Contents
Academic literature on the topic 'ING-IND/12 MISURE MECCANICHE E TERMICHE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ING-IND/12 MISURE MECCANICHE E TERMICHE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "ING-IND/12 MISURE MECCANICHE E TERMICHE"
PIERONI, NICOLA, and NICOLA PIERONI. "Caratterizzazione sperimentale del pneumatico tramite misure di forma: sviluppo di nuovi strumenti e tecniche d'analisi." Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242175.
Full textDE, ALTERIIS Giorgio. "Sistemi di misurazione avanzati basati su sensori inerziali per soluzioni IoT innovative e navigazione autonoma." Doctoral thesis, Università degli studi di Bergamo, 2022. http://hdl.handle.net/10446/207089.
Full textANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560219.
Full textConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
ANGELATS, LOBO DAVID. "DEVELOPMENT OF ALTERNATIVE BIOENGINEERING STRATEGIES." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/560196.
Full textConceptually, additive manufacturing allows rapid and precise manufacturing of complex parts. Additive manufacturing requires a previous design of the piece to be fabricated by computer-aided design (CAD) software. Due to the limitations of CAD software, especially on curves, some of the printed pieces require additional or post-processing treatments to achieve the desired morphology and structure. Additive manufacturing and three-dimensional (3D) printed were both previously established only in the engineering field. In the 21st century, the idea of using 3D printing technologies to develop 3D structures to support cell culture and mimic native cellular microenvironment, push forward a new field in research called Bioprinting. In bioprinting, several technologies can be used, being extrusion printing the more versatile and well established. 3D printers like the 3D-Bioplotter™ use a new method, direct bioprinting, which permits the printing of a structure integrated with cells that resembles more to the in vivo conditions. Likewise, different research areas can benefit from 3D Bioprinting, like the study of disorders or diseases such as cancer. By definition, cancer is a heterogenic disorder that causes 10 million deaths worldwide, being breast cancer the second cause of death among women in the USA and Europe. Triple-negative breast cancer (TNBC) has been described as the most aggressive subtype, but the lack of knowledge on how the tumoral process begins makes its study more interesting. Combining electrospun fibers and a triple-negative breast cancer cell line (MDA-MB-231) demonstrates the formation of tumor-like cell aggregates. It might be used in personalized medicine of cancer by selecting the best treatment for each patient in the future.
PROVEZZA, LUCA. "Predictive diagnostics through machine learning on the injection group of a diecasting machine." Doctoral thesis, Università degli studi di Brescia, 2022. http://hdl.handle.net/11379/559976.
Full textIn the last decades, data analysis becomes relevant in the industrial scenario. The data lake represents the new frontier in the data science. The new concept is not only the data storage anymore, but the possibility to analyse the historical data in order to optimize the production by finding bottle necks in the production chain and solving the problem by applying corrective procedures to increase the productivity of a company. Every field in the production chain is important to increase the productivity. Maintenance is one of the most important tasks to take into in account. Indeed, maintenance costs are a major part of the total operating costs of all manufacturing or production plants. These costs must be reduced by applying different strategies. The new frontier in the maintenance strategy is represented by the Predictive Maintenance (PM) or Predictive Health Management (PHM). PHM is a maintenance strategy in which different statistical algorithms or machine learning algorithms can be applied to obtain the Remaining Useful Life (RUL) of a component. This project is focused on the application of the PHM on an injection group of a die casting machine. By this own definition, the High Pressure Die Casting (HPDC) process presents different aspects that can affect the analysis. For instance, the fault of components is a rare event, and the analysis cannot be performed by investigating large datasets or fault data based on maintenance records. This makes very difficult to detect the fault of components with traditional machine learning algorithms. A further problem, however, linked with HPDC process is in the frequent change in production, which leads to changes in the process parameters. Moreover, sometimes small companies do not correctly update the production identifiers. To solve these problems, a new method is proposed to detect the fault of components in a diecasting machine. The proposed method automatically detects a production change and resets each time the dataset used for training. The method is based on the peculiarity of the die casting process that presents different phases equal to each machine and production considered. These phases are the slow motion of the piston to avoid air bubbles inside the injection chamber, the stroke with the filling of the die, and the multiplication phase to compensate the shrinkage of the material due to the cooling by giving more pressure in the process. Each phase is interpolated to extract sensitive parameters to perform the prediction of fault. For each parameter, an uncertainty estimator is recorded and combined with the uncertainty of the instrumentation to obtain an uncertainty that considers the two contributions. The core of this method is in the combination of the classical prediction analysis with a weighing matrix given by the experts. The weights are determined in a series of formal interviews for each phase and quantity recorded. The result is the Health Index (HI) representing the probability of different types of faults in the diecasting machine. Each weighing matrix combined with the parameters extracted is a HI for that component and it is possible to create how many HIs as possible by using a proper weighing matrix that can be constructed through the interview of the experts.
GASPARONI, ANDREA. "Tracking and continuous-tracking scanning laser doppler vibrometer: innovative techniques for the operational characterization of rotating blades." Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242169.
Full textSassaroli, Andrea. "The image of the sound: a novel 3D Beamforming system for aeronautics." Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242172.
Full textROSSETTI, FRANCESCO. "Progetto, sviluppo e validazione di un sistema di misura della posizione basato su sistemi inerziali e GPS in modalità "sensor fusion" per la navigazione assistita di persone non vedenti." Doctoral thesis, Università Politecnica delle Marche, 2009. http://hdl.handle.net/11566/242415.
Full textPandarese, Giuseppe. "Sviluppo di nuove tecniche di caratterizzazione per sonde ad ultrasuoni in aria tramite la generazione di onde d'urto controllate." Doctoral thesis, Università Politecnica delle Marche, 2009. http://hdl.handle.net/11566/242399.
Full textLAPI, ALBERTO. "Studio e sviluppo di metodi e strumenti per la misura senza contatto delle prestazioni dinamiche di altoparlanti e delle caratteristiche dei materiali componenti." Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242170.
Full text