Academic literature on the topic 'InGaAs quantum dots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InGaAs quantum dots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "InGaAs quantum dots"

1

Моисеев, Э. И., М. В. Максимов, Н. В. Крыжановская, О. И. Симчук, М. М. Кулагина, С. А. Кадинская, M. Guina, and А. Е. Жуков. "Сравнительный анализ инжекционных микродисковых лазеров на основе квантовых ям InGaAsN и квантовых точек InAs/InGaAs." Физика и техника полупроводников 54, no. 2 (2020): 212. http://dx.doi.org/10.21883/ftp.2020.02.48907.9290.

Full text
Abstract:
The results are presented on a comparative analysis of the spectral and threshold characteristics of diode microdisk lasers operating at room temperature in a spectral range of 1.2xx μm with different active regions: InGaAsN/GaAs quantum wells or InAs/InGaAs/GaAs quantum dots. It was found that microlasers of a comparable size with quantum wells have higher lasing threshold compared to microlasers with quantum dots. At the same time, the latter are characterized by a noticeably smaller fraction of the radiated power with the laser modes. They are also characterized by a jump to excited-state optical transition lasing. The InGaAsN-based microdisk lasers lack these disadvantages.
APA, Harvard, Vancouver, ISO, and other styles
2

Pyun, S. H., S. H. Lee, I. C. Lee, H. D. Kim, Weon G. Jeong, J. W. Jang, N. J. Kim, et al. "Photoluminescence and lasing characteristics of InGaAs∕InGaAsP∕InP quantum dots." Journal of Applied Physics 96, no. 10 (November 15, 2004): 5766–70. http://dx.doi.org/10.1063/1.1803941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blokhin, S. A., A. M. Nadtochiy, A. A. Krasivichev, L. Ya Karachinsky, A. P. Vasil’ev, V. N. Nevedomskiy, M. V. Maximov, et al. "Optical anisotropy of InGaAs quantum dots." Semiconductors 47, no. 1 (January 2013): 85–89. http://dx.doi.org/10.1134/s1063782613010077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Деребезов, И. А., В. А. Гайслер, А. В. Гайслер, Д. В. Дмитриев, А. И. Торопов, M. von Helversen, C. de la Haye, S. Bounouar, and S. Reitzenstein. "Спектроскопия одиночных AlInAs- и (111)InGaAs-квантовых точек." Физика и техника полупроводников 52, no. 11 (2018): 1326. http://dx.doi.org/10.21883/ftp.2018.11.46593.15.

Full text
Abstract:
AbstractA system of AlInAs- and InGaAs(111)-based quantum dots is studied. The use of wide-gap Al_ x In_1 –_ x As alloys as a basis for quantum dots provides a means for substantially extending the spectral region of emission to shorter wavelengths, including the region close to 770 nm which is of interest for the engineering of aerospace systems of quantum cryptography. The fine structure of exciton states in AlInAs and InGaAs(111) quantum dots is studied. It is shown that, for a set of quantum dots, the splitting of exciton states is comparable to the natural width of exciton lines, which is of interest for the engineering of emitters of photon pairs on the basis of these quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, A. "Investigation of high-quantum efficiency InGaAs/InP and InGaAs/GaAs quantum dots." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 10, no. 6 (November 1992): 2896. http://dx.doi.org/10.1116/1.585983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kulakovskii, V. D., M. Bayer, M. Michel, A. Forchel, T. Gutbrod, and F. Faller. "Excitonic molecules in InGaAs/GaAs quantum dots." Uspekhi Fizicheskih Nauk 168, no. 2 (1998): 123. http://dx.doi.org/10.3367/ufnr.0168.199802d.0123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WILLIAMSON, ANDREW J. "ENERGY STATES IN QUANTUM DOTS." International Journal of High Speed Electronics and Systems 12, no. 01 (March 2002): 15–43. http://dx.doi.org/10.1142/s0129156402001101.

Full text
Abstract:
We describe a procedure for calculating the electronic structure of semiconductor quantum dots containing over one million atoms. The single particle electron levels are calculated by solving a Hamiltonian constructed from screened atomic pseudopotentials. Effects beyond the single particle level such as electron and hole exchange and correlation interactions are described using a configuration interaction (CI) approach. Application of these methods to the calculation of the optical absorption spectrum, Coulomb repulsions and multi-exciton binding energies of InGaAs self-assembled quantum dots are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Надточий, А. М., С. А. Минтаиров, Н. А. Калюжный, М. В. Максимов, Д. А. Санников, Т. Ф. Ягафаров, and А. Е. Жуков. "Фотолюминесценция с временным разрешением наноструктур InGaAs различной квантовой размерности." Физика и техника полупроводников 53, no. 11 (2019): 1520. http://dx.doi.org/10.21883/ftp.2019.11.48448.9167.

Full text
Abstract:
By using time-correlated single-photon counting time-resolved photoluminescence of quantum-sized heterostructures of different dimensionality was investigated. InGaAs quantum dots, quantum well, and transitionally-dimensional structure — quantum well-dots were grown on GaAs substrates. It was observed, that photoluminescence decay strongly depends on structure dimensionality resulting in decay value of 6,7, and more than 20 ns for quantum dots, well-dots and well, respectively. As we believe localization centers in heterostructures may be responsible for such shortening of photoluminescence lifetime.
APA, Harvard, Vancouver, ISO, and other styles
9

Kulakovskii, Vladimir D., M. Bayer, M. Michel, A. Forchel, T. Gutbrod, and F. Faller. "Excitonic molecules in InGaAs/GaAs quantum dots." Physics-Uspekhi 41, no. 2 (February 28, 1998): 115–18. http://dx.doi.org/10.1070/pu1998v041n02abeh000340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bayer, M., V. D. Kulakovskii, T. Gutbrod, and A. Forchel. "Exciton complexes in InGaAs/GaAs quantum dots." Physica B: Condensed Matter 249-251 (June 1998): 620–23. http://dx.doi.org/10.1016/s0921-4526(98)00261-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "InGaAs quantum dots"

1

Larsson, Arvid. "Optical spectroscopy of InGaAs quantum dots." Doctoral thesis, Linköpings universitet, Halvledarmaterial, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64707.

Full text
Abstract:
The work presented in this thesis deals with optical studies of semiconductor quantum dots (QDs) in the InGaAs material system. It is shown that for self-assembled InAs QDs, the interaction with the surrounding GaAs barrier and the InAs wetting layer (WL) in particular, has a very large impact on their optical properties. The ability to control the charge state of individual QDs is demonstrated and attributed to a modulation in the carrier transport dynamics in the WL. After photo-excitation of carriers (electrons and holes) in the barrier, they will migrate in the sample and with a certain probability become captured into a QD. During this migration, the carriers can be affected by exerting them to an external magnetic field or by altering the temperature. An external magnetic field applied perpendicular to the carrier transport direction will lead to a decrease in the carrier drift velocity since their trajectories are bent, and at sufficiently high field strength become circular. In turn, this decreases the probability for the carriers to reach the QD since the probability for the carriers to get trapped in WL localizing potentials increases. An elevated temperature leads to an increased escape rate out of these potentials and again increases the flow of carriers towards the QD. These effects have significantly different strengths for electrons and holes due to the large difference in their respective masses and therefore it constitutes a way to control the supply of charges to the QD. Another effect of the different capture probabilities for electrons and holes into a QD that is explored is the ability to achieve spin polarization of the neutral exciton (X0). It has been concluded frequently in the literature that X0 cannot maintain its spin without application of an external magnetic field, due to the anisotropic electron – hole exchange interaction (AEI). In our studies, we show that at certain excitation conditions, the AEI can be by-passed since an electron is captured faster than a hole into a QD. The result is that the electron will populate the QD solely for a certain time window, before the hole is captured. During this time window and at polarized excitation, which creates spin polarized carriers, the electron can polarize the QD nuclei. In this way, a nuclear magnetic field is built up with a magnitude as high as ~ 1.5 T. This field will stabilize the X0 spin in a similar manner as an external magnetic field would. The build-up time for this nuclear field was determined to be ~ 10 ms and the polarization degree achieved for X0 is ~ 60 %. In contrast to the case of X0, the AEI is naturally cancelled for the negatively charged exciton (X-) and the positively charged exciton (X+) complexes. This is due to the fact that the electron (hole) spin is paired off in case of X- (X+).  Accordingly, an even higher polarization degree (~ 73 %) is measured for the positively charged exciton. In a different study, pyramidal QD structures were employed. In contrast to fabrication of self-assembled QDs, the position of QDs can be controlled in these samples as they are grown in inverted pyramids that are etched into a substrate. After sample processing, the result is free-standing AlGaAs pyramids with InGaAs QDs inside. Due to the pyramidal shape of these structures, the light extraction is considerably enhanced which opens up possibilities to study processes un-resolvable in self-assembled QDs. This has allowed studies of Auger-like shake-up processes of holes in single QDs. Normally, after radiative recombination of X+, the QD is populated with a ground state hole. However, at recombination, a fraction of the energy can be transferred to the hole so that it afterwards occupies an excited state instead. This process is detected experimentally as a red-shifted luminescence satellite peak with an intensity on the order of ~ 1/1000 of the main X+ peak intensity. The identification of the satellite peak is based on its intensity correlation with the X+ peak, photoluminescence excitation measurements and on magnetic field measurements.
Arbetet som presenteras i denna avhandling rör studier av kvantprickars optiska egenskaper. En kvantprick är en halvledarkristall som endast är några tiotals nanometer stor. Den ligger oftast inbäddad inuti en större kristall av ett annat halvledarmaterial och pga. den begränsade storleken får en kvantprick mycket speciella egenskaper. Bland annat så kommer elektronerna i en kvantprick endast att kunna anta vissa diskreta energinivåer liknande situationen för elektronerna i en atom. Följaktligen kallas kvantprickar ofta för artificiella atomer. För halvledarmaterial gäller det generellt att det inte endast är fria elektroner i ledningsbandet, som kan leda ström utan även tomma elektrontillstånd i valens­bandet, vilka uppträder som positivt laddade partiklar, kan leda ström. Dessa kallas kort och gott för hål. I en kvantprick har hålen såsom elektronerna helt diskreta energinivåer. Precis som är fallet i en atom, så kommer elektroniska övergångar mellan olika energi­nivåer i en kvantprick att resultera i att ljus emitteras. Energin (dvs. våglängden alt. färgen) för detta ljus bestäms av hur energinivåerna i kvant­pricken ligger, för elektronerna och hålen, och genom att analysera ljuset kan man således studera kvantprickens egenskaper. Studierna i den här avhandlingen visar att växelverkan mellan en kvantprick och den omgivande kristallen, som den ligger inbäddad i, har stor inverkan på kvantprickens optiska egenskaper. T.ex. visas att man kan kontrollera antalet elektroner, som kommer att finnas i kvantpricken genom att modifiera hur elektronerna kan röra sig i omgivningen. Dessa rörelser modifieras här genom att variera temperaturen och genom att lägga på ett magnetiskt fält. Ett magnetiskt fält, vinkelrätt mot en elektrons rörelse, kommer att böja av dess bana och dess chans att nå fram till kvantpricken kan således minskas. Elektronen kan då istället fastna i andra potentialgropar i kvantprickens närhet. Genom att öka temperaturen, vilket ger elektronerna större energi, kan deras chans att nå fram till kvantpricken å andra sidan öka. En annan effekt, som studerats, är möjligheten att kontrollera spinnet hos elektronerna i en kvantprick. Även i dessa studier visar det sig att växelverkan med omgivningen spelar stor roll och kan användas till att kontrollera elektronens spin. Mekanismen som föreslås är att om elektronerna hinner före hålen till kvantpricken, så hinner de överföra sitt spin till atomkärnorna i kvantpricken. På detta sätt kan man få atomkärnornas spin polariserat, vilket resulterar i ett inbyggt magnetfält, i storleksordningen 1.5 Tesla, som i sin tur hjälper till att upprätthålla en hög grad av spinpolarisering även hos elektronerna. För att få elektronerna att hinna först, måste deras rörelser i omgivningen kontrolleras. I en ytterligare studie undersöktes den process där en elektronisk övergång i kvantpricken inte enbart resulterar i emission av ljus, utan även i att en annan partikel tar över en del av energin och blir exciterad. Dessa processer avspeglas i att en del av det ljus som emitteras har lägre energi. Detta ljus är också mycket svagt, ca 1000 ggr lägre intensitet, och möjligheten att kunna mäta detta är helt beroende på hur ljusstarka kvantprickarna är. De prover som använts i denna studie består av pyramidstrukturer, ca 7.5 mikrometer stora, med kvantprickar inuti. Denna geometri ger ca 1000 ggr bättre ljusutbyte jämfört med traditionella strukturer, vilket möjliggjort studien.
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Tyler Drue. "Characterization of InGaAs Quantum Dot Chains." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3718.

Full text
Abstract:
InGaAs quantum dot chains were grown with a low-temperature variation of the Stranski-Krastanov method, the conventional epitaxial method. This new method seeks to reduce indium segregation and intermixing in addition to giving greater control in the growth process. We used photoluminescence spectroscopy techniques to characterize the quality and electronic structure of these samples. We have recently used a transmission electron microscope to show how the quantum dots vary with annealing temperature. Some questions relating to the morphology of the samples cannot be answered by photoluminescence spectroscopy alone. Using transmission electron microscopy, we verified flattening of the quantum dots with annealing temperature and resolved the chemical composition with cross-section cuts and plan view cuts.
APA, Harvard, Vancouver, ISO, and other styles
3

Fry, Paul William. "Optical spectroscopy of InGaAs GaAs self assembled quantum dots." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brereton, Peter George. "Control of single InGaAs quantum dots with frequency-swept optical pulses." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baer, Norman. "Optical and electronic properties of InGaAs and nitride quantum dots." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983398089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Karlsson, Fredrik. "Spectroscopic studies of InGaAs/GaAs/AlGaAs quantum dots and wires /." Linköping : Univ, 2004. http://www.bibl.liu.se/liupubl/disp/disp2004/tek892s.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cesari, Valentina. "Ultrafast carrier dynamics in P doped InGaAs GaAs quantum dots." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54834/.

Full text
Abstract:
In this PhD project the effect of p doping on the carrier dynamics in InGaAs quantum dot amplifiers emitting near 1.3/mi at room temperature has been investigated by transient differential transmission spectroscopy (DTS) and four-wave mixing (FWM) experiments in a heterodyne detection scheme. From DTS experiments, an absorption bleaching on the order of few hundreds of ps and an ultrafast gain recovery were measured at operating condition, i.e. room temperature and with current injection. The faster absorption bleaching recovery observed in p doped amplifiers has been attributed to the carrier-carrier scattering due to built-in holes. Conversely, the gain compression recovery is limited by the lack of an electron reservoir in the dots which has been demonstrated in doped amplifiers. These findings should help in elucidating the role of p doping in the design of QD-based devices with high-speed performances. Temperature dependent DTS measurements have confirmed this interpretation and lead to a microstate model developed at 20 K to represent the gain dynamics. At room temperature the combined study of the gain and refractive index dynamics allows us to measure the line width enhancement factor. We observed that p doping is effective in reducing this parameter. By FWM experiments, the polarization decay of ground state excitonic transitions in the temperature range from 5K to 210 K has been measured to obtain the zero-phonon line (ZPL) width and its contribution to the homogeneous line shape. The temperature-dependent ZPL width is reproduced by a thermally-activated behaviour. This finding has been discussed in the framework of exciton-phonon interactions. Coulomb interaction is investigated by measuring the dephasing time versus injected current at 20 K. From measurements of the homogeneous broadenings of exciton and biexciton transitions we demonstrated that the carrier capture dominates on pure dephasing in these strongly confined dots. Moreover, a much faster dephasing is observed in p doped devices due to Coulomb interaction between built-in holes.
APA, Harvard, Vancouver, ISO, and other styles
8

Oulton, Ruth. "Optical spectroscopy of single self-assembled InGaAs/GaAs quantum dots." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Migliorato, Max Antonio. "Atomistic modelling of InGaAs quantum dots with non-uniform composition." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koseki, Shinichi. "Monolithic waveguide coupled GaAs microdisk microcavity containing ingaas quantum dots /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "InGaAs quantum dots"

1

Mitsuru, Sugawara, ed. Self-assembled InGaAs/As quantum dots. aSan Diego: Academic Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

(Editor), Mitsuru Sugawara, Robert K. Willardson (Series Editor), and Eicke R. Weber (Series Editor), eds. Self-Assembled Ingaas/Gaas Quant Umdots (Semiconductors and Semimetals). Academic Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alves, Alvaro Marcel Palomo. Jogo infantil e intersubjetividade: contribuições de Lev. S. Vigotski e D. W. Winnicott. Edufatecie, 2020. http://dx.doi.org/10.33872/edufatecie.jogoinfantil.

Full text
Abstract:
A obra propõe uma discussão sobre o conceito de intersubjetividade nas obras do psicólogo russo Lev S. Vigotski e do psicanalista inglês Donald W. Winnicott. Para tanto, realizamos uma reflexão teórica sobre o jogo infantil e seu significado nas teorias dos autores, apontando para a noção de "espaço" entre o indivíduo e a sociedade. Tanto Vigotski quanto Winnicott refutavam a dicotomia indivíduo-sociedade e apontaram para as noções de vivência, imaginação, criatividade, sentido e significado como expressões do psiquismo individual. O jogo seria a zona de desenvolvimento próximo e o habitat dos fenômenos transicionais, lugar de criação, desenvolvimento e saúde mental para crianças. Ao apresentarmos as teorias desses autores, buscamos suplantar uma lacuna nas obras sobre o tema, normalmente relegadas à discussões práticas e expressivas, menos reflexivas e teóricas.
APA, Harvard, Vancouver, ISO, and other styles
4

Pranchas para o diagnóstico de parasitos intestinais. Organización Panamericana de la Salud, 2020. http://dx.doi.org/10.37774/9789275722053.

Full text
Abstract:
Estas Pranchas para o diagnóstico de parasitos intestinais destinam-se a servir tanto como orientação para pro­fissionais de laboratório e de campo em países endêmicos quanto como material de ensino para estudantes e estagiários. Contêm orientações sobre a escolha da preparação para os diferentes métodos copromicroscópicos e a principal técnica de coloração para o diagnóstico de parasitos intestinais (nematoides, trematódeos, cestódeos e protozoários). As fotomicrografi­as mostram a aparência e as características diagnósticas dos diversos parasitos nas diferentes preparações. As pranchas foram produzidas em formato plastifi­cado impermeável, resistente e fácil de usar na bancada. São recomendadas para todos os profissionais de saúde que atuam na rotina de diagnóstico de parasitoses intestinais. Versão oficial em português da obra original em Inglês: Bench aids for the diagnosis of intestinal parasites. © World Health Organization 2019. ISBN: 978-92-4-151534-4.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "InGaAs quantum dots"

1

Kioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 1–27. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7604-3_19-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 399–430. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6892-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schliwa, Andrei, and Momme Winkelnkemper. "Theory of Excitons in InGaAs/GaAs Quantum Dots." In Semiconductor Nanostructures, 139–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77899-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mirin, Richard P., and Arthur C. Gossard. "Growth, characterization, and applications of self-assembled InGaAs quantum dots." In Quantum Semiconductor Devices and Technologies, 183–231. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4451-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greilich, Alex, Dmitri R. Yakovlev, and Manfred Bayer. "Ensemble spin coherence of singly charged InGaAs quantum dots." In Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, 85–127. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sandmann, J. H. H., S. Grosse, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto. "Carrier Relaxation Dynamics in Strain-Induced InGaAs Quantum Dots." In Springer Series in Chemical Physics, 427–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Babiński, A. "Photoluminescence from InGaAs/GaAs Quantum Dots in a High Electric Field." In Optical Properties of Semiconductor Nanostructures, 395–404. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stier, Oliver. "Theory of the Electronic and Optical Properties of InGaAs/GaAs Quantum Dots." In Nano-Optoelectronics, 167–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56149-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tománek, Pavel, Pavel Dobis, Markéta Benešová, and Lubomír Grmela. "Near-Field Study of Carrier Dynamics in InAs/GaAs Quantum Dots Grown on InGaAs Layers." In Materials Science Forum, 151–54. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-964-4.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Giorgi, M., A. Passaseo, R. Cingolani, A. Taurino, and M. Catalano. "Effect of vertical size uniformity on diffraction contrast images of stacked InGaAs/GaAs quantum dots." In Springer Proceedings in Physics, 369–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_170.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "InGaAs quantum dots"

1

SUGAWARA, Mitsura, Kohki MUKAI, and YoshiaM NAKATA. "Self-assembled InGaAs quantum dots and quantum-dot lasers." In Quantum Optoelectronics. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/qo.1999.qmc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borri, Paola, Wolfgang W. Langbein, S. Schneider, Ulrike Woggon, Markus Schwab, Manfred Bayer, Roman L. Sellin, et al. "Dephasing processes in InGaAs quantum dots and quantum-dot molecules." In Integrated Optoelectronic Devices 2004, edited by Diana L. Huffaker and Pallab Bhattacharya. SPIE, 2004. http://dx.doi.org/10.1117/12.531544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hetterich, M., W. Löffler, J. Fallert, T. Passow, B. Daniel, J. Lupaca-Schomber, J. Hetterich, S. Li, C. Klingshirn, and H. Kalt. "Electrical Spin Injection into InGaAs Quantum Dot Ensembles and Single Quantum Dots." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eliseev, Petr G., Kevin J. Malloy, Andreas Stintz, T. V. Torchynska, H. M. Alfaro Lopez, and R. Pena Sierra. "Multishell photoluminescence from InAs/InGaAs quantum dots." In Integrated Optoelectronics Devices, edited by Marek Osinski, Hiroshi Amano, and Peter Blood. SPIE, 2003. http://dx.doi.org/10.1117/12.482322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gu, S. Q., E. E. Reuter, Q. Xu, R. Panepucci, Arnold C. Chen, Hung-Pin Chang, Ilesanmi Adesida, et al. "Photoluminescence characterization of InGaAs/InP quantum dots." In Thin Film Physics and Applications: Second International Conference, edited by Shixun Zhou, Yongling Wang, Yi-Xin Chen, and Shuzheng Mao. SPIE, 1994. http://dx.doi.org/10.1117/12.190790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Makhonin, M. N., A. I. Tartakovskii, T. Wright, F. Pulizzi, J. Skiba-Szymanska, M. S. Skolnick, V. I. Fal'ko, et al. "Control of nuclear spin in InGaAs quantum dots." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4629031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nishioka, M., J. Oshinowo, S. Ishida, and Y. Arakawa. "InGaAs/GaAs Quantum Dots (~15nm) Grown by MOCVD." In 1994 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1994. http://dx.doi.org/10.7567/ssdm.1994.s-i-5-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lever, Penelope, Hark H. Tan, Michael Gal, and Chennupati Jagadish. "Impurity-free vacancy disordering of InGaAs quantum dots." In Symposium on Integrated Optoelectronic Devices, edited by James A. Lott, Nikolai N. Ledentsov, Kevin J. Malloy, Bruce E. Kane, and Thomas W. Sigmon. SPIE, 2002. http://dx.doi.org/10.1117/12.460800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krishna, Sanjay. "InAs/InGaAs quantum dots-in-a-well photodetectors." In Congress on Optics and Optoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, and Fiodor F. Sizov. SPIE, 2005. http://dx.doi.org/10.1117/12.623133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yuan, Qing, Baolai Liang, Ying Wang, Xiaoli Li, Qinglin Guo, Shufang Wang, Guangsheng Fu, Yuriy Mazur, Morgan Ware, and Gregory Salamo. "Photoluminescence investigation of InGaAs surface quantum dots (Conference Presentation)." In Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XVI, edited by Diana L. Huffaker and Holger Eisele. SPIE, 2019. http://dx.doi.org/10.1117/12.2509218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography