Academic literature on the topic 'InGaAs photodiodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'InGaAs photodiodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "InGaAs photodiodes"

1

Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V., et al. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes." Technical Physics Letters 48, no. 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.

Full text
Abstract:
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70-80 V. At the applied bias of 0.9 Vbr, the dark current was 75-200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5A/W at 1550 nm. Keywords: avalanche photodiode, InAlAs/InGaAs, mesa structure, dark current.
APA, Harvard, Vancouver, ISO, and other styles
2

BAPTISTA, B. J., and S. L. MUFSON. "RADIATION HARDNESS STUDIES OF InGaAs AND Si PHOTODIODES AT 30, 52, & 98 MeV AND FLUENCES TO 5 × 1011 PROTONS/CM2." Journal of Astronomical Instrumentation 02, no. 01 (September 2013): 1250008. http://dx.doi.org/10.1142/s2251171712500080.

Full text
Abstract:
Here we report the results of an investigation into the effects of ionizing radiation on commercial off-the-shelf InGaAs and Si photodiodes. The photodiodes were exposed to 30, 52, and 98 MeV protons with fluences ranging from 108 - 5 × 1011 protons/cm2 at the Indiana University Cyclotron Facility. We tested the photodiodes for changes to their dark current and their relative responsivity as a function of wavelength. The Si photodiodes showed increasing damage to their responsivity with increasing fluence; the InGaAs photodiodes showed significantly increased dark current as the fluence increased. In addition, we monitored the absolute responsivity of the InGaAs photodiodes over their entire bandpass. Our measurements showed no evidence for broadband degradation or graying of the response at the fluences tested. All measurements in this investigation were made relative to detectors traceable to NIST standards.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhuravlev, K. S., A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov, and M. S. Aksenov. "High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission." Journal of Semiconductors 43, no. 1 (January 1, 2022): 012302. http://dx.doi.org/10.1088/1674-4926/43/1/012302.

Full text
Abstract:
Abstract The design, manufacturing and DC and microwave characterization of high-power Schottky barrier InAlAs/InGaAs back-illuminated mesa structure photodiodes are presented. The photodiodes with 10 and 15 μm mesa diameters operate at ≥40 and 28 GHz, respectively, have the output RF power as high as 58 mW at a frequency of 20 GHz, the DC responsivity of up to 1.08 A/W depending on the absorbing layer thickness, and a photodiode dark current as low as 0.04 nA. We show that these photodiodes provide an advantage in the amplitude-to-phase conversion factor which makes them suitable for use in high-speed analog transmission lines with stringent requirements for phase noise.
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, H., X. Huang, C. P. Chao, S. W. Chen, B. Deng, D. Gong, S. Hou, et al. "QTIA, a 2.5 or 10 Gbps 4-channel array optical receiver ASIC in a 65 nm CMOS technology." Journal of Instrumentation 17, no. 05 (May 1, 2022): C05017. http://dx.doi.org/10.1088/1748-0221/17/05/c05017.

Full text
Abstract:
Abstract The Quad transimpedance and limiting amplifier (QTIA) is a 4-channel array optical receiver ASIC, developed using a 65 nm CMOS process. It is configurable between the bit rate of 2.56 Gbps and 10 Gbps per channel. QTIA offers careful matching to both GaAs and InGaAs photodiodes. At this R&D stage, each channel has a different biasing scheme to the photodiode for optimal coupling. A charge pump is implemented in one channel to provide a higher reverse bias voltage, which is especially important to mitigate radiation effects on the photodiodes. The circuit functions of QTIA successfully passed the lab tests with GaAs photodiodes.
APA, Harvard, Vancouver, ISO, and other styles
5

Campbell, J. C., B. C. Johnson, G. J. Qua, and W. T. Tsang. "Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 5 (May 1989): 778–84. http://dx.doi.org/10.1109/50.19113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martinelli, Ramon U., Thomas J. Zamerowski, and Paul A. Longeway. "2.6 μm InGaAs photodiodes." Applied Physics Letters 53, no. 11 (September 12, 1988): 989–91. http://dx.doi.org/10.1063/1.100050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yoon, H. W., J. J. Butler, T. C. Larason, and G. P. Eppeldauer. "Linearity of InGaAs photodiodes." Metrologia 40, no. 1 (February 2003): S154—S158. http://dx.doi.org/10.1088/0026-1394/40/1/335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I., and Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode." Semiconductors 57, no. 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.

Full text
Abstract:
A model is proposed that makes it possible to analytically analyze the speed performance of a waveguide p-i-n photodiode with a light-absorbing region representing a multilayered array of quantum dots separated by undoped spacers. It is shown that there is an optimal number of layers of quantum dots, as well as an optimal thickness of the spacers, which provide the widest bandwidth. The possibility of achieving a frequency range (at the level of -3 dB) above 20 GHz for waveguide photodiodes based on InGaAs/GaAs quantum well-dots is shown Keywords: photodiode, quantum dots, speed.
APA, Harvard, Vancouver, ISO, and other styles
9

Won-Tien Tsang, J. C. Campbell, and G. J. Qua. "InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy." IEEE Electron Device Letters 8, no. 7 (July 1987): 294–96. http://dx.doi.org/10.1109/edl.1987.26636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Campbell, J. C., S. Chandrasekhar, W. T. Tsang, G. J. Qua, and B. C. Johnson. "Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes." Journal of Lightwave Technology 7, no. 3 (March 1989): 473–78. http://dx.doi.org/10.1109/50.16883.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "InGaAs photodiodes"

1

Xie, Shiyu. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/2267/.

Full text
Abstract:
Avalanche photodiodes (APDs) can provide higher sensitivity, when the noise is dominated by electronic noise, than conventional p-i-n photodiodes due to its internal gain achieved via the impact ionisation process. High speed and high sensitivity photodetectors operating at the wavelength of 1.55 m for optical communication have been intensely research due to the ever increasing internet traffic, particularly in the long-haul communication systems. In this dissertation high speed InGaAs p-i-n photodiodes, InGaAs/InAlAs separate absorption and multiplication (SAM) APDs are designed and characterised. The waveguide InGaAs photodiode exhibits a maximum -3 dB bandwidth of 26.5 GHz and external quantum efficiency of 38.4% giving a bandwidth-efficiency product of 10.2 GHz, which is higher than 7.14 GHz obtained from conventional vertically illuminated diodes fabricated from the same wafer. Building on the high speed InGaAs waveguide diodes, the InGaAs/InAlAs APDs were fabricated. We demonstrated low dark currents of ~50 nA at 0.9Vbd (Vbd is the breakdown voltage), low excess noise factor k  0.2 (k is the effective ratio of ionisation coefficients ratio in excess noise model) and wide bandwidth up to 40 GHz at low gains. Our APDs also achieve higher signal amplification than the best 40 Gb/s APD reported, confirming the suitability of our APDs for use in the 40 Gb/s optical communication systems. The signal enhancement of up to 24 dB was achieved at 35 GHz. While the InGaAs/InAlAs APDs may be suitable for 40 Gb/s operation, the avalanche gain is limited due to their limited gain bandwidth products. Hence novel wide bandgap AlAsSb avalanche regions were characterised for next generation high speed SAM APDs. The temperature dependence of dark current and avalanche gain were investigated using AlAsSb p-i-n diodes with avalanche region widths of 80 and 230 nm. Extremely low temperature coefficients of breakdown voltage of 0.95 and 1.47 mV/K were obtained in these AlAsSb diodes, which are significantly lower than all semiconductor materials, with similar avalanche region widths, in the literature. Band to band tunelling current was shown to be significantly lower than those in InP and InAlAs diodes with the same avalanche region widths. By utilising an extremely thin 40 nm AlAsSb as multiplication layer, low excess noise factor corresponding to effective k values of 0.1 to 0.15 in InGaAs/AlAsSb SAM APDs was demonstrated. This is lower than that from an InAlAs pin diode with a 100 nm avalanche region. Therefore the potential of using thin AlAsSb avalanche region for next generation high speed and high sensitivity photodetectors has been demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
2

Xie, Jingjing. "Characterisation of low noise InGaAs/AlAsSb avalanche photodiodes." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4511/.

Full text
Abstract:
This work aims at studying the excess noise characteristics of AlAsSb material and investigating the high speed properties of InGaAs/AlAsSb SAM APDs in optical communication. Current commercial InGaAs/InP APDs have been limited to low frequency operation, below 10 Gb/s, because scaling down of multiplication region thickness has reached its limit due to high tunnelling current. The new material AlAsSb has been shown to offer more promising performance in terms of negligible tunnelling current, excellent thermal stability and extremely low excess noise. The fabrication of AlAsSb and subsequent passivation methods are presented. Since AlAsSb oxidizes easily when exposed to air, different etchants were tested. A selective etching method has been shown to provide the best result for homojunction AlAsSb and InGaAs/AlAsSb APDs. SU-8 and BCB passivated InGaAs/AlAsSb APDs have negligible degradation compared to unpassivated devices. However removal of BCB residue still needs to be optimised if it is to be used in high speed APD fabrication. Therefore in this work SU-8 has been identified as the dielectric material for passivation because of its simple process. Procedures for fabrication of high speed InGaAs/AlAsSb APD have been developed. The excess noise and avalanche gain of two thin homojunction AlAsSb p-i-n structures were characterised under pure injection (using 442 nm laser) and mix light injection (using 542 and 633 nm lasers). The absorption coefficient of AlAsSb was estimated from the linear interpolation of absorption coefficients of AlAs and AlSb. Both the gain and excess noise in the two structures indicated that the electron ionisation coefficient in AlAsSb is slightly higher than hole ionisation coefficient. Very low excess noise with an effective ionisation coefficient ratio keff corresponding to 0.05 was observed in a 230 nm thick AlAsSb p-i-n structure. An InGaAs/AlAsSb APD with a multiplication layer thickness of only 50 nm was studied to determine its temperature coefficient of breakdown Cbd, and compared to an InGaAs/InAlAs APD. Due to the relatively low doping in the charge sheet layers, the tunnelling current from the InGaAs absorption layer has been unavoidable. However using the linear extrapolation of 1/M to zero, very small Cbd of 8 mV/K was measured. This is lower than all the reported InGaAs/InAlAs and InGaAs/InP APDs. The bandwidth of an InGaAs/AlAsSb APD was studied on different devices with diameters from 25 to 250 µm. Gain close to 100 was measured on the smallest device with 25 µm diameter. However it was found to be partly contributed by edge breakdown. The bandwidth measured was ~ 3.4 GHz, independent of gain, suggesting that it is not limited by the avalanche process. As the avalanche limited bandwidth decreasing was not observed, a potential high gain bandwidth product > 327 GHz is plausible. The bandwidths of all the devices are mainly limited to the RC effect as the contact resistance still needs to be improved. The similar amplification of ~ 25 dB, obtained at 10 GHz and at 1 GHz confirms the InGaAs/AlAsSb is useful for high speed application.
APA, Harvard, Vancouver, ISO, and other styles
3

Faure, Benoit. "MODELISATION ET OPTIMISATION DES PHOTODIODES A AVALANCHE ET HETEROJONCTION InP/InGaAs." Toulouse, INSA, 1986. http://www.theses.fr/1986ISAT0003.

Full text
Abstract:
Principaux phenomenes physiques dans la photodiode a avalance inp/ingaas. Conception du recepteur par l'etude du systeme de transmission par fibre optique. Modelisation et optimisation des photodiodes
APA, Harvard, Vancouver, ISO, and other styles
4

Tabor, Steven Alan. "Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4760.

Full text
Abstract:
This thesis reports a novel system capable of testing both the spectral responsivity and the spatial quantum efficiency uniformity of heterostructure photodiodes using optical fiber coupled radiation. Testing was performed to confirm device specifications. This study undertakes to quantify the spectral bandwidth of an AlGaAs I GaAs double heterostructure photodiode and two InGaAs I InP double heterostructure PIN photodiodes at D.C., through the use of spatial scanning. The spatial scanning was done using lasers at 670 nm, 780 nm, 848 nm, 1300 nm, and 1550 nm, coupled through singlemode optical fiber. The AlGaAs I GaAs material system covers the 600 - 870 nm wavelength region of research interest in the visible spectrum. The InGaAs I InP material system covers the 800 - 1650 nm region which contains the fiberoptic communications spectrum. The spatial measurement system incorporates a nearly diffraction limited spot of light that is scanned across the surf ace of nominally circular photodiodes using a piezoelectric driven stage. The devices tested range in size from 17 to 52 μin diameter. The smallest device scanned has a diameter approximately four times the diffraction limit of the radiation used for spatial scanning. This is the smallest diode yet reported as being spatially mapped. This is the first simultaneously reported spectral and spatial scans of the same heterostructure PIN photodiodes in the InGaAs I InP and AlGaAs I GaAs systems. The testing arrangement allows both spectral and spatial scans to be taken on the same stage. The diodes tested were taken from intermediate runs during their process development. All testing was performed at room temperature. This study describes the mechanical assembly, calibration and testing of a spatial quantum efficiency uniformity measurement system. The spectral quantum efficiency was measured with low power, incoherent broadband radiation coupled through multimode fiber from a tunable wavelength source to the device under test. The magnitude was corrected to the measured peak external quantum efficiency (Q.E.), determined during spatial scanning at a mid-spectral bandwidth wavelength using continuous wave (CW) higher power lasers. A procedure to improve the accuracy of the correction is recommended. This process has been automated through the use of National Instruments LabVIEW II software. The results from this procedure are plotted to show 2.5 D (pseudo 3D) and 2 D contour spatial quantum efficiency maps. These results give a quantified map of the relative homogeneity of the response. The non-homogeneity of the spatial scans on the smallest devices has not previously been reported. The Q.E. measurements made agree well with previously published results for similar device structures. The AlGaAs I GaAs device achieved a peak external Q.E. of 58.7% at 849 nm with -lOV bias. An InGaAs I InP device achieved 63.5% at 1300 nm with the same bias. The Q.E. results obtained are compared to theoretical calculations. The calculations were performed using the best optical constant data available in the literature at this time. The measured peak Q.E. was found to agree with the theoretical calculations to within 16% at longer wavelengths for both devices tested.
APA, Harvard, Vancouver, ISO, and other styles
5

Dentan, Martin. "Photodiode PIN InGaAs en grands signaux hyperfréquence : modélisation, réalisation et caractérisation." Paris 11, 1989. http://www.theses.fr/1989PA112257.

Full text
Abstract:
Les composants d'extrémité des systèmes de communication par fibres optiques sont le module émetteur laser, et le module récepteur comportant une photodiode P. I. N. Cette Thèse porte sur la réalisation d'une photodiode P. I. N. Et l'optimisation de ses performances en termes de bande passante et de linéarité, en fonctionnement en grands signaux dans le domaine microonde. Un effort est actuellement réalisé pour accroître la réponse en fréquence des composants d'extrémité. L'emploi d'un modèle "petits signaux" a permis de réaliser des photodiodes de bande passante toujours accrue, ayant par conséquence une région active de dimensions sans cesse plus réduites. Un autre objectif également important est l'obtention pour ces systèmes d'une dynamique élevée. Or l'absorption d'un signal optique intense dans une photodiode ayant une région active de très faibles dimensions engendre, par des effets de charge d'espace, la non-linéarité de la réponse électrique du dispositif. Un modèle prenant en compte les équations régissant l'écoulement des porteurs en Z. C. E. A été étudié. Il donne en particulier le taux de génération d'harmoniques dans le signal issu de la photodiode, en fonction de la puissance du signal optique incident. Dans cette thèse sont détaillées toutes les opérations effectuées pour réaliser une tête de réception optique microonde: épitaxie de la structure semiconductrice, réalisation de la puce par des procédés de microphotolithographie puis montage de la tête de réception. La caractérisation électrique en continu puis en hyperfréquence du dispositif a permis alors de vérifier la validité des modèles. La photodiode réalisée présente une bande passante de 18 GHz. On montre qu'elle a une meilleure linéarité que celle des lasers actuellement utilisés dans une liaison optique expérimentée au L. C. R. , pour une modulation directe du signal électrique appliqué au laser de 0 dBm
The devices coupled to optical fibers in optical links are the laser diode (light emitter) and the P. I. N. Photodiode (light receptor). This thesis concerns the optimization of the photodiode performances, in terms of bandwidth and linearity, in large signal microwave operation. One of the goals is the improvement of the frequency response of this device. Using a small signal modal, we show that we can increase the bandwidth of photodiodes by reducing the active region dimensions. Another important objective is to obtain large signal operation. The absorption of an intense optical signal, by a diode with a very small active region, leads to a non-linear electrical response due to the effects of space-charge. A modal taking into account the equations for the carrier transport in the space-charge region is developed; in particular, it gives the harmonies of the device response. Ln this thesis, we have realized and discuss all the steps necessary for the fabrication of the optical receiver: epitaxy of the material, process of the device and packaging allowing microwave operations. Then the two models described above were experimentally verified by D. C. And microwave electrical characterization. We demonstrate an 18 GHz bandwidth for our photodiode and show in particular that this photodiode has a more linear response than the lasers with direct modulation used in experimental optical links at L. C. R. , for an input electrical power of 0 dBm
APA, Harvard, Vancouver, ISO, and other styles
6

An, Serguei. "Material and device characterization of InP/InGaAs avalanche photodiodes for multigigabit optical fiber communications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ61622.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Le, Goff Florian. "Intégration de matériaux semi-conducteurs III-V dans des filières de fabrication silicium avancées pour imagerie proche infrarouge." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD034/document.

Full text
Abstract:
Les imageurs à base d’alliage InGaAs sur substrat InP se sont fortement popularisés pour l’imagerie dans le proche infrarouge. La méthode de fabrication de référence est constituée d’une matrice de photodiodes planaires réticulées par diffusion localisée de zinc. Cette approche reste chère du fait d’une méthode d’hybridation individuelle entre circuit de lecture CMOS et circuit de détection. Afin de réaliser des imageurs proche infrarouge bas coût ou de grand format, cette méthode d’hybridation doit donc être revisitée. La solution présentée durant cette thèse est de transférer les structures III-V absorbantes directement sur le circuit de lecture par un collage moléculaire direct suivi d’une fabrication collective des matrices de photodiodes. Cette méthode demande le développement d’une nouvelle architecture pour la connexion électrique au circuit de lecture et la formation de diodes. Elle consiste en la réalisation de via de connexion à partir desquels un dopage localisé est réalisé. On forme alors des diodes circulaires autour de chaque via appelées LoopHoles. Ce dopage dont la température ne doit pas dépasser 400°C est réalisé par diffusion MOVPD. Malgré des phénomènes physiques parasites il a été possible de réaliser dans l’InP et l’InGaAs des jonctions p-n adaptées. Les caractéristiques optoélectroniques de groupes de diodes LoopHoles sur substrat InP et sur matériaux reportés ont ainsi pu être mesurées
Nowadays short wavelength infrared (SWIR) imaging based on InP/InGaAs photo-diodes is quite popular for uncooled camera. The state of the art technology is a double layer planar heterointerface focal plane array. But, it remains expensive. Its cost comes essentially from the individually hybridization of photo-diodes array with read-out circuit, by the mean of an indium-bumps flip-chip process. We suggest an alternative method for hybridization, in order to lowering the cost and providing a sustainable process to decrease the pixel pitch. It consists in a direct integration by bonding silica of InP/InGaAs/InP structure above a finished read-out circuit (with CMOS technology) and circular diode architecture named “LoopHoles”. This diode consists in via-hole through the III-V materials and bonding silica layer down to top metal layer in the readout circuit for each active pixel. Via-hole is also used to diffuse laterally zinc in III-V layer in order to create p-type doping area. Because of the read-out circuit, temperature of diffusion has to be below 400°C which induces parasitic phenomena’s. We have found that a Hf02 coating on InP surface prevent this degradation while allowing zinc diffusion. We were able to control depth of p-n junction inside InP and InGaAs. We also investigated few steps of the processes like the molecular bonding, via etching and metallization. Finally, we succeeded to produce LoopHole photodiodes on bulk InP and on bonded materials with a high spectral efficiency, low pitch and a lower dark currant of 150 fA at room temperature
APA, Harvard, Vancouver, ISO, and other styles
8

Hecht, Anna E. "Thermal Drift Compensation in Non-Uniformity Correction for an InGaAs PIN Photodetector 3D Flash LiDAR Camera." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1607959309040459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ozer, Selcuk. "Insb And Inassb Infrared Photodiodes On Alternative Substrates And Inp/ingaas Quantum Well Infrared Photodetectors: Pixel And Focal Plane Array Performance." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606097/index.pdf.

Full text
Abstract:
InAsxSb1-x (Indium Arsenide Antimonide) is an important low bandgap semiconductor whose high quality growth on GaAs or Si substrates is indispensible for low cost, large format infrared focal plane arrays (FPAs). Quantum well infrared photodetector (QWIP) technology, relying on mature semiconductors, is also promising for the above purpose. While AlGaAs/GaAs has been the standard material system for QWIPs, the search for alternative materials is needed for better performance. This thesis reports a detailed investigation of molecular beam epitaxy grown mid-wavelength infrared InAsxSb1-x photodiodes on alternative substrates, and long wavelength infrared InP/InGaAs QWIPs. In the first part of the study, InSb and InAs0.8Sb0.2 photodiodes grown on Si and GaAs substrates are investigated to reveal the performance degrading mechanisms due to large lattice mismatch. InAs0.8Sb0.2/GaAs photodiodes yield peak detectivities of 1.4×
1010 and 7.5×
108 cmHz½
/W at 77 K and 240 K, respectively, showing that the alloy is promising for both cooled and near room temperature detectors. Under moderate reverse bias, 80 K RoA product limiting mechanism is trap assisted tunneling, which introduces considerable 1/f noise. InSb/Si photodiodes display peak 77 K detectivity as high as ~1×
1010 cmHz 1/2/W and reasonably high peak quantum efficiency in spite of large lattice mismatch. RoA product of detectors at 80 K is limited by Ohmic leakage with small activation energy (25 meV). Bias and temperature dependence of 1/f noise is in reasonable agreement with Kleinpenning&rsquo
s mobility fluctuation model, confirming the validity of this approach. The second part of the study concentrates on InP/In0.53Ga0.47As QWIPs, and 640×
512 FPA, which to our knowledge, is the largest format InP/InGaAs QWIP FPA reported. InP/InGaAs QWIPs yield quantum efficiency-gain product as high as 0.46 under moderate bias. At 70 K, detector performance is background limited with f/2 aperture up to ~3 V bias where peak responsivity (2.9 A/W) is thirty times higher than that of the Al0.275Ga0.725As/GaAs QWIP with similar spectral response. Impact ionization in InP/InGaAs QWIPs does not start until the average electric-field reaches 25 kV/cm, maintaining high detectivity under moderate bias. The 640×
512 InP/InGaAs QWIP FPA yields noise equivalent temperature difference of ~40 mK at an FPA temperature as high as 77 K and reasonably low NETD even with short integration times (t). 70 K NETD values of the FPA with f/1.5 optics are 36 and 64 mK under &ndash
0.5 V (t=11 ms) and &ndash
2 V (t=650 Rs) bias, respectively. The results clearly show the potential of InP/InGaAs QWIPs for thermal imaging applications requiring short integration times. Keywords: Cooled infrared detectors, InAsSb, QWIP, focal plane array.
APA, Harvard, Vancouver, ISO, and other styles
10

Pogany, Dionyz. "Etude du bruit télégraphique, du courant d’obscurité et des niveaux profonds dans les photodiodes InP/InGaAs/InP en désaccord de maille." Lyon, INSA, 1994. http://www.theses.fr/1994ISAL0044.

Full text
Abstract:
Le courant d'obscurité élevé et le bruit basse fréquences sont les deux principaux facteurs limitant les performances des matrices linéaires des photodétecteurs InGaAs/InP en désaccord de maille destinés aux applications spatiales dans le domaine spectral l. 7μm. Le bruit en excès dans ces composants est essentiellement de type "bruit télégraphique" (BT) qui se traduit par des fluctuations discrètes du courant. Ce travail est consacré essentiellement à l'étude des mécanismes physiques qui contrôlent le bruit et le courant d'obscurité. Nous avons effectué une caractérisation, une classification et une modélisation du courant en excès. Le BT a été analysé dans les domaines temporel et fréquenciel. Les résultats montrent que le BT est induit par une fluctuation du courant en excès qui traverse une zone limitée constituée d'un défaut étendu lié aux dislocations traversant la jonction p-n, où règne un champ électrique élevé. Ce courant est modulé soit par une fluctuation de charge, soit par une reconfiguration structurale des défauts complexes dans la zone limitée. Pour interpréter ces résultats, nous avons été conduit à développer un nouveau modèle de BT qui combine les propriétés de plusieurs modèles proposés auparavant. Les mesures de bruit ont été corrélées à des méthodes en résolution spatiale comme la technique LBIC. Nous discutons en détail l'influence des défauts du matériau et de la technologie et analysons l'origine surfacique ou volumique du BT. Nous aboutissons à la formulation de propositions pour l'industrie
Dark current and low frequency noise are the principal performance limitations of lattice-mismatched InGaAs/InP linear photodetector arrays for space applications in the 1,7 micrometer wavelength range. Excess noise in these devices has essentially a form of the Random Telegraph Signal (RTS). This work mainly concern the study of physical mechanisme controlling the current and noise. We have performed characterisation, classification and modelling of excess crrents. RTS noise has been studied in time and frequency domain. Results show that RTS noise is due to fluctuations of excess current which flows through a dislocation related extended defetc. This current is modulated by a charge fluctuation or structural reconfiguration of complex defects located at the leakage site. To interpret the results we have developped previously proposed RTS noise models for bipolar devices, Measurments of excess noise have been correlated with spatially resolved technique like LBIC. We discuss the influence of material and technological defects as well as surface and bulk origin of RTS noise
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "InGaAs photodiodes"

1

Blaser, Markus. Monolithically integrated InGaAs/Inp photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. Konstanz: Hartung-Gorre, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bitter, Martin. InP/InGaAs pin-photodiode arrays for parallel optical interconnects and monolithic InP/InGaAs pin/HBT optical receivers for 10-Gb/s and 40-Gb/s. Konstanz: Hartung-Gorre, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-04776-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huntington, Andrew S. InGaAs Avalanche Photodiodes for Ranging and Lidar. Elsevier Science & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Reilly, Patrick J. Effects of 30 MEV electron irradation on InGaAsp LEDS and InGaAs photodiodes. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yu, Young-June. Noise properties of InGaAs/InAlAs multiquantum-well heterostructure p-i-n photodiodes. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berlin, Technische Universität, ed. InGaAsP-Rippen- und Streifenwellenleiter integriert mit InGaAs-Photodioden durch Vertikal- und Horizontalkupplung: Technologie und physikalische Eigenschaften. 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zürich, Eidgenössische Technische Hochschule, ed. Monolithically integrated InGaAs/InP photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "InGaAs photodiodes"

1

Bowers, J. E., C. A. Burrus, and R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes." In Picosecond Electronics and Optoelectronics, 180–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70780-3_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Masahiro, and Takao Kaneda. "Reliability Testing of Planar InGaAs Avalanche Photodiodes." In Semiconductor Device Reliability, 413–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryzhii, M., and V. Ryzhii. "Ensemble Monte Carlo Particle Modeling of IngaAs/InP Uni-Traveling-Carrier Photodiodes." In Simulation of Semiconductor Processes and Devices 2001, 312–15. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-6244-6_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Albrecht, H. "Pin Photodiodes and Field-Effect Transistors for Monolithically Integrated InP/InGaAs Optoelectronic Circuits." In Micro System Technologies 90, 767–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Šatka, A., D. W. E. Allsopp, J. Kováč, F. Uherek, B. Rheinländer, and V. Gottschalch. "Design of InGaAs/InAIGaAs/InP RCE PIN Photodiode." In Heterostructure Epitaxy and Devices, 301–4. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zirngibl, M., J. C. Bischoff, R. Sachot, M. Ilegems, P. Beaud, and W. Hodel. "An InGaAs/GaAs Strained Superlattice MSM Photodiode for Fast Light Detection at 1.3 μm." In ESSDERC ’89, 77–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Namekata, Naoto, Shunsuke Adachi, and Shuichiro Inoue. "High-Speed Single-Photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 34–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11731-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Zongfeng, Ming Zhang, and Panfeng Wu. "Research on the Optimal Design of Heterodyne Technique Based on the InGaAs-PIN Photodiode." In 5th International Symposium of Space Optical Instruments and Applications, 205–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27300-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schohe, K., J. Y. Longère, S. Krawczyk, B. Vilotitch, C. Lenoble, M. Villard, and X. Hugon. "Scanning Photoluminescence Assessment MOCVD InGaAs/InP Lattice Mismatched Heterostructures During the Fabrication of Photodiode Arrays." In ESSDERC ’89, 503–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huntington, Andrew S. "InGaAs Linear-Mode Avalanche Photodiodes." In Encyclopedia of Modern Optics, 415–29. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-803581-8.09421-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "InGaAs photodiodes"

1

Nakamura, Takuma, Dahyeon Lee, Jason Horng, John D. Teufel, and Franklyn Quinlan. "Low noise microwave generation for quantum information systems via cryogenic extended-InGaAs photodiodes." In CLEO: Science and Innovations, STu4I.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.stu4i.3.

Full text
Abstract:
We demonstrate low-noise photonic microwave generation derived from 1550 nm fs-pulses via cryogenic extended-InGaAs photodiode. The phase noise is 18 dB below the shot-noise limited amplitude noise, and >20 dB below that of modulated-CW illumination.
APA, Harvard, Vancouver, ISO, and other styles
2

"InGaAs Photodiodes and Photoreceivers." In 2004 IEEE International Topical Meeting on Microwave Photonics. IEEE, 2004. http://dx.doi.org/10.1109/mwp.2004.1396909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Achouche, M., G. Glastre, C. Caillaud, M. Lahrichi, and D. Carpentier. "InGaAs high speed communication photodiodes." In LEOS 2009 -22nd Annuall Meeting of the IEEE Lasers and Electro-Optics Society (LEO). IEEE, 2009. http://dx.doi.org/10.1109/leos.2009.5343096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rogalski, Antoni. "Performance limitations of InGaAs photodiodes." In International Conference on Solid State Crystals '98, edited by Antoni Rogalski and Jaroslaw Rutkowski. SPIE, 1999. http://dx.doi.org/10.1117/12.344747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wey, Y. G., K. Giboney, D. L. Crawford, J. E. Bowers, M. J. Rodwell, P. Silvestre, M. J. Hafich, and G. Y. Robinson. "Ultrafast Graded Double Heterostructure p-i-n Photodiode." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.thc3.

Full text
Abstract:
Efficient high bandwidth photodetectors are of great interest for use in optical communication, as well as in ultrafast measurement techniques. The shortest electrical pulses have been generated from photoconductors, although the quantum efficiency of the sub 10 ps devices has been too low for use in analog or digital transmission experiments. Bandwidths as large as 110 GHz1 were obtained in GaAs Schottky barrier photodiodes. The shortest measured impulse response was reported by Wang et al.2 who measured a photoresponse pulsewidth of 8.8 ps (of which 5.4 ps was attributed to the photodetector). In the long wavelength InGaAs/InP material system, p-i-n diodes have been reported with bandwidths in excess of 58 GHz3,4. Recently, Crawford et al.5 reported the lowest measured impulse response of InGaAs/InP p-i-n photodiodes of 16 ps. In this case, the photodiode response was limited by the measurement system. We have since incorporated a graded double heterostructure into our device structures to minimize carrier diffusion and trapping effects. In this paper, we will present measurements on these photodiodes which have the shortest measured impulse response of any p-i-n or Schottky photodiode yet reported.
APA, Harvard, Vancouver, ISO, and other styles
6

Doldissen, W., R. J. Deri, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreadakis, Y. Silberberg, and M. A. Koza. "Efficient vertical coupling of photodiodes to InGaAsP rib waveguides." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.thf7.

Full text
Abstract:
Monolithic optoelectronics requires optical linkage between waveguides and photodiodes. Vertical coupling offers the advantages of single-step epi-growth and ease of junction placement.1,2 Its drawback is weak coupling, resulting in long detector lengths L and high capacitance. thinner guides can reduce L,1,2 but increase input coupling difficulty. We recently demonstrated than an optical "matching layer' introduced between a thick n-/n^+ InP waveguide and an InGaAs absorber significantly enhances vertical coupling.3 Here we show that this approach provides efficient coupling between InGaAs detectors and InGaAsP waveguides of the type currently employed in photonic integration.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Bowen, Bei Shi, Si Zhu, Simone Šuran Brunelli, and Jonathan Klamkin. "InGaAs Photodiodes on Silicon by Heteroepitaxy." In Optoelectronics and Communications Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/oecc.2021.w3f.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pauchard, Alexandre, Phil Mages, Yimin Kang, Martin Bitter, Z. Pan, D. Sengupta, Steve Hummel, Yu-Hwa Lo, and Paul K. L. Yu. "Wafer-bonded InGaAs/silicon avalanche photodiodes." In Symposium on Integrated Optoelectronic Devices, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 2002. http://dx.doi.org/10.1117/12.467674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Campbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He, and Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.

Full text
Abstract:
Avalanche photodiodes (APDs) and p-i-n photodiodes are two of the most widely deployed photodiodes for optical fiber communications. The transit time of photogenerated carriers in p-i-n diodes and that of secondary electrons in avalanche diodes at low gain is the fundamental limit on the bandwidth of these devices. However, conventional structures require a thick absorbing layer to ensure high quantum efficiency. Consequently, while high band widths of 35 GHz have been reported for In0.53Ga0.47As p-i-n photodiodes, the use of a 0.5-µm-thick absorbing layer restricted the quantum efficiency to ≤36%.1
APA, Harvard, Vancouver, ISO, and other styles
10

Bowers, J. E., C. A. Burrus, and R. S. Tucker. "22-GHz Bandwidth InGaAs/InP PIN Photodiodes." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.tha3.

Full text
Abstract:
Fast GaAs Schottky photodetectors for visible and near-infrared applications have been demonstrated [1], and high-speed PIN structures using InGaAs/InP for the emerging lightwave communications wavelengths (1.3–1.6 μm) have been reported [2,3]. We describe here the fabrication and characterization of an improved InGaAs/InP PIN photodiode with a measured 3 dB bandwidth of 22 GHz.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "InGaAs photodiodes"

1

Tabor, Steven. Spectral and Spatial Quantum Efficiency of AlGaAs/GaAs and InGaAs/InP PIN Photodiodes. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography