Journal articles on the topic 'InGaN'

To see the other types of publications on this topic, follow the link: InGaN.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'InGaN.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cheng, Liwen, Zhenwei Li, Jiayi Zhang, Xingyu Lin, Da Yang, Haitao Chen, Shudong Wu, and Shun Yao. "Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes." Nanomaterials 11, no. 8 (August 15, 2021): 2070. http://dx.doi.org/10.3390/nano11082070.

Full text
Abstract:
An InGaN laser diode with InGaN–GaN–InGaN delta barriers was designed and investigated numerically. The laser power–current–voltage performance curves, carrier concentrations, current distributions, energy band structures, and non-radiative and stimulated recombination rates in the quantum wells were characterized. The simulations indicate that an InGaN laser diode with InGaN–GaN–InGaN delta barriers has a lower turn-on current, a higher laser power, and a higher slope efficiency than those with InGaN or conventional GaN barriers. These improvements originate from modified energy bands of the laser diodes with InGaN–GaN–InGaN delta barriers, which can suppress electron leakage out of, and enhance hole injection into, the active region.
APA, Harvard, Vancouver, ISO, and other styles
2

Kuo, Yen-Kuang, Tsun-Hsin Wang, and Jih-Yuan Chang. "Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers." Applied Physics Letters 100, no. 3 (January 16, 2012): 031112. http://dx.doi.org/10.1063/1.3678341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Seoung-Hwan. "Light emission characteristics of blue strain-compensated InGaN/InGaN/InGaN light-emitting diodes." Journal of the Korean Physical Society 66, no. 2 (January 2015): 277–81. http://dx.doi.org/10.3938/jkps.66.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Liwen, Xingyu Lin, Zhenwei Li, Da Yang, Jiayi Zhang, Jundi Wang, Jiarong Zhang, and Yuru Jiang. "Performance Enhancement of InGaN Light-Emitting Diodes with InGaN/GaN/InGaN Triangular Barriers." ECS Journal of Solid State Science and Technology 10, no. 8 (August 1, 2021): 086004. http://dx.doi.org/10.1149/2162-8777/ac1c53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Seoung-Hwan, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, and Doyeol Ahn. "Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate." physica status solidi (a) 208, no. 1 (September 27, 2010): 195–98. http://dx.doi.org/10.1002/pssa.201026420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siekacz, M., A. Feduniewicz-Żmuda, G. Cywiński, M. Kryśko, I. Grzegory, S. Krukowski, K. E. Waldrip, et al. "Growth of InGaN and InGaN/InGaN quantum wells by plasma-assisted molecular beam epitaxy." Journal of Crystal Growth 310, no. 17 (August 2008): 3983–86. http://dx.doi.org/10.1016/j.jcrysgro.2008.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Yu-Jue, and Yi-Ping Zeng. "Enhanced performance of InGaN light-emitting diodes with InGaN and composition-graded InGaN interlayers." Applied Physics A 116, no. 4 (February 23, 2014): 1757–60. http://dx.doi.org/10.1007/s00339-014-8321-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manzoor, H. U., M. A. Md Zawawi, M. Z. Pakhuruddin, S. S. Ng, and Z. Hassan. "High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell." Physica B: Condensed Matter 622 (December 2021): 413339. http://dx.doi.org/10.1016/j.physb.2021.413339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yang, Zhiyou Guo, Jing Li, Fangzheng Li, Chu Li, Xuna Li, Hong Lin, et al. "Performance enhancement of InGaN-based light-emitting diodes with InGaN/AlInN/InGaN composition-graded barriers." Semiconductor Science and Technology 30, no. 12 (November 17, 2015): 125014. http://dx.doi.org/10.1088/0268-1242/30/12/125014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SIZOV, D. S., V. S. SIZOV, V. V. LUNDIN, E. E. ZAVARIN, A. F. TSATSUL'NIKOV, YU G. MUSIKHIN, A. S. VLASOV, et al. "INVESTIGATIONS OF InGaN/GaN AND InGaN/InGaN QDS GROWN IN A WIDE PRESSURE MOCVD REACTOR." International Journal of Nanoscience 06, no. 05 (October 2007): 327–32. http://dx.doi.org/10.1142/s0219581x07004882.

Full text
Abstract:
InGaN quantum dot (QD) formation in a wide pressure range MOCVD reactor was studied. The existence of QDs and their lateral size (2–5 nm) were demonstrated using transmission electron microscopy and high spatial resolution (~ 100 nm) near-field magneto-photoluminescence spectroscopy. We found that an increase of the reactor pressure from 400 to 1000 mbar leads to an order of magnitude increase in light emission efficiency of the InGaN / GaN QDs accompanied by ~ 100 meV redshift of the emission wavelength. We explored stimulated phase separation (SPS) to control carrier localization and emission wavelength. The SPS was achieved by adding In in the matrix material. This leads to formation of extremely deep InGaN / InGaN QDs having energy localization up to ~ 0.8 eV, which was revealed from selectively excited far-field photoluminescence (PL) spectra. Without SPS the QD activation energy is found to be below 0.2 eV. A nonequilibrium carrier population strongly suppresses the temperature-induced shift of the PL emission in deep InGaN QDs.
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, J., Y. G. Zhou, J. Zhu, K. M. Lau, and K. J. Chen. "AlGaN/GaN/InGaN/GaN HEMTs with an InGaN-notch." physica status solidi (c) 3, no. 6 (June 2006): 2312–16. http://dx.doi.org/10.1002/pssc.200565168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ju, James (Zi-Jian), Bo Sun, Georg Haunschild, Bernhard Loitsch, Benedikt Stoib, Martin S. Brandt, Martin Stutzmann, Yee Kan Koh, and Gregor Koblmüller. "Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices." AIP Advances 6, no. 4 (April 2016): 045216. http://dx.doi.org/10.1063/1.4948446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kuo, Yen-Kuang, Tsun-Hsin Wang, and Jih-Yuan Chang. "Blue InGaN Light-Emitting Diodes With Multiple GaN-InGaN Barriers." IEEE Journal of Quantum Electronics 48, no. 7 (July 2012): 946–51. http://dx.doi.org/10.1109/jqe.2012.2192717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Suzuki, Naoki, Kazuaki Kouyama, Yuta Insose, Hideyuki Kunugita, Kazuhiro Ema, Hiroto Sekiguchi, Akihiko Kikuchi, and Katumi Kisino. "Optical properties of InGaN/GaN SQD nanocolumn and InGaN nanocolumn." Physics Procedia 2, no. 2 (August 2009): 327–33. http://dx.doi.org/10.1016/j.phpro.2009.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Son, J. K., S. N. Lee, T. Sakong, H. S. Paek, O. Nam, Y. Park, J. S. Hwang, J. Y. Kim, and Y. H. Cho. "Enhanced optical properties of InGaN MQWs with InGaN underlying layers." Journal of Crystal Growth 287, no. 2 (January 2006): 558–61. http://dx.doi.org/10.1016/j.jcrysgro.2005.10.071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hasan, Md Tanvir, Md Rejvi Kaysir, Md Sherajul Islam, Ashraful G. Bhuiyan, Md Rafiqul Islam, A. Hashimoto, and A. Yamamoto. "2DEG properties in InGaN/InN/InGaN-based double channel HEMTs." physica status solidi (c) 7, no. 7-8 (June 10, 2010): 1997–2000. http://dx.doi.org/10.1002/pssc.200983608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Park, Seoung-Hwan, Tae-Hoon Chung, Jong Hyeob Baek, and Doyeol Ahn. "Reduction of efficiency droop in green strain-compensated InGaN/InGaN light-emitting diodes grown on InGaN substrate." Japanese Journal of Applied Physics 54, no. 2 (January 8, 2015): 022101. http://dx.doi.org/10.7567/jjap.54.022101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Alam, Saiful, Suresh Sundaram, Xin Li, Youssef El Gmili, Miryam Elouneg-Jamroz, Ivan Christophe Robin, Gilles Patriarche, Jean-Paul Salvestrini, Paul L. Voss, and Abdallah Ougazzaden. "Emission wavelength red-shift by using “semi-bulk” InGaN buffer layer in InGaN/InGaN multiple-quantum-well." Superlattices and Microstructures 112 (December 2017): 279–86. http://dx.doi.org/10.1016/j.spmi.2017.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yang, Yujue, and Yiping Zeng. "Enhanced performance of InGaN light-emitting diodes with InGaN/GaN superlattice and graded-composition InGaN/GaN superlattice interlayers." physica status solidi (a) 211, no. 7 (April 28, 2014): 1640–44. http://dx.doi.org/10.1002/pssa.201431088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Park, Seoung-Hwan, Doyeol Ahn, Bun-Hei Koo, and Jong-Wook Kim. "Internal Efficiency of Staggered InGaN/InGaN Quantum-Well Light-Emitting Diodes." Journal of the Korean Physical Society 54, no. 6 (June 15, 2009): 2464–67. http://dx.doi.org/10.3938/jkps.54.2464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kuo, Yen-Kuang, Tsun-Hsin Wang, Jih-Yuan Chang, and Miao-Chan Tsai. "Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers." Applied Physics Letters 99, no. 9 (August 29, 2011): 091107. http://dx.doi.org/10.1063/1.3633268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lundskog, A., J. Palisaitis, C. W. Hsu, M. Eriksson, K. F. Karlsson, L. Hultman, P. O. Å. Persson, U. Forsberg, P. O. Holtz, and E. Janzén. "InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids." Nanotechnology 23, no. 30 (July 11, 2012): 305708. http://dx.doi.org/10.1088/0957-4484/23/30/305708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Graber, A., R. Averbeck, U. Barnhöfer, H. Riechert, and Helmut Tews. "Optical Characterization of InGaN Layers and GaN/InGaN/GaN Double Heterostructures." Materials Science Forum 264-268 (February 1998): 1311–14. http://dx.doi.org/10.4028/www.scientific.net/msf.264-268.1311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shi, Linyu, Jincheng Zhang, Hao Wang, Junshuai Xue, Xinxiu Ou, Xiaofan Fu, Ke Chen, and Yue Hao. "Growth of InGaN and double heterojunction structure with InGaN back barrier." Journal of Semiconductors 31, no. 12 (December 2010): 123001. http://dx.doi.org/10.1088/1674-4926/31/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Naoi, H., M. Kurouchi, D. Muto, S. Takado, T. Araki, T. Miyajima, H. Na, and and Y. Nanishi. "Growth and properties of InN, InGaN, and InN/InGaN quantum wells." physica status solidi (a) 203, no. 1 (January 2006): 93–101. http://dx.doi.org/10.1002/pssa.200563526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tülek, Remziye. "Photoluminescence Properties of InGaN/InGaN MQWs with Different Electron Injection Layers." European Journal of Applied Physics 5, no. 1 (February 20, 2023): 29–34. http://dx.doi.org/10.24018/ejphysics.2023.5.1.239.

Full text
Abstract:
The structural and optical properties of InxGa1-xN/InyGa1-yN multi quantum well (MQW) light emitting devices with/without electron injection layers were studied. The samples with electron injection layer consist of step-graded (GIE) and two step staircase (SEI) electron injection layer between n-type GaN and MQWs active region. Edge and screw type of dislocation densities were deduced from High Resolution X-Ray Diffraction (HR-XRD) curves and no significant difference were realized. The zeroth and higher order satellite peaks were more clearly observed in the sample without electron injection layer. Optical characterization was carried out by temperature dependent photoluminescence (PL) technique. It was found that the PL densities of samples with step-graded and two step-staircase electron injection layers had almost two times lower temperature dependence compared to the reference sample without electron injection layer. On the other hand, the line width of the photoluminescence peak associated with MQWs is much narrower at low temperature for sample without electron injection layer than the other two samples.
APA, Harvard, Vancouver, ISO, and other styles
27

Okada, Narihito, and Kazuyuki Tadatomo. "Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells." Crystals 12, no. 10 (September 27, 2022): 1373. http://dx.doi.org/10.3390/cryst12101373.

Full text
Abstract:
We report the growth and characterization of thick, completely relaxed {11-22}-oriented InGaN layers using epitaxial lateral overgrowth (ELO). Although it was difficult to grow ELO-InGaN layers on patterned GaN templates, we succeeded in growing ELO-InGaN layers on a patterned InGaN template. The full width at half maximum of the X-ray rocking curve of ELO-InGaN on the InGaN templates was less than that of non-ELO InGaN. The photoluminescence intensity of InGaN/GaN multiple quantum wells on ELO-InGaN was approximately five times stronger than that on the {11-22} GaN template.
APA, Harvard, Vancouver, ISO, and other styles
28

Parajuli, D., Deb Kumar Shah, Devendra KC, Subhash Kumar, Mira Park, and Bishweshwar Pant. "Influence of Doping Concentration and Thickness of Regions on the Performance of InGaN Single Junction-Based Solar Cells: A Simulation Approach." Electrochem 3, no. 3 (July 28, 2022): 407–15. http://dx.doi.org/10.3390/electrochem3030028.

Full text
Abstract:
The impact of doping concentration and thickness of n-InGaN and p-InGaN regions on the power conversion efficiency of single junction-based InGaN solar cells was studied by the Silvaco ATLAS simulation software. The doping concentration 5 × 1019 cm−3 and 1 × 1015 cm−3 were optimized for n-InGaN and p-InGaN regions, respectively. The thickness of 300 nm was optimized for both n-InGaN and p-InGaN regions. The highest efficiency of 22.17% with Jsc = 37.68 mA/cm2, Voc = 0.729 V, and FF = 80.61% was achieved at optimized values of doping concentration and thickness of n-InGaN and p-InGaN regions of InGaN solar cells. The simulation study shows the relevance of the Silvaco ATLAS simulation tool, as well as the optimization of doping concentration and thickness of n- and p-InGaN regions for solar cells, which would make the development of high-performance InGaN solar cells low-cost and efficient.
APA, Harvard, Vancouver, ISO, and other styles
29

Cheng, Liwen, Jiayi Zhang, Jundi Wang, Jun Zhang, Jinpeng Yang, Shudong Wu, Qinyu Qian, and Haitao Chen. "Suppressed optical field and electron leakage and enhanced hole injection in InGaN laser diodes with InGaN–GaN–InGaN barriers." Journal of Applied Physics 130, no. 18 (November 14, 2021): 183104. http://dx.doi.org/10.1063/5.0071035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, J., D. G. Zhao, D. S. Jiang, X. Li, F. Liang, P. Chen, J. J. Zhu, et al. "Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region." Optics Express 25, no. 9 (April 18, 2017): 9595. http://dx.doi.org/10.1364/oe.25.009595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sekine, Kiyoto, Yohei Onoue, Toru Yoshiike, Kota Asami, Shunsuke Ishizawa, Toshihiro Nakaoka, and Katsumi Kishino. "Single InGaN nanocolumn spectroscopy." Japanese Journal of Applied Physics 54, no. 4S (February 9, 2015): 04DJ03. http://dx.doi.org/10.7567/jjap.54.04dj03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shen, Shyh-Chiang, Tsung-Ting Kao, Hee-Jin Kim, Yi-Che Lee, Jeomoh Kim, Mi-Hee Ji, Jae-Hyun Ryou, Theeradetch Detchprohm, and Russell D. Dupuis. "GaN/InGaN avalanche phototransistors." Applied Physics Express 8, no. 3 (February 5, 2015): 032101. http://dx.doi.org/10.7567/apex.8.032101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nakamura, Shuji. "InGaN-BASED LASER DIODES." Annual Review of Materials Science 28, no. 1 (August 1998): 125–52. http://dx.doi.org/10.1146/annurev.matsci.28.1.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ji, L. W., Y. K. Su, S. J. Chang, S. H. Liu, C. K. Wang, S. T. Tsai, T. H. Fang, L. W. Wu, and Q. K. Xue. "InGaN quantum dot photodetectors." Solid-State Electronics 47, no. 10 (October 2003): 1753–56. http://dx.doi.org/10.1016/s0038-1101(03)00159-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Szweda, Roy. "InGaN LEDs still headlining." III-Vs Review 11, no. 4 (July 1998): 55. http://dx.doi.org/10.1016/s0961-1290(98)80122-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Stanczyk, S., A. Kafar, T. Suski, P. Wisniewski, R. Czernecki, M. Leszczynski, M. Zajac, and P. Perlin. "InGaN tapered laser diodes." Electronics Letters 48, no. 19 (2012): 1232. http://dx.doi.org/10.1049/el.2012.2459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lund, Cory, Karine Hestroffer, Nirupam Hatui, Shuji Nakamura, Steven P. DenBaars, Umesh K. Mishra, and Stacia Keller. "Digital growth of thick N-polar InGaN films on relaxed InGaN pseudosubstrates." Applied Physics Express 10, no. 11 (October 17, 2017): 111001. http://dx.doi.org/10.7567/apex.10.111001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chang, Jih-Yuan, Yi-An Chang, Fang-Ming Chen, Yih-Ting Kuo, and Yen-Kuang Kuo. "Improved Quantum Efficiency in Green InGaN Light-Emitting Diodes With InGaN Barriers." IEEE Photonics Technology Letters 25, no. 1 (January 2013): 55–58. http://dx.doi.org/10.1109/lpt.2012.2227700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cheng, Liwen, Jinpeng Yang, Haitao Chen, and Shudong Wu. "Advantages of InGaN/GaN Light-Emitting Diodes With GaN-InGaN Last Barrier." Journal of Display Technology 12, no. 6 (June 2016): 594–98. http://dx.doi.org/10.1109/jdt.2015.2509471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sen, Mu, Yu Tong-Jun, Huang Liu-Bing, Jia Chuan-Yu, Pan Yao-Bo, Yang Zhi-Jian, Chen Zhi-Zhong, Qin Zhi-Xin, and Zhang Guo-Yi. "Electrical Characteristics of InGaN/AlGaN and InGaN/GaN MQW Near UV-LEDs." Chinese Physics Letters 24, no. 11 (October 17, 2007): 3245–48. http://dx.doi.org/10.1088/0256-307x/24/11/061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lianhong Yang, Fuqiang Guo, Baohua Zhang, Yanqing Li, and Dunjun Chen. "Near-Infrared InGaN Alloys Grown on High-In-Composition InGaN Buffer Layer." Semiconductors 52, no. 16 (December 2018): 2026–29. http://dx.doi.org/10.1134/s106378261816039x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chang, S. J., C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. R. Chen, and J. M. Tsai. "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes." IEEE Journal of Selected Topics in Quantum Electronics 8, no. 4 (July 2002): 744–48. http://dx.doi.org/10.1109/jstqe.2002.801677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Saroosh, Rabia, Tauseef Tauqeer, Sara Afzal, and Haris Mehmood. "Performance enhancement of AlGaN/InGaN MQW LED with GaN/InGaN superlattice structure." IET Optoelectronics 11, no. 4 (August 1, 2017): 156–62. http://dx.doi.org/10.1049/iet-opt.2016.0141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Akasaka, Tetsuya, Hideki Gotoh, Yasuyuki Kobayashi, Hidetoshi Nakano, and Toshiki Makimoto. "InGaN quantum wells with small potential fluctuation grown on InGaN underlying layers." Applied Physics Letters 89, no. 10 (September 4, 2006): 101110. http://dx.doi.org/10.1063/1.2347115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bi, Zhen, Jincheng Zhang, Qiye Zheng, Ling Lv, Zhiyu Lin, Hengsheng Shan, Peixian Li, Xiaohua Ma, Yiping Han, and Yue Hao. "An InGaN-Based Solar Cell Including Dual InGaN/GaN Multiple Quantum Wells." IEEE Photonics Technology Letters 28, no. 20 (October 15, 2016): 2117–20. http://dx.doi.org/10.1109/lpt.2016.2575058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Törmä, P. T., O. Svensk, M. Ali, S. Suihkonen, M. Sopanen, M. A. Odnoblyudov, and V. E. Bougrov. "Effect of InGaN underneath layer on MOVPE-grown InGaN/GaN blue LEDs." Journal of Crystal Growth 310, no. 23 (November 2008): 5162–65. http://dx.doi.org/10.1016/j.jcrysgro.2008.07.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yang, G. F., P. Chen, Z. G. Yu, B. Liu, Z. L. Xie, X. Q. Xiu, Z. L. Wu, et al. "Growth and characterization of InGaN nanodots hybrid with InGaN/GaN quantum wells." Applied Physics A 109, no. 2 (August 29, 2012): 337–41. http://dx.doi.org/10.1007/s00339-012-7112-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ooi, Yu Kee, and Jing Zhang. "Design analysis of phosphor-free monolithic white light-emitting-diodes with InGaN/ InGaN multiple quantum wells on ternary InGaN substrates." AIP Advances 5, no. 5 (May 2015): 057168. http://dx.doi.org/10.1063/1.4922008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Duan, Xiaoling, Jincheng Zhang, Shulong Wang, Rudai Quan, and Yue Hao. "Effect of graded InGaN drain region and ’In’ fraction in InGaN channel on performances of InGaN tunnel field-effect transistor." Superlattices and Microstructures 112 (December 2017): 671–79. http://dx.doi.org/10.1016/j.spmi.2017.10.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Peng, Ruoshi, Shengrui Xu, Xiaomeng Fan, Hongchang Tao, Huake Su, Yuan Gao, Jincheng Zhang, and Yue Hao. "Application of nano-patterned InGaN fabricated by self-assembled Ni nano-masks in green InGaN/GaN multiple quantum wells." Journal of Semiconductors 44, no. 4 (April 1, 2023): 042801. http://dx.doi.org/10.1088/1674-4926/44/4/042801.

Full text
Abstract:
Abstract The nano-patterned InGaN film was used in green InGaN/GaN multiple quantum wells (MQWs) structure, to relieve the unpleasantly existing mismatch between high indium content InGaN and GaN, as well as to enhance the light output. The different self-assembled nano-masks were formed on InGaN by annealing thin Ni layers of different thicknesses. Whereafter, the InGaN films were etched into nano-patterned films. Compared with the green MQWs structure grown on untreated InGaN film, which on nano-patterned InGaN had better luminous performance. Among them the MQWs performed best when 3 nm thick Ni film was used as mask, because that optimally balanced the effects of nano-patterned InGaN on the crystal quality and the light output.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography