Academic literature on the topic 'Ingénierie du tissus osseux'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ingénierie du tissus osseux.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ingénierie du tissus osseux"
Amédée-Vilamitjana, J. "Intérêt de la coopération ostéoendothéliale en ingénierie du tissu osseux." ITBM-RBM 26, no. 3 (June 2005): 223–28. http://dx.doi.org/10.1016/j.rbmret.2005.04.003.
Full textMyon, L., J. Ferri, F. Chai, N. Blanchemain, and G. Raoul. "Ingénierie du tissu osseux oro-maxillofacial par combinaison de biomatériaux, cellules souches, thérapie génique." Revue de Stomatologie et de Chirurgie Maxillo-faciale 112, no. 4 (September 2011): 201–11. http://dx.doi.org/10.1016/j.stomax.2011.06.002.
Full textMcCulloch, Robert G., and Donald A. Bailey. "Calcium Intake and Bone Density: A Review." Canadian Journal on Aging / La Revue canadienne du vieillissement 9, no. 2 (1990): 167–76. http://dx.doi.org/10.1017/s0714980800013143.
Full textIsaac, Juliane, Mélodie M. Clerc, François C. Ferré, and Benjamin P. J. Fournier. "Les cellules mésenchymateuses orales, une niche spécifique, du développement à la régénération." médecine/sciences 40, no. 1 (January 2024): 24–29. http://dx.doi.org/10.1051/medsci/2023191.
Full textDiCarlo, Antonio, Salah Naili, and Sara Quiligotti. "Sur le remodelage des tissus osseux anisotropes." Comptes Rendus Mécanique 334, no. 11 (November 2006): 651–61. http://dx.doi.org/10.1016/j.crme.2006.06.009.
Full textVinatier, Claire, Laurence Bordenave, Jérôme Guicheux, and Joëlle Amédée. "Les cellules souches en ingénierie des tissus ostéoarticulaires et vasculaires." médecine/sciences 27, no. 3 (March 2011): 289–96. http://dx.doi.org/10.1051/medsci/2011273289.
Full textSommelet, D. "Tumeurs solides: les sarcomes osseux et des tissus mous." Archives de Pédiatrie 6 (January 1999): S337—S340. http://dx.doi.org/10.1016/s0929-693x(99)80460-6.
Full textRaoul, G., L. Myon, F. Chai, N. Blanchemain, and J. Ferri. "Ingénierie d’un lambeau osseux vascularisé à destinée maxillofaciale : les limites techniques." Revue de Stomatologie et de Chirurgie Maxillo-faciale 112, no. 4 (September 2011): 249–61. http://dx.doi.org/10.1016/j.stomax.2011.07.003.
Full textDauphin, Yannicke. "La fossilisation des tissus dentaires et osseux : structure, composition, implications." Les Nouvelles de l'archéologie, no. 138 (January 29, 2015): 5–10. http://dx.doi.org/10.4000/nda.2663.
Full textDallel, Ines, Mourad Khemiri, Safa Fathallah, Salwa Ben Rejeb, Samir Tobji, and Adel Ben Amor. "Le repositionnement incisif : une nouvelle approche en orthodontie." L'Orthodontie Française 86, no. 4 (December 2015): 327–38. http://dx.doi.org/10.1051/orthodfr/2015031.
Full textDissertations / Theses on the topic "Ingénierie du tissus osseux"
Grellier, Adeline Maritie. "La communication ostéo-endothéliale : application en ingénierie du tissu osseux." Bordeaux 2, 2008. http://www.theses.fr/2008BOR21560.
Full textBone development and remodelling are dependant on a tight cell cooperation between osteoblastic and osteoclastic cell types, responsible for bone formation and degradation, respectively. Angiogenesis is also a key process involved in these mechanisms and cell communication between osseous and endothelial cells is fundamental This work aims to study the cell communication between human osteoprogenitors (HOPs) arising from bone marrow and human endothelial cells (human umbilical cord endothelial cells : HUVECs). This osteo-endothelial communication was analysed using a well defined in vitro co-culture model in 2D but also into a 3D system into alginate microsphères which were then implanted in vivo in a bone defect in nude mice. In a first part, the HOPs were submitted to a mechanical stress which is an important parameter for the physiology of bone. Their ability to regulate their phenotype was demonstrated under shear stress. In co-culture wuth HUVECs, the phenotype was regulated and VEGF (vascular endothelial growth factor seems to be involved in this regulation. The endothelial phenotype was also regulated in co-culture since HUVECs migration led to a tubular-like cell rearrangement. Into alginate microspheres cultured in vitro, the HUVECs stimulated the osteoblastic phenotype of HOPs. Moreover, after implantation in a bone defect in vivo, the HUVECs enhanced the HOP-induced mineralization. This work shows that the cells are able to communicate and seems promising for the development of new tissue engineering strategies
Ho-Shui-Ling, Antalya. "Etude 2D et 3D de la régénération osseuse à la surface et au sein de biomatériaux architecturés et ostéo-inductifs." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI087.
Full textTo date, titanium-based alloys (Ti) remain the most used implantable materials for load-bearing applications. Emerging additive manufacturing techniques such as electron beam melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In very difficult clinical situations, potent bioactive signals are needed to boost stem cells: osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used for this purpose. However, one of their limitations is their inappropriate delivery with collagen sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-7). The porosity was well controlled with a difference from CAD models of less than 1%. The osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film was characterized using optical and electron microscopy techniques. Finally, the 3D architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at the early stage in vitro. Preliminary experiments are currently done to assess their performance in an in vivo model of a critical size femoral bone defect in rat
Fénelon, Mathilde. "La MAH en ingénierie tissulaire : application à la régénération du tissu osseux." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0241.
Full textGuided bone regeneration (GBR) is commonly used to repair damaged bone. GBR is based on the application of a membrane which will act as a physical barrier to isolate the intended bone-healing space. The development of bioactive membranes has been suggested to overcome some limitations of the currently used membrane. Due to its biological properties, the human amniotic membrane (HAM) is a new biological membrane option for GBR. This study aimed at investigating the most suitable conditions to use HAM for GBR. First, the influence of both HAM sides and the impact of cryopreservation were studied. Then, a new decellularization process of HAM, that is simple and reproducible, has been developed. In a third part, bone regeneration of non-critical and critical sized defects depending on the preservation method of HAM was assessed in rodents. Results showed that neither stem cells found in HAM, nor the HAM layer used to cover the defect had an influence on its potential for bone regeneration. The most promising results were achieved with the decellularized/lyophilized HAM for the field of bone regeneration
Catros, Sylvain. "Etude de la Micro-Impression d'Eléments Biologiques par Laser pour l'Ingénierie du Tissu Osseux." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14108/document.
Full textBone Tissue Engineering is a multidisciplinary field which aims to produce artificial tissues for regenerative medicine. The purpose of this work was to produce three-dimensional bone substitute using a laser-assisted bioprinting (LAB) workstation developped in the laboratory INSERM U577 (TEAL Project: Tissue Engineering Assisted by Laser). The first step of the work consisted in the synthesis of specific materials for LAB and in the characterization of their biological and physico-chemical properties. We have prepared a nano-hydroxyapatite bioink, human cells bioinks and hydrogels bioinks. Then, three-dimensional materials have been prepared using LAB and have been implanted in vivo in mice. The results have shown that Laser Assisted Bioprinting is an efficient method fo patterning 3-D materials using biolgical elements
Maisani, Mathieu. "Conception et développement d’hydrogels pour l’ingénierie tissulaire appliquée au tissu osseux." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0667/document.
Full textNew strategies to overcome the clinical limitations of current techniques for bone defect filling and regeneration has led to the involvement of bone tissue engineering. Indeed, strategies based on tissue engineering techniques seem to be an alternative to the use of grafts and thus to defeat their limits. The approach employed in this thesis consists in development and use of hydrogels as scaffold materials for bone defect filling and regeneration. There are many approaches that also use hydrogels, each one with its advantages and limitations. In this context, our work consisted in the use of a non-polymeric hydrogel as basic material in the development of strategies for bone tissue engineering. Briefly, several cell types are present within bone tissue and will participate in the processes of bone formation and regeneration. The objective of our strategies was the contribution of exogenous stem cells and then their differentiation into osteogenic cells or the recruitment and differentiation of the host cells into osteogenic cells within the material. The GNF gel was used as a three-dimensional matrix considering its properties of injectability, gelation in the absence of toxic crosslinking agent and its osteoinductive potential. The goal was to develop strategies for bone tissue engineering by combining the GNF gel with a natural matrix of cellular collagen or bioactive molecules to promote the regeneration of bone lesions. This work allowed to develop and characterize strategies relevant to the regeneration of bone lesions based on the use of hydrogels
Hamdan, Ahmad. "Effets de dérivés sanguins sur le comportement de cellules ostéogéniques en culture : applications en ingénierie tissulaire osseuse." Paris 7, 2009. http://www.theses.fr/2009PA07G001.
Full textTissue engineering is a new domain developed in the aim of restoring, replacing or maintaining biological functions and tissue integrity. H implies the seeding of stem cells on 3D scaffolds in the presence of proper signaling molecules to promote cellular activity. The use of autologous products is preferred, when possible, in order to avoid ail risk associated with the use of allogenous or xenogenous products. Blood derivatives represent a potential autologous source for growth factors as well as other moiecules that couid be used in tissue engineering. Our objective was to evaluate, in an in vitro model, the effects of 2 blood derivatives on the behavior of rat calvaria osteoblastic cells. In the first part, we evaluated the effects of a homologous serum on osteoblastic ce11 proliferation and differentiation. In the second part of this work, we studied the in vitro effects of a new 3D scaffold of blood origin, globin, on osteoblastic cells. Our results show that these 2 blood derivatives are capable of stimulating osteoblastic cell activity and could find, in the future, clinical applications in the field of human bone tissue engineering
Babilotte, Joanna. "BioFabrication par assemblage couche par couche pour l’ingénierie du Tissu Osseux." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0048.
Full textIn several clinical cases, dental implant placement can be hindered if the alveolar bone volume is limited. Current surgical methods for alveolar bone regeneration are not fully satisfying, and more reliable methods to regenerate bone is needed. Several biomaterials for bone substitution are available. However, they do not possess all the necessary properties for complete bone regeneration, as they lack osteoinductive and osteogenic potential.Tissue engineering can provide solutions for current issues in bone reconstruction. Tissue engineering strategies combine engineered scaffold with cells and suitable biochemical soluble factors. To produce the scaffold several techniques are available. These last years rapid prototyping technologies gained a huge interest, as they offer reproducibility and important resolution. The current issues remaining to produce living tissue constructs by bone tissue engineering techniques are related to cell seeding inside the macroporous scaffold. The conventional approach involves seeding cells onto a macroporous scaffold and expects cell colonization to form composite tissue constructs. Many limitations have been observed using this approach, due to slow vascularization, limited diffusion of nutrients, low cell density and non-uniform cell distribution.This project aims to address the limitations of scaffold-based bone tissue engineering, by organizing osteoprogenitor cells inside the scaffold. Based on previous results, we choose to use a layer-by-layer approach. This layer-by-layer fabrication method, also called “sandwich” in this work, should favor cell-material interaction and facilitate the maturation of these constructs. Finally, the amount and quality of tissue regenerated should be enhanced.The first part of the project consisted in the fabrication of scaffolds membranes. We have developed a new material, made of medical-grade poly(lactic-co-glycolic) acid (PLGA) mixed with hydroxyapatite nanoparticles (nHA), in the shape of a filament for 3D printing by Fused Deposition Modelling (FDM). PLGA was chosen for its biodegradation rate and its mechanical properties close to human cortical bone. Nanoparticles of HA were included to improve the bioactivity of the material for bone tissue engineering applications. Then, these materials were characterized for mechanical and physico-chemical properties before in vitro and in vivo studies. In these parts, we used the stromal vascular fraction of adipose tissue, to be closer to a potential clinical translation. The survival, proliferation and differentiation of the cells were evaluated. Finally, bone regeneration was observed after implantation of the constructs in a rat bone calvaria defect model
Froment, Aurélien. "Caractérisation structurale d'hydroxyapatites carbo-silicatées par RMN du solide : applications à l'ingénierie du tissu osseux." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS435.
Full textBioceramics based on calcium phosphates, and more particularly hydroxyapatite (HA, Ca10(PO4)6(OH)2) are widely popular for applications linked to bone filling. These osteoconductive macroporous bioceramics provide a function of supporting bone regrowth, but the volumes are weak and only located on the edges of the host tissue. These bioceramics also have a limited capacity to promote osteogenesis and angiogenesis at the heart of the implant and do not degrade according to a kinetic concomitant with that of the formation of new tissues. These limits have revealed the need to develop a new generation of biomaterials for clinical applications of regenerative medicine, biomaterials no longer only having the capacity to accommodate bone regrowth but must stimulate it. Carbo-silicate hydroxyapatites for which structural knowledge is very weak or almost non-existent are serious candidate materials for this new generation of biomaterials. The double substitution in carbonate ion, promotes the properties of biodegradation and osteoconduction, and in silicate ion, which in soluble form promotes bone formation, is a source of structural modifications that can lead to the modulation of the biological properties of those biomaterials. Structural knowledge of these new materials is therefore necessary before being able to classify them as future candidates for applications. The LCMCP has long had proven expertise in "NMR crystallography" in order to determine the structural properties of materials using characterization techniques. conventional and solid-phase NMR
Barou, Carole. "Conception d'un ciment à base de phosphates de calcium pour la reconstruction osseuse et la libération de médicaments." Electronic Thesis or Diss., Montpellier, Ecole nationale supérieure de chimie, 2022. http://www.theses.fr/2022ENCM0019.
Full textThe treatment of bone is a challenge due to the difficulty that has the bone to repair itself. Several surgical situations sometimes require the application of auto- and allografts. Autologous bone grafting is the gold-standard treatment for bone reconstruction as it is the only that can provide osteoinductive growth factors, osteogenic cells and osteoconductive scaffold. These procedures present many limitations including donor site morbidity, increased operative time and providing insufficient quantity or quality. There is therefore a need to develop novel therapeutic strategies able to exploit the natural regenerative potential of bone and that can be delivered in a less invasive manner. Among the materials studied for the development of novel scaffolds, calcium phosphate cements provide many advantages due to its biological performances, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. The aim of this thesis is the development and characterization of novel calcium phosphate based cements for bone regeneration. Our goal is to develop new original processes for the development of injectable scaffolds. The major advantage of such structures lies in the perfect biocompatibility with the mechanical properties similar to those of bone
Realista, Coelho Dos Santos Pedrosa Catarina. "Nanotopographies bioactives pour le contrôle de la différenciation des cellules souches mésenchymateuses pour des applications en ingénierie de tissu osseux." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0319/document.
Full textNanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by inability to precisely control geometries, especially at high spatial resolutions, and across practically large areas. This work allowed the fabrication of well-controlled and periodic nanopillar arrays of silicon to investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs). Silicon nanopillar arrays with critical dimensions in the range of 40-200 nm, exhibiting standard deviations below 15% across full wafers were realized using self-assembly of block copolymer colloids. To investigate if modifications of surface chemistry could further improve the modulation of hMSC differentiation, mimetic peptides were grafted on the fabricated nanoarrays. A peptide known for its ability to ameliorate cell adhesion (RGD peptide), a synthetic peptide able to enhance osteogenesis (BMP-2 mimetic peptide), and a combination or both molecules were covalently grafted on the nanostructures.Immunofluorescence and quantitative polymerase chain reaction (RT-qPCR) measurements reveal clear dependence of osteogenic differentiation of hMSCs on the diameter and periodicity of the arrays. Moreover, the differentiation of hMSCs was found to be dependent on the age of the donor. Surface functionalization allowed additional enhancement of the expression of osteogenic markers, in particular when RGD peptide and BMP-2 mimetic peptide were co-immobilized. These findings can contribute for the development of personalized treatments of bone diseases, namely novel implant nanostructuring depending on patient age
Books on the topic "Ingénierie du tissus osseux"
Athanasou, Nikos. Colour atlas of bone, joint, and soft tissue pathology. Oxford: Oxford University Press, 1999.
Find full textB, Renner Jordan, ed. Diagnostic musculoskeletal surgical pathology: Clinicoradiologic and cytologic correlations. Philadelphia: W.B. Saunders, 2004.
Find full textTestut, Jean Léo 1849-1925. Vaisseaux et Nerfs des Tissus Conjonctif, Fibreux, Séreux et Osseux: Anatomie et Physiologie. Creative Media Partners, LLC, 2018.
Find full textSzmydke-Cacciapalle, Paulina. Making Jeans Green: Linking Sustainability, Business and Fashion. Taylor & Francis Group, 2018.
Find full textSzmydke-Cacciapalle, Paulina. Making Jeans Green: Linking Sustainability, Business and Fashion. Routledge, 2018.
Find full textMaking Jeans Green. Routledge, 2018.
Find full textKilpatrick, Scott E. Diagnostic Musculoskeletal Surgical Pathology. Saunders, 2003.
Find full textBook chapters on the topic "Ingénierie du tissus osseux"
Antoni, Rodolphe, and Laurent Bourgois. "Interaction des rayonnements ionisants dans les tissus : évaluations du kerma et de la dose absorbée." In Ingénierie et Développement Durable, 43–148. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0311-1_2.
Full textLAURENT, Cédric. "Biomécanique du ligament croisé antérieur (LCA)." In Mécanique des tissus vivants, 207–42. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9160.ch7.
Full textSAPIN-DE BROSSES, Émilie, and David MITTON. "Biomécanique du tissu osseux et de ses interactions avec les tissus environnants." In Mécanique des tissus vivants, 289–319. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9160.ch9.
Full textReiche, Ina, Aurélien Gourrier, and Jolanda Spadavecchia. "De l’analyse des ivoires archéologiques dorés à la synthèse archéo-inspirée des nanoparticules hybrides pour les applications biomédicales." In Regards croisés: quand les sciences archéologiques rencontrent l'innovation, 123–38. Editions des archives contemporaines, 2017. http://dx.doi.org/10.17184/eac.3793.
Full textConference papers on the topic "Ingénierie du tissus osseux"
Degorce, T. "Le défaut osseux antérieur : un défi esthétique et chirurgical." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601002.
Full textKeller, P. "De la reconstruction simple à la reconstruction complexe, pourquoi prélever de l’os autogène ?" In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601003.
Full textMaximini, G. "Gestion chirurgicale des défauts osseux verticaux postérieurs." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601010.
Full textAroca, S. "La muqueuse péri-implantaire : nécessité esthétique ou fonctionnelle ? Intérêt de l’augmentation de tissus mous peri-implantaires." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601015.
Full textDesoutter, A., A. G. Bodard, S. Langonnet, S. Salino, and J. C. Bera. "Développement d’un modèle expérimental d’irradiation de mandibule de lapin. Intérêt dans l’évaluation de nouvelles techniques de traitement ou prévention de l’ORN." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603023.
Full textVo Quang Costantini, S., S. Petit, A. Nassif, F. Ferre, and B. Fournier. "Perspectives thérapeutiques du matrisome gingival dans la cicatrisation pathologique." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602013.
Full textGossiome, C., F. Rufino, G. Herve, M. Benassarou, P. Goudot, V. Descroix, and G. Lescaille. "Découverte fortuite d’une lésion mandibulaire, un cas de kyste anévrismal." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603020.
Full textLe Choismier, H. "Un transporteur d’oxygène universel d’origine marine au service de la santé." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601009.
Full textHascoet, E., G. Valette, G. Le Toux, and S. Boisramé. "Proposition d’un protocole de prise en charge implanto-portée de patients traités en oncologie tête et cou suite à une étude rétrospective au CHRU de Brest." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602009.
Full text