Journal articles on the topic 'InGaAs quantum dots'

To see the other types of publications on this topic, follow the link: InGaAs quantum dots.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'InGaAs quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Моисеев, Э. И., М. В. Максимов, Н. В. Крыжановская, О. И. Симчук, М. М. Кулагина, С. А. Кадинская, M. Guina, and А. Е. Жуков. "Сравнительный анализ инжекционных микродисковых лазеров на основе квантовых ям InGaAsN и квантовых точек InAs/InGaAs." Физика и техника полупроводников 54, no. 2 (2020): 212. http://dx.doi.org/10.21883/ftp.2020.02.48907.9290.

Full text
Abstract:
The results are presented on a comparative analysis of the spectral and threshold characteristics of diode microdisk lasers operating at room temperature in a spectral range of 1.2xx μm with different active regions: InGaAsN/GaAs quantum wells or InAs/InGaAs/GaAs quantum dots. It was found that microlasers of a comparable size with quantum wells have higher lasing threshold compared to microlasers with quantum dots. At the same time, the latter are characterized by a noticeably smaller fraction of the radiated power with the laser modes. They are also characterized by a jump to excited-state optical transition lasing. The InGaAsN-based microdisk lasers lack these disadvantages.
APA, Harvard, Vancouver, ISO, and other styles
2

Pyun, S. H., S. H. Lee, I. C. Lee, H. D. Kim, Weon G. Jeong, J. W. Jang, N. J. Kim, et al. "Photoluminescence and lasing characteristics of InGaAs∕InGaAsP∕InP quantum dots." Journal of Applied Physics 96, no. 10 (November 15, 2004): 5766–70. http://dx.doi.org/10.1063/1.1803941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blokhin, S. A., A. M. Nadtochiy, A. A. Krasivichev, L. Ya Karachinsky, A. P. Vasil’ev, V. N. Nevedomskiy, M. V. Maximov, et al. "Optical anisotropy of InGaAs quantum dots." Semiconductors 47, no. 1 (January 2013): 85–89. http://dx.doi.org/10.1134/s1063782613010077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Деребезов, И. А., В. А. Гайслер, А. В. Гайслер, Д. В. Дмитриев, А. И. Торопов, M. von Helversen, C. de la Haye, S. Bounouar, and S. Reitzenstein. "Спектроскопия одиночных AlInAs- и (111)InGaAs-квантовых точек." Физика и техника полупроводников 52, no. 11 (2018): 1326. http://dx.doi.org/10.21883/ftp.2018.11.46593.15.

Full text
Abstract:
AbstractA system of AlInAs- and InGaAs(111)-based quantum dots is studied. The use of wide-gap Al_ x In_1 –_ x As alloys as a basis for quantum dots provides a means for substantially extending the spectral region of emission to shorter wavelengths, including the region close to 770 nm which is of interest for the engineering of aerospace systems of quantum cryptography. The fine structure of exciton states in AlInAs and InGaAs(111) quantum dots is studied. It is shown that, for a set of quantum dots, the splitting of exciton states is comparable to the natural width of exciton lines, which is of interest for the engineering of emitters of photon pairs on the basis of these quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, A. "Investigation of high-quantum efficiency InGaAs/InP and InGaAs/GaAs quantum dots." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 6 (November 1992): 2896. http://dx.doi.org/10.1116/1.585983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulakovskii, V. D., M. Bayer, M. Michel, A. Forchel, T. Gutbrod, and F. Faller. "Excitonic molecules in InGaAs/GaAs quantum dots." Uspekhi Fizicheskih Nauk 168, no. 2 (1998): 123. http://dx.doi.org/10.3367/ufnr.0168.199802d.0123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WILLIAMSON, ANDREW J. "ENERGY STATES IN QUANTUM DOTS." International Journal of High Speed Electronics and Systems 12, no. 01 (March 2002): 15–43. http://dx.doi.org/10.1142/s0129156402001101.

Full text
Abstract:
We describe a procedure for calculating the electronic structure of semiconductor quantum dots containing over one million atoms. The single particle electron levels are calculated by solving a Hamiltonian constructed from screened atomic pseudopotentials. Effects beyond the single particle level such as electron and hole exchange and correlation interactions are described using a configuration interaction (CI) approach. Application of these methods to the calculation of the optical absorption spectrum, Coulomb repulsions and multi-exciton binding energies of InGaAs self-assembled quantum dots are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Надточий, А. М., С. А. Минтаиров, Н. А. Калюжный, М. В. Максимов, Д. А. Санников, Т. Ф. Ягафаров, and А. Е. Жуков. "Фотолюминесценция с временным разрешением наноструктур InGaAs различной квантовой размерности." Физика и техника полупроводников 53, no. 11 (2019): 1520. http://dx.doi.org/10.21883/ftp.2019.11.48448.9167.

Full text
Abstract:
By using time-correlated single-photon counting time-resolved photoluminescence of quantum-sized heterostructures of different dimensionality was investigated. InGaAs quantum dots, quantum well, and transitionally-dimensional structure — quantum well-dots were grown on GaAs substrates. It was observed, that photoluminescence decay strongly depends on structure dimensionality resulting in decay value of 6,7, and more than 20 ns for quantum dots, well-dots and well, respectively. As we believe localization centers in heterostructures may be responsible for such shortening of photoluminescence lifetime.
APA, Harvard, Vancouver, ISO, and other styles
9

Kulakovskii, Vladimir D., M. Bayer, M. Michel, A. Forchel, T. Gutbrod, and F. Faller. "Excitonic molecules in InGaAs/GaAs quantum dots." Physics-Uspekhi 41, no. 2 (February 28, 1998): 115–18. http://dx.doi.org/10.1070/pu1998v041n02abeh000340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bayer, M., V. D. Kulakovskii, T. Gutbrod, and A. Forchel. "Exciton complexes in InGaAs/GaAs quantum dots." Physica B: Condensed Matter 249-251 (June 1998): 620–23. http://dx.doi.org/10.1016/s0921-4526(98)00261-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Marcinkevičius, S., and R. Leon. "Carrier Dynamics in InGaAs/GaAs Quantum Dots." physica status solidi (b) 204, no. 1 (November 1997): 290–92. http://dx.doi.org/10.1002/1521-3951(199711)204:1<290::aid-pssb290>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hodeck, K., I. Manke, M. Geller, R. Heitz, F. Heinrichsdorff, A. Krost, D. Bimberg, H. Eisele, and M. Dähne. "Multiline photoluminescence of single InGaAs quantum dots." physica status solidi (c), no. 4 (July 2003): 1209–12. http://dx.doi.org/10.1002/pssc.200303045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Borri, P., W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg. "Dephasing of biexcitons in InGaAs quantum dots." physica status solidi (b) 238, no. 3 (August 2003): 593–600. http://dx.doi.org/10.1002/pssb.200303177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guffarth, F., R. Heitz, M. Geller, C. Kapteyn, H. Born, R. Sellin, A. Hoffmann, D. Bimberg, N. A. Sobolev, and M. C. Carmo. "Radiation hardness of InGaAs/GaAs quantum dots." Applied Physics Letters 82, no. 12 (March 24, 2003): 1941–43. http://dx.doi.org/10.1063/1.1561165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mirin, R., A. Gossard, and J. Bowers. "Room temperature lasing from InGaAs quantum dots." Electronics Letters 32, no. 18 (1996): 1732. http://dx.doi.org/10.1049/el:19961147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chuang, K. Y., T. E. Tzeng, Y. C. Liu, K. D. Tzeng, and T. S. Lay. "Photovoltaic response of coupled InGaAs quantum dots." Journal of Crystal Growth 323, no. 1 (May 2011): 508–10. http://dx.doi.org/10.1016/j.jcrysgro.2011.01.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Löffler, W., D. Tröndle, J. Fallert, E. Tsitsishvili, H. Kalt, D. Litvinov, D. Gerthsen, et al. "Electrical spin injection into InGaAs quantum dots." physica status solidi (c) 3, no. 7 (August 2006): 2406–9. http://dx.doi.org/10.1002/pssc.200668004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Born, H., R. Heitz, A. Hoffmann, F. Guffarth, and D. Bimberg. "Suppressed Relaxation in InGaAs/GaAs Quantum Dots." physica status solidi (b) 224, no. 2 (March 2001): 487–91. http://dx.doi.org/10.1002/1521-3951(200103)224:2<487::aid-pssb487>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tian, Peng, Chong Qing Huang, Wen Hua Luo, and Jing Liu. "The Impact of Cap Layers on the Structural and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots." Advanced Materials Research 571 (September 2012): 269–72. http://dx.doi.org/10.4028/www.scientific.net/amr.571.269.

Full text
Abstract:
Self-assembled InAs/GaAs quantum dots structures with low temperature and high temperature cap layers are grown by meta-organic chemical vapor deposition. The effects of Indium composition of high temperature InGaAs cap layer on the structural and optical properties of quantum dots are investigated by the atomic force microscopy and photoluminescence. Emission peak wavelengths shift from 1218 nm to 1321 nm when the Indium composition of high temperature InGaAs cap layer increase form 0 to 0.17.
APA, Harvard, Vancouver, ISO, and other styles
20

Langbein, W., P. Borri, U. Woggon, M. Schwab, M. Bayer, S. Fafard, Z. Wasilewski, et al. "Coherent dynamics in InGaAs quantum dots and quantum dot molecules." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (February 2005): 400–407. http://dx.doi.org/10.1016/j.physe.2004.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Drexler, H., D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff. "Spectroscopy of Quantum Levels in Charge-Tunable InGaAs Quantum Dots." Physical Review Letters 73, no. 16 (October 17, 1994): 2252–55. http://dx.doi.org/10.1103/physrevlett.73.2252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lantratov, Vladimir M., Sergey A. Mintairov, Sergey A. Blokhin, Nikolay A. Kalyuzhnyy, Nikolay N. Ledentsov, Maxim V. Maximov, Alexey M. Nadtochiy, Alexey S. Pauysov, Alexey V. Sakharov, and Maxim Z. Shvarts. "AlGaAs/GaAs Photovoltaic Cells with InGaAs Quantum Dots." Advances in Science and Technology 74 (October 2010): 231–36. http://dx.doi.org/10.4028/www.scientific.net/ast.74.231.

Full text
Abstract:
We studied the different carrier kinetic mechanisms involved into the interband absorption of quantum dots (QDs) by photocurrent spectroscopy. It was shown that in vertically coupled InGaAs QDs an effective carrier emission, collection and separation take place due to minizone formation. The possibility for the incorporation of vertically-coupled QDs into solar cells (SC) without any deterioration of structural quality of the p-i-n-junction has been shown. Due to the additional absorption of solar spectrum in QD media and the subsequent effective separation of photogenerated carriers, an increase (~1%) in short-circuit current density (Jsc) for the QD SC-devices has been demonstrated. However the insertion of QDs into intrinsic region reduced the open circuit voltage (Voc) of such devices. Moving the QD array in the base layer as well as including the Bragg reflector (BR) centered on 920 nm resulted in increase of the Voc. Moreover an improved absorption in the QD media for SC with BR led to further increase of Jsc (~1%). The efficiency for QD SCs at the level of 25% (30 suns AM1.5D) has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
23

Geller, M., A. Marent, E. Stock, D. Bimberg, V. I. Zubkov, I. S. Shulgunova, and A. V. Solomonov. "Hole capture into self-organized InGaAs quantum dots." Applied Physics Letters 89, no. 23 (December 4, 2006): 232105. http://dx.doi.org/10.1063/1.2400059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hsu, C. H., H. Y. Lee, Y. W. Hsieh, Y. P. Stetsko, M. T. Tang, K. S. Liang, N. T. Yeh, J. I. Chyi, and D. Y. Noh. "X-ray scattering studies on InGaAs quantum dots." Physica B: Condensed Matter 336, no. 1-2 (August 2003): 98–102. http://dx.doi.org/10.1016/s0921-4526(03)00276-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hwang, Heedon, Sukho Yoon, Hyeok Kwon, Euijoon Yoon, Hong-Seung Kim, Jeong Yong Lee, and Benjamin Cho. "Shapes of InAs quantum dots on InGaAs∕InP." Applied Physics Letters 85, no. 26 (December 27, 2004): 6383–85. http://dx.doi.org/10.1063/1.1840123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Filikhin, I., V. M. Suslov, M. Wu, and B. Vlahovic. "InGaAs/GaAs quantum dots within an effective approach." Physica E: Low-dimensional Systems and Nanostructures 41, no. 7 (June 2009): 1358–63. http://dx.doi.org/10.1016/j.physe.2009.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kalevich, V. K., M. N. Tkachuk, P. Le Jeune, X. Marie, and T. Amand. "Electron spin beats in InGaAs/GaAs quantum dots." Physics of the Solid State 41, no. 5 (May 1999): 789–92. http://dx.doi.org/10.1134/1.1130874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lever, P., H. H. Tan, and C. Jagadish. "Impurity free vacancy disordering of InGaAs quantum dots." Journal of Applied Physics 96, no. 12 (December 15, 2004): 7544–48. http://dx.doi.org/10.1063/1.1803948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Aleshkin, V. Ya, N. V. Baidus, A. A. Dubinov, K. E. Kudryavtsev, S. M. Nekorkin, A. V. Kruglov, and D. G. Reunov. "Submonolayer InGaAs/GaAs Quantum Dots Grown by MOCVD." Semiconductors 53, no. 8 (August 2019): 1138–42. http://dx.doi.org/10.1134/s1063782619080037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lever, P., H. H. Tan, C. Jagadish, P. Reece, and M. Gal. "Proton-irradiation-induced intermixing of InGaAs quantum dots." Applied Physics Letters 82, no. 13 (March 31, 2003): 2053–55. http://dx.doi.org/10.1063/1.1561153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brash, A. J., L. M. P. P. Martins, A. M. Barth, F. Liu, J. H. Quilter, M. Glässl, V. M. Axt, A. J. Ramsay, M. S. Skolnick, and A. M. Fox. "Dynamic vibronic coupling in InGaAs quantum dots [Invited]." Journal of the Optical Society of America B 33, no. 7 (May 24, 2016): C115. http://dx.doi.org/10.1364/josab.33.00c115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sandmann, J., S. Grosse, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto. "Recombination processes in strain-induced InGaAs quantum dots." Il Nuovo Cimento D 17, no. 11-12 (November 1995): 1699–703. http://dx.doi.org/10.1007/bf02457266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chuang, K. Y., C. Y. Chen, T. E. Tzeng, David J. Y. Feng, and T. S. Lay. "Differential absorption spectroscopy on coupled InGaAs quantum dots." Journal of Crystal Growth 311, no. 7 (March 2009): 1767–69. http://dx.doi.org/10.1016/j.jcrysgro.2008.11.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gordeev, Nikita Yu, Mikhail V. Maximov, Alexey S. Payusov, Artem A. Serin, Yuri M. Shernyakov, Sergey A. Mintairov, Nikolay A. Kalyuzhnyy, Alexey M. Nadtochiy, and Alexey E. Zhukov. "Material gain of InGaAs/GaAs quantum well-dots." Semiconductor Science and Technology 36, no. 1 (November 13, 2020): 015008. http://dx.doi.org/10.1088/1361-6641/abc51d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Xu, Zhangcheng, Yating Zhang, Jørn M. Hvam, Jingjun Xu, Xiaoshuang Chen, and Wei Lu. "Carrier dynamics in submonolayer InGaAs∕GaAs quantum dots." Applied Physics Letters 89, no. 1 (July 3, 2006): 013113. http://dx.doi.org/10.1063/1.2219394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pires, M. P., S. M. Landi, C. V.-B. Tribuzy, L. A. Nunes, E. Marega, and P. L. Souza. "InAs quantum dots over InGaAs for infrared photodetectors." Journal of Crystal Growth 272, no. 1-4 (December 2004): 192–97. http://dx.doi.org/10.1016/j.jcrysgro.2004.08.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Milekhin, Alexander, Alexander Toropov, Alexander Bakarov, Steffen Schulze, and Dietrich Zahn. "Resonant Raman scattering in InGaAs/AlAs quantum dots." physica status solidi (c) 3, no. 11 (December 2006): 3924–27. http://dx.doi.org/10.1002/pssc.200671537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Markmann, M., A. Zrenner, G. Böhm, and G. Abstreiter. "STM-Cathodoluminescence of Self-Assembled InGaAs Quantum Dots." physica status solidi (a) 164, no. 1 (November 1997): 301–5. http://dx.doi.org/10.1002/1521-396x(199711)164:1<301::aid-pssa301>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chuang, Kuei-Ya, Te-En Tzeng, and Tsong-Sheng Lay. "Coupled InGaAs Quantum Dots for Electro-Optic Modulation." Crystals 11, no. 10 (September 23, 2021): 1159. http://dx.doi.org/10.3390/cryst11101159.

Full text
Abstract:
We investigated the growth of vertically coupled In0.75Ga0.25As quantum dots (QDs) by varying the GaAs spacer thickness (d). Vertically-aligned triple-layer QDs of uniform size and highest accumulated strain are formed with d = 5 nm. The electroluminescence (EL) characteristics for In0.75Ga0.25As QDs show an emission spectrum at optical wavelength (λ) of 1100−1300 nm. The EL spectra exhibit the highest optical gain at λ ~ 1200 nm, and the narrowest FWHM = 151 nm of the sample with d = 5 nm at injection current = 20 mA. Fabry–Perot measurements at λ = 1515 nm of TE and TM polarizations were carried out to investigate the electro-optic modulation for a single-mode ridge waveguide consisting of vertically-coupled triple-layer In0.75Ga0.25As QDs (d = 5 nm). The linear (r) and quadratic (s) electro-optic coefficients are r = 2.99 × 10−11 m/V and s = 4.10 × 10−17 m2/V2 for TE polarization, and r = 1.37 × 10−11 m/V and s = 3.2 × 10−17 m2/V2 for TM polarization, respectively. The results highlight the potential of TE/TM lightwave modulation by InGaAs QDs at photon energy below energy band resonance.
APA, Harvard, Vancouver, ISO, and other styles
40

Gill, S. P. A., and A. C. F. Cocks. "An analytical model for the energetics of quantum dots: beyond the small slope assumption." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2076 (June 20, 2006): 3523–53. http://dx.doi.org/10.1098/rspa.2006.1723.

Full text
Abstract:
Analytical models for strained heteroepitaxial quantum dot systems have invariably assumed that the dots have a low-aspect ratio (small slopes) and that the elastic properties of the dot and the substrate are identical. In this paper, a three-dimensional analytical model for the energetics of an array of axisymmetric quantum dots is developed from physical principles. This is valid for high-aspect ratio dots (such as GeSi and InGaAs) and allows the dot and substrate to have different elastic properties. It is shown that these features are very important in determining the strain energy of both isolated dots and arrays of interacting dots. Both the elastic relaxation energy (per unit volume) of a single dot and the elastic interaction energy (per unit volume) between multiple dots are found to be greatest for tall, steep dots and for dots which are stiffer than the substrate. The equilibrium of two-facet dots is investigated and shape transition phase diagrams for small slope monoelastic theory, GeSi and InGaAs are compared. Different features of the bimodal dot size distributions in these systems are explained.
APA, Harvard, Vancouver, ISO, and other styles
41

Catalano, M., P. Crozier, A. Taurino, A. Passaseo, and R. Cingolani. "High Spatial Resolution Analytical Investigation of InGaAs/GaAs Quantum Dots." Microscopy and Microanalysis 6, S2 (August 2000): 122–23. http://dx.doi.org/10.1017/s1431927600033109.

Full text
Abstract:
The improvement of growth techniques in the characterization of semiconductor nanostructures, has recently resulted in the realization of quasi-zero dimensional semi-conducting devices (quantum dots) of excellent performances and of reproducible quality (1,2). The design and fabrication of these devices strongly depends on the ability to control parameters that influence the quantum confinement namely the shape, dimension and size distribution of the dots. High spatial resolution structural and analytical techniques are crucial to obtain nanoscale information about the shape of the dots, the structural and chemical abruptness of the interfaces, and the composition of the dots (3).In this paper we show the results of a structural and chemical characterization of In0.5Ga0.5As/GaAs quantum dots grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on a (100) GaAs substrate. The growth was performed in a horizontal LP-MOCVD system (AIXTRON 200 AIX).
APA, Harvard, Vancouver, ISO, and other styles
42

Jang, Y. D., E. G. Lee, J. S. Yim, D. Lee, W. G. Jeong, S. H. Pyun, and J. W. Jang. "Unambiguous observation of electronic couplings between InGaAs∕InGaAsP quantum dots emitting at 1.5μm." Applied Physics Letters 88, no. 9 (February 27, 2006): 091920. http://dx.doi.org/10.1063/1.2181630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tyan, S. L., Y. G. Lin, F. Y. Tsai, C. P. Lee, P. A. Shields, and R. J. Nicholas. "InGaAs/GaAs quantum wells and quantum dots on (111)B orientation." Solid State Communications 117, no. 11 (March 2001): 649–54. http://dx.doi.org/10.1016/s0038-1098(01)00018-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Granger, G., S. A. Studenikin, A. Kam, A. S. Sachrajda, and P. J. Poole. "Few-electron quantum dots in InGaAs quantum wells: Role of fluctuations." Applied Physics Letters 98, no. 13 (March 28, 2011): 132107. http://dx.doi.org/10.1063/1.3574540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moiseev, E. I., M. V. Maximov, N. V. Kryzhanovskaya, O. I. Simchuk, M. M. Kulagina, S. A. Kadinskaya, M. Guina, and A. E. Zhukov. "Comparative Analysis of Injection Microdisk Lasers Based on InGaAsN Quantum Wells and InAs/InGaAs Quantum Dots." Semiconductors 54, no. 2 (February 2020): 263–67. http://dx.doi.org/10.1134/s1063782620020177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yao, Jian Ming, Ling Min Kong, and Shi Lai Wang. "Effects of a InGaAs Strained Layer on Structures and Photoluminescence Characteristics of InAs Quantum Dots." Advanced Materials Research 148-149 (October 2010): 897–902. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.897.

Full text
Abstract:
The influences of a thin InGaAs layer grown on GaAs(100) substrate before deposited InAs self-assembled quantum dots(SAQDs) were experimentally investigated. Scanning electronic microscope (SEM) measurements show that the InGaAs strained layer may release the strain between wetting layer and QDs, and then enlarge size of QDs. When the thickness of InAs layer is small, the QDs are chained. Temperature dependent photoluminescence (TDPL) measurements show that the PL peaks of InAs QDs with In0.1Ga0.9As show much more red shift compared with the QDs directly deposited on GaAs matrix, and PL integral intensity enhances as T rises from 50K to 90K. We attribute this enhancement to the small potential barrier between WL and QDs produced by the InGaAs stained layer.
APA, Harvard, Vancouver, ISO, and other styles
47

Алешкин, В. Я., Н. В. Байдусь, А. А. Дубинов, К. Е. Кудрявцев, С. М. Некоркин, А. В. Круглов, and Д. Г. Реунов. "Субмонослойные квантовые точки InGaAs/GaAs, выращенные методом МОС-гидридной эпитаксии." Физика и техника полупроводников 53, no. 8 (2019): 1159. http://dx.doi.org/10.21883/ftp.2019.08.48011.9124.

Full text
Abstract:
AbstractThe mode of the growth of InGaAs quantum dots by MOS-hydride epitaxy on GaAs substrates without a deviation and with a deviation of 2° is selected for laser structures emitting at wavelengths above 1.2 μm at room temperature. As a result, a quantum-dot density of 4 × 10^10 cm^–2 is achieved. Stimulated emission is observed in laser structures with seven layers of quantum dots at a wavelength of 1.06 μm at liquid-nitrogen temperature. The threshold power density of optical pumping is about 5 kW/cm^2.
APA, Harvard, Vancouver, ISO, and other styles
48

Ren, Hong-Wen, Selvakumar V. Nair, Jeong-Sik Lee, Shigeo Sugou, Tsuyoshi Okuno, Kazuhiro Nishbayashi, and Yasuaki Masumoto. "Confinement effects in strain-induced InGaAs/GaAs quantum dots." Physica E: Low-dimensional Systems and Nanostructures 7, no. 3-4 (May 2000): 403–7. http://dx.doi.org/10.1016/s1386-9477(99)00350-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hanke, M., D. Grigoriev, M. Schmidbauer, P. Schäfer, R. Köhler, U. W. Pohl, R. L. Sellin, D. Bimberg, N. D. Zakharov, and P. Werner. "Diffuse X-ray scattering of InGaAs/GaAs quantum dots." Physica E: Low-dimensional Systems and Nanostructures 21, no. 2-4 (March 2004): 684–88. http://dx.doi.org/10.1016/j.physe.2003.11.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ducommun, Y., M. Kroutvar, J. J. Finley, M. Bichler, A. Zrenner, and G. Abstreiter. "Dynamics of optically stored charges in InGaAs quantum dots." Physica E: Low-dimensional Systems and Nanostructures 21, no. 2-4 (March 2004): 886–91. http://dx.doi.org/10.1016/j.physe.2003.11.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography