Academic literature on the topic 'InGaN'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InGaN.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "InGaN"

1

Cheng, Liwen, Zhenwei Li, Jiayi Zhang, Xingyu Lin, Da Yang, Haitao Chen, Shudong Wu, and Shun Yao. "Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes." Nanomaterials 11, no. 8 (August 15, 2021): 2070. http://dx.doi.org/10.3390/nano11082070.

Full text
Abstract:
An InGaN laser diode with InGaN–GaN–InGaN delta barriers was designed and investigated numerically. The laser power–current–voltage performance curves, carrier concentrations, current distributions, energy band structures, and non-radiative and stimulated recombination rates in the quantum wells were characterized. The simulations indicate that an InGaN laser diode with InGaN–GaN–InGaN delta barriers has a lower turn-on current, a higher laser power, and a higher slope efficiency than those with InGaN or conventional GaN barriers. These improvements originate from modified energy bands of the laser diodes with InGaN–GaN–InGaN delta barriers, which can suppress electron leakage out of, and enhance hole injection into, the active region.
APA, Harvard, Vancouver, ISO, and other styles
2

Kuo, Yen-Kuang, Tsun-Hsin Wang, and Jih-Yuan Chang. "Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers." Applied Physics Letters 100, no. 3 (January 16, 2012): 031112. http://dx.doi.org/10.1063/1.3678341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Seoung-Hwan. "Light emission characteristics of blue strain-compensated InGaN/InGaN/InGaN light-emitting diodes." Journal of the Korean Physical Society 66, no. 2 (January 2015): 277–81. http://dx.doi.org/10.3938/jkps.66.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Liwen, Xingyu Lin, Zhenwei Li, Da Yang, Jiayi Zhang, Jundi Wang, Jiarong Zhang, and Yuru Jiang. "Performance Enhancement of InGaN Light-Emitting Diodes with InGaN/GaN/InGaN Triangular Barriers." ECS Journal of Solid State Science and Technology 10, no. 8 (August 1, 2021): 086004. http://dx.doi.org/10.1149/2162-8777/ac1c53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Seoung-Hwan, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, and Doyeol Ahn. "Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate." physica status solidi (a) 208, no. 1 (September 27, 2010): 195–98. http://dx.doi.org/10.1002/pssa.201026420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siekacz, M., A. Feduniewicz-Żmuda, G. Cywiński, M. Kryśko, I. Grzegory, S. Krukowski, K. E. Waldrip, et al. "Growth of InGaN and InGaN/InGaN quantum wells by plasma-assisted molecular beam epitaxy." Journal of Crystal Growth 310, no. 17 (August 2008): 3983–86. http://dx.doi.org/10.1016/j.jcrysgro.2008.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Yu-Jue, and Yi-Ping Zeng. "Enhanced performance of InGaN light-emitting diodes with InGaN and composition-graded InGaN interlayers." Applied Physics A 116, no. 4 (February 23, 2014): 1757–60. http://dx.doi.org/10.1007/s00339-014-8321-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manzoor, H. U., M. A. Md Zawawi, M. Z. Pakhuruddin, S. S. Ng, and Z. Hassan. "High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell." Physica B: Condensed Matter 622 (December 2021): 413339. http://dx.doi.org/10.1016/j.physb.2021.413339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yang, Zhiyou Guo, Jing Li, Fangzheng Li, Chu Li, Xuna Li, Hong Lin, et al. "Performance enhancement of InGaN-based light-emitting diodes with InGaN/AlInN/InGaN composition-graded barriers." Semiconductor Science and Technology 30, no. 12 (November 17, 2015): 125014. http://dx.doi.org/10.1088/0268-1242/30/12/125014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SIZOV, D. S., V. S. SIZOV, V. V. LUNDIN, E. E. ZAVARIN, A. F. TSATSUL'NIKOV, YU G. MUSIKHIN, A. S. VLASOV, et al. "INVESTIGATIONS OF InGaN/GaN AND InGaN/InGaN QDS GROWN IN A WIDE PRESSURE MOCVD REACTOR." International Journal of Nanoscience 06, no. 05 (October 2007): 327–32. http://dx.doi.org/10.1142/s0219581x07004882.

Full text
Abstract:
InGaN quantum dot (QD) formation in a wide pressure range MOCVD reactor was studied. The existence of QDs and their lateral size (2–5 nm) were demonstrated using transmission electron microscopy and high spatial resolution (~ 100 nm) near-field magneto-photoluminescence spectroscopy. We found that an increase of the reactor pressure from 400 to 1000 mbar leads to an order of magnitude increase in light emission efficiency of the InGaN / GaN QDs accompanied by ~ 100 meV redshift of the emission wavelength. We explored stimulated phase separation (SPS) to control carrier localization and emission wavelength. The SPS was achieved by adding In in the matrix material. This leads to formation of extremely deep InGaN / InGaN QDs having energy localization up to ~ 0.8 eV, which was revealed from selectively excited far-field photoluminescence (PL) spectra. Without SPS the QD activation energy is found to be below 0.2 eV. A nonequilibrium carrier population strongly suppresses the temperature-induced shift of the PL emission in deep InGaN QDs.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "InGaN"

1

Li, Shunfeng. "Growth and characterization of cubic InGaN and InGaN/GaN quantum wells." kostenfrei, 2005. http://ubdata.uni-paderborn.de/ediss/06/2005/li/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, James. "Carrier Dynamics in InGaN." Thesis, University of Sheffield, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lam, N. D., S. Kim, J. J. Lee, K. R. Choi, M. H. Doan, and H. Lim. "Enhanced Luminescence of InGaN / GaN Vertical Light Emitting Diodes with an InGaN Protection Layer." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35210.

Full text
Abstract:
We have investigated the effectiveness of a thin n-In0.2Ga0.8N layer inserted in the bottom n-GaN layer of InGaN/GaN blue light emitting diodes (LEDs) for the protection of multiple quantum wells during the laser lift-off process for vertical LED fabrication. The photoluminescence properties of the InGaN/GaN lateral LEDs are nearly identical irrespective of the existence of the n-In0.2Ga0.8N insertion layer in the bottom n-GaN layer. However, such an insertion is found to effectively increase the photoluminescence intensity of the multiple quantum well and the carrier lifetime of the vertical LEDs. These improvements are attributed to the reduced defect generations in the vertical LEDs during the laser lift-off process due to the presence of the protection layer. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35210
APA, Harvard, Vancouver, ISO, and other styles
4

Van, der Laak Nicole Kathleen. "Nano-modified InGaN quantum wells." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Niu, Nan. "GaN/InGaN Microcavities and Applications." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467361.

Full text
Abstract:
Semiconductor micro- and nano-cavities are excellent platforms for experimental studies of optical cavities, lasing dynamics, and cavity Quantum Electrodynamics (QED). Common materials for such experiments are narrow bandgap semiconductor materials with well-developed epitaxial growth technologies, such as GaAs and InP, among others. Gallium nitride (GaN) and its alloys are industrially viable materials with wide direct bandgaps, low surface re-combination velocities, and large exciton binding energies, offering the possibility of room temperature realization of light-matter interaction. Controlling light-matter interaction is at the heart of nanophotonic research which leads to ultra-low threshold lasing, photonic qubits, and optical strong coupling. Technologically, due to its blue emission, GaN photonic cavities with indium gallium nitride (InGaN) active mediums serve as efficient light sources for the fast growing photonic industry, optical computing and communication networks, display technology, as well as quantum information processing. The main challenges in fabricating high quality GaN cavity are due to its chemical inertness and low material quality as a result of strain-induced defects and threading dislocations. In this dissertation, I examine the designs, novel fabrication processes, and characterizations of high quality factor GaN microdisk and photonic crystal nanobeam cavities with different classes of InGaN active medium, namely quantum dots (QDs), quantum wells (QWs), and fragmented quantum wells (fQWs), for investigating light-matter interaction between cavity and these active media. This dissertation is carefully organized into four chapters. Chapter 1 outlines the background of the research, the materials and growth, and the necessary technique Photoelectrochemical (PEC) etching which is uniquely used to undercut and suspend GaN cavities. Chapter 2 outlines the fabrications, optical experiments, and tuning technique developed for GaN/InGaN microdisks. Microdisks are circular resonant cavities that support whispering gallery modes. Through the use of optimized dry etching and PEC, high quality factor microdisks with relatively small modal volume are fabricated with immediate demonstration of low threshold lasing. On the path to achieving light and matter interactions, irreversible tuning of the cavity mode of p-i-n doped GaN/InGaN microdisks is achieved through photo-excitation in a water environment. Such a technique paves the way for deterministically and spectrally matching the cavity mode to the emitter’s principle emission. Chapter 3 outlines the work done on the high quality GaN photonic crystal nanobeams with InGaN QDs and fQWs. The fragmented nature of the fQW layer has a surprisingly dramatic influence on the lasing threshold. A record low threshold is demonstrated that is an order of magnitude lower in threshold than identical nanobeams with homogeneous QW, and comparable to the best devices in other III-V material systems. As an active medium with greater carrier confinement than quantum wells, and higher carrier capture probability than quantum dots, the fQW active medium, in combination with the nanobeam cavity with ultra-small modal volume and high quality factor, provides an ideal means of probing the limits of light and matter interactions in the nanoscale. Moreover, GaN/InGaN nanopillars are fabricated to isolate a single InGaN QD for understanding its emission properties. Antibunching is observed, demonstrating the quantum nature of the QD emission. Gas tuning is attempted on GaN nanobeams with InGaN QDs to achieve QD-cavity mode coupling and to demonstrate cavity enhanced single photon emission. Last but not least, Chapter 4 concludes the dissertation with summary and future directions.
Engineering and Applied Sciences - Applied Physics
APA, Harvard, Vancouver, ISO, and other styles
6

Wallace, Michael. "Optoelectronic study of InGaN/GaN LEDs." Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27451.

Full text
Abstract:
The quality of light emitting diodes (LEDs) has increased to a point where solid state lighting is becoming fairly common. Despite this, greater understanding of the effect of the device structure and the electric fields within them is helpful to continue improving device efficiency and uniformity and in reducing costs. In this thesis the optical and electronic properties of InGaN/GaN LEDs have been studied with a combination of luminescence spectroscopy, microscopy, conductivity mapping and efficiency measurements. A study was made of the effects of the various electric fields, and the interplay between them, on LED luminescence and conductivity. Cathodoluminescence (CL) mapping shows die to die variation across large wafers revealing the powerful effects of a induced electric field on spectral intensity/position/width, in uncontacted devices. Micron scale spots in the LED material, lower in luminescence intensity and which trap charge, were revealed by CL/EBIC mapping with the origin attributed to cluster point defects in the active region. Depth resolved CL and CL under bias reveal the extent of asymmetry in carrier transport in the p/n type GaN around the active region. LEDs grown with different active region temperature profiles were studied. Devices exposed to high temperature after quantum well growth (2T) were found to have a uniform spatial luminescence and a peak efficiency that is higher and occurs at a lower current density (0.1 W/A @ 1 Acm¯²). By contrast those with a low temperature cap (Q2T) exhibit dark spots in the luminescence, and a lower peak efficiency at a higher current density (0.04 W/A @ 10 Acm¯²). The effect of improvement in LED design and material quality on the device efficiency, uniformity and spectral characteristics was studied. The addition of an Al₀.₂₃Ga.₇₇N electron blocking layer (EBL) was found to reduce the size and strength of the dark spots by about a factor of 2, while an additional In₀.₀₅Ga₀.₉₅N underlayer (UL) removed the dark spots entirely and shifted the luminescence peak by around 100 meV. The effect on the electroluminescence efficiency of the reduction in template dislocation density was found to depend strongly on the drive current density, with defect non-radiative recombination more important at low currents. Overall device efficiency was shown to be improved with an EBL and UL. The most efficient devices were those with the 2T type growth but the relative improvements are larger in LEDs grown with the Q2T method. Together, the results present a number of factors limiting the performance of current LEDs and suggest potential routes for improvement and optimisation.
APA, Harvard, Vancouver, ISO, and other styles
7

Olaizola, S. M. "Ultrafast spectroscopy of InGaN quantum wells." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Griffin, Chris. "Applications of micropixellated InGaN LED arrays." Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smeeton, Timothy Michael. "The nanostructures of InGaN quantum wells." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Quantong. "Strain relaxation in InGaN/GaN herostructures." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC204/document.

Full text
Abstract:
Dans ce travail, nous avons étudié la relaxation de couches d’hétérostructures InGaN/GaN obtenue par épitaxie en phase vapeur aux organométalliques (EPVOM) et épitaxie aux jets moléculaires (EJM) principalement par microscopie électronique en transmission (MET). Pour ce faire, nous avons fait varier la composition de l'indium de 4.1% au nitrure d'indium pur, ce qui correspond lors de la croissance sur GaN à un décalage paramétrique allant de 1% à 11.3%. Le travail a porté sur des couches dont l’épaisseur allait de 7 nm à 500 nm. A partir d’une composition en indium voisine de 10%, nous mettons en évidence la formation d’un réseau de dislocations vis dont la ligne se promène dans l’interface, avec de très longues sections droites le long des directions <11-20>. Ces dislocations coexistent avec un réseau de dislocations coins qui commence à se former vers 13%, il disparait complétement autour d’une composition en indium de 18%. Le réseau de dislocation vis se densifie de plus en plus au-delà. Outre ces dislocations de décalage paramétrique, d'autres mécanismes qui contribuent à la relaxation de la contrainte dans ces hétérostructures InGaN/GaN ont été mis en évidence. Ainsi, au-dessus d'une composition d'indium supérieure à 25%, de nombreux phénomènes se produisent simultanément. (1) Formation des dislocations de décalage paramétrique à l'hétérointerface; (2) une composition de la couche qui s’enrichit en indium vers la surface; (3) des fortes perturbations de la séquence hexagonale conduisant à un empilement aléatoire; (4) croissance à trois dimensions (3D) pouvant même conduire à des couches poreuses lorsque la composition en indium est comprise entre 40% et 85%. Cependant, on met en évidence qu’il est possible de faire croître de l’InN pur de bonne qualité cristalline s'améliore grâce à la formation systématique d'une couche 3D
In this work, we have investigated the strain relaxation of InGaN layers grown on GaN templates by MOVPE and PAMBE using TEM. To this end we varied the indium composition from 4.1% to pure indium nitride and the corresponding mismatch was changing from less than 1% to 11.3%, the thickness of the InGaN layers was from 7 nm to 500 nm. When the indium composition is around 10%, one would expect mostly elastically strained layers with no misfit dislocations. However, we found that screw dislocations form systematically at the InGaN/GaN interface. Moreover, below 18% indium composition, screw and edge dislocations coexist, whereas starting at 18%, only edge dislocations were observed in these interfaces. Apart from the edge dislocations (misfit dislocations), other mechanisms have been pointed out for the strain relaxation. It is found that above an indium composition beyond 25%, many phenomena take place simultaneously. (1) Formation of the misfit dislocations at the heterointerface; (2) composition pulling with the surface layer being richer in indium in comparison to the interfacial layer; (3) disruption of the growth sequence through the formation of a random stacking sequence; (4) three dimentional (3D) growth which can even lead to porous layers when the indium composition is between 40% and 85%. However, pure InN is grown, the crystalline quality improves through a systematic formation of a 3D layer
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "InGaN"

1

Yong-gi, Hong, ed. Ingan kwanʾgyeron. Sŏul Tʻŭkpyŏlsi: Hanol Chʻulpʻansa, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yi, Tae-yon. Ingan kwangye simnihak. Sŏul: Sinjong, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sulaĭmon, Abdughani. Kŭngilga ingan nur: Adabiĭ maqolalar. Toshkent: Muharrir Nashriëti, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ingan ŭn muŏt ŭl wihae sanunga. Sŏul Tʻŭkpyŏlsi: Chayu Munhaksa, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulanov, Ann Belford. Sinderelra wa gŭ jamaedŭl: Ingan ŭi sigisim. Sŏul-si: Han'guk Simri Ch'iryo Yŏn'guso, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Na nŭn Kʻaenada esŏ ingan tapke salgo sipta. Sŏul Tʻŭkpyŏlsi: Sŏul Munhwasa, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Ŏn. Ingan Hanallim Abŏji kke opsŏ: Song Ŏn changpʼyŏn sosŏl. Sŏul Tʻŭkpyŏlsi: Hyŏnamsa, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Kŭm-ch'ŏl. Nep'irim chon: Ingan ŭl sarang han ch'ŏnsadŭl ŭi iyagi. Sŏul T'ŭkp'yŏlsi: Taewŏn Ssiai, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Programme, United Nations Development, ed. Kyŏngje sŏngjang kwa ingan kaebal: Hunman development report 1996. Sŏul Tʻŭkpyŏlsi: Hanʾguk Kyŏngje Sinmunsa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Im, P'il-sŏng. Namgŭk ilgi: Ingan ŭl apto hanŭn kŭkhan ŭi misŭtʻŏri! Soul: Raendŏm Hausŭ Chungang, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "InGaN"

1

Nakamura, Shuji, Stephen Pearton, and Gerhard Fasol. "InGaN." In The Blue Laser Diode, 149–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04156-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakamura, Shuji, and Gerhard Fasol. "InGaN." In The Blue Laser Diode, 129–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03462-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daudin, Bruno. "InGaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 41–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Perlin, Piotr, and Łucja Marona. "InGaN Laser Diode Degradation." In Materials and Reliability Handbook for Semiconductor Optical and Electron Devices, 247–61. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4337-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakamura, Shuji, Stephen Pearton, and Gerhard Fasol. "InGaN Single-Quantum-Well LEDs." In The Blue Laser Diode, 215–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04156-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Foxon, C. Thomas, Sergei V. Novikov, and Richard P. Campion. "InGaN Technology for IBSC Applications." In Springer Series in Optical Sciences, 309–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23369-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Shuji, and Gerhard Fasol. "InGaN Single-Quantum-Well LEDs." In The Blue Laser Diode, 201–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03462-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yablonskii, G. P., and M. Heuken. "Uv-Blue Lasers Based on Ingan/Gan/Al2O3 and on Ingan/Gan/Si Heterostructures." In Towards the First Silicon Laser, 455–64. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0149-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frost, Thomas, Guan-Lin Su, John Dallesasse, and Pallab Bhattacharya. "InGaN/GaN Quantum Dot Visible Lasers." In Handbook of GaN Semiconductor Materials and Devices, 527–55. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Series in optics and optoelectronics: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yablonskii, G. P., A. L. Gurskii, E. V. Lutsenko, V. Z. Zubialevich, V. N. Pavlovskii, A. S. Anufryk, Y. Dikme, et al. "Optically Pumped UV-Blue Lasers Based on InGaN/GaN/Al2O3 and InGaN/GaN/Si Heterostructures." In UV Solid-State Light Emitters and Detectors, 297–303. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2103-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "InGaN"

1

Yamaguchi, T., K. Wang, T. Araki, T. Honda, E. Yoon, and Y. Nanishi. "Application of DERI method to InN/InGaN MQW, thick InGaN and InGaN/InGaN MQW structure growth." In SPIE OPTO, edited by Jen-Inn Chyi, Yasushi Nanishi, Hadis Morkoç, Joachim Piprek, Euijoon Yoon, and Hiroshi Fujioka. SPIE, 2013. http://dx.doi.org/10.1117/12.2007258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karaliūnas, Mindaugas, Edmundas Kuokštis, Karolis Kazlauskas, Saulius Juršėnas, Veit Hoffman, and Arne Knauer. "Optical gain dynamics in InGaN/InGaN quantum wells." In Sixth International Conference on Advanced Optical Materials and Devices, edited by Janis Spigulis, Andris Krumins, Donats Millers, Andris Sternberg, Inta Muzikante, Andris Ozols, and Maris Ozolinsh. SPIE, 2008. http://dx.doi.org/10.1117/12.816514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuball, M., Y. K. Song, A. V. Nurmikko, G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, et al. "Gain Spectroscopy on InGaN/GaN Quantum Well Laser Diodes." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug6.

Full text
Abstract:
In spite of advances that have led to the demonstration of a 1000 hour cw blue InGaN QW diode laser, as well of the demonstration of cw operation on a SiC substrate [1], major unanswered questions exist about the physics of optical gain in this disordered QW system, given the large departure of InGaN from a random alloy in terms of microscopic scale In-compositional fluctuations. We have reported on gain spectra obtained on InGaN/GaN pn-junction heterostructures [2]. Useful information has been acquired but spectroscopic details were incomplete.
APA, Harvard, Vancouver, ISO, and other styles
4

Yeh, Ting-Wei, P. Daniel Dapkus, Yen-Ting Lin, Lawrence Stewart, Byungmin Ahn, and Steven Nutt. "InGaN/GaN nanorod and nanosheet arrays for InGaN-based LEDs." In 2011 IEEE Photonics Conference (IPC). IEEE, 2011. http://dx.doi.org/10.1109/pho.2011.6110589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, R. W., and K. P. O’Donnell. "Spectroscopy of localised and delocalised excitons in InGaN light emitting diodes." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug7.

Full text
Abstract:
Recent dramatic progress in research on InGaN based light emitters has led to the commercialisation of high brightness blue and green LEDs and announcements of room temperature lasers with lifetimes measured in thousands of hours. By altering the indium fraction the InGaN band-gap can be varied between 2.0 and 3.4eV and the tendency of the indium to segregrate leads to fluctuations of the band gap within any layer of InGaN. We show that light emission arises from the recombination of excitons strongly localised in deep potential wells associated with indium rich regions of the active region. An investigation of these localised excitons using absorption and luminescence spectroscopies applied to InGaN single quantum wells in commercial LEDs provides important insights into the mechanics of the light emission.
APA, Harvard, Vancouver, ISO, and other styles
6

Dupuis, Russell D., Jae B. Limb, Jianping Liu, Jae-Hyun Ryou, Clarissa Horne, and Dongwon Yoo. "InGaN MQW green LEDs using p -InGaN and p -InGaN/ p -GaN superlattices as p -type layers." In Integrated Optoelectronic Devices 2008, edited by Hadis Morkoç, Cole W. Litton, Jen-Inn Chyi, Yasushi Nanishi, and Euijoon Yoon. SPIE, 2008. http://dx.doi.org/10.1117/12.766915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yapparov, Rinat, Cheyenne Lynsky, Yi Chao Chow, Shuji Nakamura, Steven P. DenBaars, James S. Speck, and Saulius Marcinkevičius. "Engineering of quantum barriers for efficient InGaN quantum well LEDs." In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/noma.2022.now4d.6.

Full text
Abstract:
Ways to improve efficiency of high-power LEDs based on InGaN/(In)GaN multiple quantum wells are explored by studying interwell carrier transport and recombination. Best results are achieved for InGaN barriers with thin GaN or AlGaN interlayers.
APA, Harvard, Vancouver, ISO, and other styles
8

Wood, Michael G., Anthony Rice, Stephen R. Lee, Brendan P. Gunning, Mary H. Crawford, Ping Lu, Courtney L. H. Sovinec, et al. "Non-Planar Nano-Epitaxy of InGaN Quantum-Well Emitters for Green-Yellow Semiconductor Lasers." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jtu5a.14.

Full text
Abstract:
We report non-planar regrowth of InGaN quantum wells on triangular InGaN buffer layers grown on sub-200nm-wide GaN ridges. Photo-pumped internal quantum efficiencies above 20% at yellow wavelengths hold promise for semiconductor laser gain regions.
APA, Harvard, Vancouver, ISO, and other styles
9

"Study of transport phenomenon in ternary alloys AlGaN, InGaN and InGaN." In 1st International Symposium on Dielectric Materials and Applications. Materials Research Forum LLC, 2016. http://dx.doi.org/10.21741/9781945291197-69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mi, Zetian, Yong-Ho Ra, Roksana Rashid, Renjie Wang, and Ishiang Shih. "InGaN nanowire integrated nanophotonics." In 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2017. http://dx.doi.org/10.1109/phosst.2017.8012688.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "InGaN"

1

Lo, Yu-Hwa. Growth of InGaN of Compliant Substrates. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada405406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buckley, James H., and Daniel Leopold. High Quantum Efficiency AlGaN/InGaN Photodetectors. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/968011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Speck, James S., Steven P. DenBaars, Umesh K. Mishra, and Shuji Nakamura. High Performance InGaN-Based Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada562115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shapiro, Noad Asaf. Radiative transitions in InGaN quantum-well structures. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/799651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blair, S. M. AlGaN/InGaN Nitride Based Modulation Doped Field Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pearton, S. J., C. B. Vartuli, J. W. Lee, S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, R. J. Shul, G. F. McLane, and F. Ren. Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/212561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wildeson, Isaac. Improved InGaN LED System Efficacy and Cost via Droop Reduction. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1410608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,. Low Cost Production of InGaN for Next-Generation Photovoltaic Devices. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stach, Eric. Improved InGaN LED System Efficacy and Cost via Droop Reduction. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1439326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koleske, Daniel David, James Randall Creighton, Michael J. Russell, and Arthur Joseph Fischer. Improved InGaN epitaxy yield by precise temperature measurement :yearly report 1. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/891367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography