. During lymphomagenesis, iCD3+ innate IEL of most RCDII patients were shown to have acquired somatic gain-of-function mutations in JAK1 and/or STAT3 that confer increased sensitivity to interleukin-15, a cytokine overexpressed in the intestine of coeliac patients, thereby promoting their clonal expansion. Thus, our hypothesis is that JAK1/STAT3 mutations play a key role in initiating lymphomagenesis associated to coeliac disease in an IL-15-rich environment and that they could represent an attractive therapeutic target.The first objective of my thesis was to study the interest of JAK/STAT inhibitors for RCDII treatment. First, we have tested in vitro different JAK/STAT inhibitors on IL-15-dependent RCDII or normal IEL-T cell lines. We have shown that these inhibitors decrease the proliferation and phosphorylation of STAT3 and increase cellular apoptosis in both RCDII and normal T cell lines. Secondly, we have established a xenograft model based on the injection of cells derived from biopsy or blood from one RCDII patient into immunodeficient mice overexpressing the human IL-15 transgene in their gut epithelium (Rag-/-Gc-/- IL-15TgE; IRGC) to test the efficacy of JAK/STAT inhibitors in vivo. Treatment of xenografted mice with ruxolitinib, a potent inhibitor of JAK1/JAK2 decreased the frequency, number and cytotoxic potential of human tumoral cells and allowed clinical restoration. These preliminary results are encouraging but need to be confirmed. The second objective of my thesis was to test whether the Stat3 pD661V mutation is sufficient to induce the intraepithelial lymphoma in an IL-15-rich context in IRGC mice. We have successfully generated murine iCD3+ innate IEL in vitro, resembling their human counterparts from common lymphoid precursors by combining NOTCH and IL-15 signals. We then transduced CLP with a retroviral vector containing wild-type or mutated Stat3 pD661V. The transduced cells were injected into IRGC mice that subsequently were followed-up during a period of 8 weeks. In vitro generated iCD3+ innate IEL preferentially homed to the intestine. However, no development of intraepithelial lymphoma was observed suggesting that the Stat3 pD661V variant alone is not sufficient to induce the intraepithelial lymphoma. These preliminary results need to be reproduced and confirmed. The murine model used to test the role of STAT3 will now be used to evaluate the respective contribution of canonical mutations in JAK1 and STAT3 and of other recurrent mutations identified in RCDII
2

Jungalee, Anouchka. "Implication physiopathologique de l'adaptateur LNK : mécanismes d'action et perspectives thérapeutiques dans les Néoplasmes Myéloprolifératifs." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD017/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’adaptateur LNK est un régulateur négatif des voies de signalisation, dont la voie JAK/STAT,essentielle au développement du système hématopoïétique. Son implication dans les hémopathies chroniques, notamment les Néoplasmes Myéloprolifératifs (NMP), a été mise en évidence par l’analyse de souris invalidées pour cet adaptateur et l’identification de mutations de LNK chez les patients atteints de ces pathologies. Toutefois, le mécanisme permettant la régulation de ses partenaires, dont la kinase JAK2, et l’implication fonctionnelle des mutations de LNK dans les NMP, restent à définir. Ainsi, mon projet de thèse a porté sur l’analyse structurale et fonctionnelle des complexes de signalisation LNK/JAK2 et sur le développement d’une stratégie moléculaire pour l’utilisation thérapeutique de LNK dans les NMP. Nos résultats ont montré pour la première fois, la fonction inhibitrice de la région N-terminale incluant le domaine d’homologie à la Pleckstrine deLNK sur JAK2 normale et de manière plus importante, sur la forme mutée JAK2-V617F, retrouvée chez les patients atteints de NMP. De plus, nos études sur les mutations de LNK localisées dans cette région régulatrice, ont permis de comprendre leur contribution dans le développement de ces hémopathies et de proposer un mécanisme d’inhibition de l’activation de JAK2 par LNK. Nos résultats permettent d’utiliser le ciblage de la région N-terminale de LNK comme stratégie moléculaire inhibant spécifiquement la forme oncogénique JAK2-V617F à l’aide de peptides pénétrants (CPP). A long terme, cette approche pourrait être utilisée comme outil thérapeutique dans le traitement de patients atteints de NMP positifs pour JAK2-V617F
The LNK adaptor protein is a key negative regulator of signalling pathways, such as JAK/STAT, important in the development of the hematopoietic system. Its implication in chronic blood diseases, such as Myeloproliferative Neoplasms (MPN) has been confirmed by studies on Lnk-deficient mice, as well as the identification of LNK mutations in MPN patients. However, the LNK mechanism of regulation on its partners and the functional implication of LNK mutations in MPN pathogenesis, are still unclear. Therefore, my PhD project covers the structural and functional analysis of theLNK/JAK2 signalling complex and the development of a molecular strategy to use LNK as a therapeutic tool for the treatment of MPN patients. Our study showed, for the first time, the inhibitory function of the N-terminal region and the pleckstrin homology domain of LNK on JAK2 activity, which occurs more importantly on JAK-V617F than JAK2 wild type form. Moreover, our study provided evidence on how LNK mutations located in this LNK region could contribute to these haematological diseases and has allowed us to propose a model for LNK regulatory function on JAK2activity. Furthermore, we developed a cell penetrating peptide-based strategy to deliver this regulatory region of LNK in hematopoietic cells to specifically inhibit JAK2-V617F oncogenic form. The finalaim is to use this region as a therapeutic molecule to treat JAK2-V617F-positive MPN patients
3

Is'Harc, Hayaatun. "JAK/STAT signalling." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dawson, M. A. F. "JAK-STAT signalling at chromatin." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The aim of my work was to explore the possibility that the mammalian JAK2 signalling pathway influences the structure and function of chromatin. I have demonstrated that JAK2 is present in the nucleus of both human haematopoietic cell lines and primary cells. My results suggest that JAK2 functions as a histone tyrosine kinase and phosphorylates histone H3 at tyrosine-41 (H3Y41). This novel histone modification, the first described tyrosine phosphorylation on any of the non-variant histones, regulates the binding of heterochromatin protein 1-alpha (HP1α) at a new binding site on chromatin. HP1α uses its chromo-shadow domain to bind the H3Y41 region. Phosphorylation of H3Y41 by JAK2 reduces its affinity for chromatin. This reciprocal relationship was given a functional context by demonstrating its relationship to the expression of a key haematopoietic oncogene Imo2. Genome-wide studies demonstrate that H3Y41ph is present at the 5’ end of genes and is highly correlated with active transcription. This is the first comprehensive genome wide mapping of a histone phosphorylation mark and potentially highlights a role for this novel modification in the regulation of transcription. H3Y41ph was also present at specific cis-regulatory elements on JAK2-STAT5 target genes and genome-wide mapping of STAT5 binding confirmed that STAT5 binding and H3Y41ph was coincident at a significant number of sites within the human genome. This interesting observation suggests that canonical JAK2-STAT5 signalling is not confined to the cytoplasma but also occurs at chromatin. These findings extend the existing paradigm of JAK-STAT signalling and provide a platform for a better understanding of this critical signalling pathway, which is important in both normal development and oncogenesis.
5

Broughton, Nicola Ann. "Specificity in JAK/STAT signal transduction." Thesis, King's College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Wei. "Negative regulation of JAK/STAT pathway /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3112843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vogt, Katja L. "Endocytic regulation of JAK/STAT signalling." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6655/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moore, Rachel. "Regulation of JAK/STAT signalling by endocytosis." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22459/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The JAK/STAT pathway is a highly evolutionarily conserved signal transduction pathway, whose activation can lead to a broad range of cellular outcomes. The pathway is used repeatedly during multiple developmental stages and in adult tissue, and therefore tight regulation is required to enable accurate responses in a context specific manner. Internalisation and endocytic trafficking of signalling components provides a mechanism whereby spatial compartmentalisation can enable distinct signalling outputs. Within this study I have investigated the role of endocytosis in the regulation of the Drosophila melanogaster JAK/STAT pathway, and demonstrated that internalisation and endocytic trafficking differentially regulates target genes. Although the JAK/STAT pathway is transcriptionally competent and can regulate the expression of particular targets when the activated receptor is at the cell surface, receptor endocytosis and localisation to distinct endosomes is required for the expression of other targets. This appears to be context-dependent, as high levels of ligand stimulation overcomes endocytic regulation. STAT92E, the Drosophila JAK/STAT transcription factor, is a target of endocytic regulation. Although it is efficiently activated and undergoes nuclear translocation when endocytosis is perturbed, it is not capable of regulating a subset of target genes and therefore further STAT92E interacting partners and/or post translational modification must be required to fine-tune its transcriptional competency during endocytic trafficking. Utilising mass spectrometry I identified a novel STAT92E phosphorylation site, at threonine 702. Mutation of this threonine to prevent its phosphorylation, resulted in inhibition of STAT92E signalling and nuclear translocation, and also prevented phosphorylation of a highly conserved tyrosine residue at position 704, which is crucial for ligand activated JAK/STAT signalling outputs. Therefore, this study has enhanced our understanding of mechanisms that can modulate JAK/STAT activity. I have revealed an important role for endocytosis in fine- tuning Drosophila JAK/STAT signalling outputs and also identified a novel phosphorylation site which is crucial in the activity of STAT92E.
9

Leal, Cervantes Ana Irene. "Transcriptional consequences of Jak-Stat signalling in haematopoiesis." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Röder, Sabine. "Signaltransduktion durch JAK-STAT-Moleküle bei der Polyzythämia vera." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972175741.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Inhibiteurs de JAK/STAT":

1

Nicholson, Sandra E., and Nicos A. Nicola, eds. JAK-STAT Signalling. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-242-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anastasis, Stephanou, ed. JAK-STAT pathway in disease. Austin, Tex: Landes Bioscience, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Decker, Thomas, and Mathias Müller, eds. Jak-Stat Signaling : From Basics to Disease. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0891-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilks, Andrew F., and Ailsa G. Harpur. Intracellular Signal Transduction: The JAK-STAT Pathway. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22050-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wilks, Andrew F. Intracellular signal transduction: The JAK-STAT pathway. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goswami, Ritobrata. JAK-STAT Signaling in Diseases. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goswami, Ritobrata. JAK-STAT Signaling in Diseases. CRC Press, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephanou, Anastasis, and Bell Richard H. Jr. JAK-STAT Pathway in Disease. Taylor & Francis Group, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goswami, Ritobrata. JAK-STAT Signaling in Diseases. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

H, Bell Jr Richard. JAK-STAT Pathway in Disease. Taylor & Francis Group, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Inhibiteurs de JAK/STAT":

1

Caldow, Marissa K., and David Cameron-Smith. "JAK/STAT Pathway." In Encyclopedia of Exercise Medicine in Health and Disease, 495–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meyer, Thomas, and Uwe Vinkemeier. "JAK-STAT Pathway." In Encyclopedia of Molecular Pharmacology, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21573-6_157-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meyer, Thomas, and Uwe Vinkemeier. "JAK-STAT Pathway." In Encyclopedia of Molecular Pharmacology, 889–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57401-7_157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leonard, Warren J. "The JAK-STAT Pathway." In Hormone Signaling, 103–20. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3600-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vangara, Bhavana S., and Jennifer R. Grandis. "Jak/STAT Signaling in HNC." In Molecular Determinants of Head and Neck Cancer, 163–77. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8815-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stine, Rachel R., and Erika L. Matunis. "JAK-STAT Signaling in Stem Cells." In Transcriptional and Translational Regulation of Stem Cells, 247–67. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6621-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Siddiqui, M. A. Q., and Eduardo Mascareno. "JAK/Stat Signaling in Cardiac Diseases." In Signal Transduction and Cardiac Hypertrophy, 349–56. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0347-7_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vogl, Claus, Priyank Shukla, and Ingo Ebersberger. "Evolution of Jak and Stat Proteins." In Jak-Stat Signaling : From Basics to Disease, 99–114. Vienna: Springer Vienna, 2012. http://dx.doi.org/10.1007/978-3-7091-0891-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilks, Andrew F., and Ailsa G. Harpur. "STFs: STAT-Containing Transcription Factors." In Intracellular Signal Transduction: The JAK-STAT Pathway, 79–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22050-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Croker, Ben A., and Nicos A. Nicola. "The Jak-Stat Pathway of Cytokine Signaling." In Hematopoietic Growth Factors in Oncology, 45–64. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-747-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Inhibiteurs de JAK/STAT":

1

Beeckmans, H., J. E. Mcdonough, L. De Sadeleer, A. Sacreas, A. Vanstapel, J. Kaes, A. Van Herck, et al. "JAK-STAT pathway is upregulated in CLAD." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.1390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fanouriakis, Antonis. "28 JAK-STAT inhibitors in systemic lupus erythematosus." In 12th Annual Meeting of the Lupus Academy; Virtual Pre-meeting: September 1, 2023; Hybrid Annual Meeting (Barcelona): September 8–10, 2023. Lupus Foundation of America, 2023. http://dx.doi.org/10.1136/lupus-2023-la.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elahi, Abul, Jonathan M. Hernandez, and David Shibata. "Abstract 3064: HPP1 tumor suppression and JAK-STAT signaling." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohbeddin, Abeer, Nawar Haj Ahmed, and Layla Kamareddine. "The use of Drosophila Melanogaster as a Model Organism to study the effect of Innate Immunity on Metabolism." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Apart from its traditional role in disease control, recent body of evidence has implicated a role of the immune system in regulating metabolic homeostasis. Owing to the importance of this “immune-metabolic alignment” in dictating a state of health or disease, a proper mechanistic understanding of this alignment is crucial in opening up for promising therapeutic approaches against a broad range of chronic, metabolic, and inflammatory disorders like obesity, diabetes, and inflammatory bowel syndrome. In this project, we addressed the role of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) innate immune pathway in regulating different metabolic parameters using the Drosophila melanogaster (DM) fruit fly model organism. Mutant JAK/STAT pathway flies with a systemic knockdown of either Domeless (Dome) [domeG0282], the receptor that activates JAK/STAT signaling, or the signal-transducer and activator of transcription protein at 92E (Stat92E) [stat92EEY10528], were used. The results of the study revealed that blocking JAK/STAT signaling alters the metabolic profile of mutant flies. Both domeG0282 and stat92EEY10528 mutants had an increase in body weight, lipid deprivation from their fat body (lipid storage organ in flies), irregular accumulation of lipid droplets in the gut, systemic elevation of glucose and triglyceride levels, and differential down-regulation in the relative gene expression of different peptide hormones (Tachykinin, Allatostatin C, and Diuretic hormone 31) known to regulate metabolic homeostasis in flies. Because the JAK/STAT pathway is evolutionary conserved between invertebrates and vertebrates, our potential findings in the fruit fly serves as a platform for further immune-metabolic translational studies in more complex mammalian systems including humans.
5

De Velasco, Marco A., Yurie Kura, Naomi Ando, Emiko Fukushima, Yuji Hatanaka, Yutaka Yamamoto, Nobutaka Shimizu, et al. "Abstract 906: Therapeutic potential of JAK/STAT signal inhibition in prostate cancer by the JAK inhibitor AZD1480." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Montazeri Aliabadi, Hamidreza, Emira Bousoik, and Parvin Mahdipoor. "Abstract B087: A systematic approach to JAK/STAT pathway shut-down." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-b087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clarke, DL, EL Hardaker, MC Catley, MA Birrell, and MG Belvisi. "Inhibition of JAK/STAT Signalling: A Novel Therapy for Steroid Resistant Asthma?." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Denk, Dagmar, Klaus Fortschegger, and Sabine Strehl. "Abstract 2171: The fusion protein PAX5-JAK2 constitutively activates JAK-STAT signaling." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jingjing, Gong, Izhar S. Batth, and Addanki P. Kumar. "Abstract 3544: Jak/Stat signaling: A potential target for pancreatic cancer management." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yew-Booth, Liang, Ming Sum Lau, Steven M. Evans, Iain Kilty, Maria G. Belvisi, and Mark A. Birrell. "Activation Of The JAK/STAT Pathway In The Lungs Of COPD Patients." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4546.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Inhibiteurs de JAK/STAT":

1

Brooks-Kayal, Amy, and Bret Smith. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada612534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Bret N. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada613987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brooks-Kayal, Amy, Lauren Frey, and Bret N. Smith. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada614126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Bret N. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada568150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brooks-Kayal, Amy. Jak/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada568663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Bret N. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada586062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neilson, Lynn. Prolactin Receptor Coupling to Jak-Stat Pathways in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada485255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neilson, Lynn. Prolactin Receptor Coupling to Jak-Stat Pathways in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, July 2007. http://dx.doi.org/10.21236/ada472476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clevenger, Charles V., and Anthony A. Kossiakoff. Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada543162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clevenger, Charles. Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada551381.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography