Academic literature on the topic 'Information theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Information theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Information theory"
Syau, Yu-Ru, and En-Bing Lin. "Evidence Theory in Incomplete Information Tables." International Journal of Machine Learning and Computing 5, no. 3 (June 2015): 242–46. http://dx.doi.org/10.7763/ijmlc.2015.v5.514.
Full textHAYASHI, Masahito. "Role of Quantum Information Theory in Information Theory." IEICE ESS Fundamentals Review 10, no. 1 (2016): 4–13. http://dx.doi.org/10.1587/essfr.10.1_4.
Full textMANDUSIC, Dubravka, and Lucija BLASKOVIC. "Information Literacy, Theory and Practice in Education." Revista Romaneasca pentru Educatie Multidimensionala 5, no. 1 (June 30, 2013): 47–58. http://dx.doi.org/10.18662/rrem/2013.0501.04.
Full textKhouzani, MHR, and Pasquale Malacaria. "Information Theory in Game Theory." Entropy 20, no. 11 (October 24, 2018): 817. http://dx.doi.org/10.3390/e20110817.
Full textEllerman, David. "Logical information theory: new logical foundations for information theory." Logic Journal of the IGPL 25, no. 5 (August 7, 2017): 806–35. http://dx.doi.org/10.1093/jigpal/jzx022.
Full textAshby, F. Gregory, and Kenneth H. Norwich. "Resurrecting Information Theory." American Journal of Psychology 108, no. 4 (1995): 609. http://dx.doi.org/10.2307/1423078.
Full textWills, S. "Quantum Information Theory." Irish Mathematical Society Bulletin 0082 (2018): 35–37. http://dx.doi.org/10.33232/bims.0082.35.37.
Full textvan Lambalgen, Michiel. "Algorithmic Information Theory." Journal of Symbolic Logic 54, no. 4 (December 1989): 1389. http://dx.doi.org/10.2307/2274821.
Full textBennett, C. H., and P. W. Shor. "Quantum information theory." IEEE Transactions on Information Theory 44, no. 6 (1998): 2724–42. http://dx.doi.org/10.1109/18.720553.
Full textMcCornack, Steven A. "Information manipulation theory." Communication Monographs 59, no. 1 (March 1992): 1–16. http://dx.doi.org/10.1080/03637759209376245.
Full textDissertations / Theses on the topic "Information theory"
Hjørland, Birger. "Principia Informatica. Foundational Theory of Information and Principles of Information Services." Libraries Unlimited, 2002. http://hdl.handle.net/10150/105735.
Full textBond, Rachael Louise. "Relational information theory." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/76664/.
Full textSahai, Anant. "Anytime information theory." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8770.
Full textIncludes bibliographical references (p. 171-175).
We study the reliable communication of delay-sensitive bit streams through noisy channels. To bring the issues into sharp focus, we will focus on the specific problem of communicating the values of an unstable real-valued discrete-time Markov random process through a finite capacity noisy channel so as to have finite average squared error from end-to-end. On the source side, we give a coding theorem for such unstable processes that shows that we can achieve the rate-distortion bound even in the infinite horizon case if we are willing to tolerate bounded delays in encoding and decoding. On the channel side, we define a new parametric notion of capacity called anytime capacity that corresponds to a sense of reliable transmission that is stronger than the traditional Shannon capacity sense but is less demanding than the sense underlying zero-error capacity. We show that anytime capacity exists for memoryless channels without feedback and is connected to standard random coding error exponents. The main result of the thesis is a new source/channel separation theorem that encompasses unstable processes and establishes that the stronger notion of anytime capacity is required to be able to deal with delay-sensitive bit streams. This theorem is then applied in the control systems context to show that anytime capacity is also required to evaluate channels if we intend to use them as part of a feedback link from sensing to actuation. Finally, the theorem is used to shed light on the concept of "quality of service requirements" by examining a toy mathematical example for which we prove the absolute necessity of differentiated service without appealing to human preferences.
by Anant Sahai.
Ph.D.
Schumann, Robert Helmut. "Quantum information theory." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.
Full textENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
Huang, Shao-Lun Ph D. Massachusetts Institute of Technology. "Euclidean network information theory." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84888.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 121-123).
Many network information theory problems face the similar difficulty of single letterization. We argue that this is due to the lack of a geometric structure on the space of probability distributions. In this thesis, we develop such a structure by assuming that the distributions of interest are all close to each other. Under this assumption, the Kullback-Leibler (K-L) divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channels, general broadcast channels (BC), multiple access channels (MAC) with common sources, interference channels, and multi-hop layered communication networks without or with feedback. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Solving these linear algebra problems, we will show that for the general broadcast channels, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. For the MAC with common sources, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be obtained quantitively by applying our technique. In addition, the developments of the broadcast channels and multiple access channels suggest a trade-off relation between generating common messages for multiple users and transmitting them as the common sources to exploit the coherent combining gain, when optimizing the throughputs of communication networks. To study the structure of this trade-off and understand its role in optimizing the network throughput, we construct a deterministic model by our local approach that captures the critical channel parameters and well models the network. With this deterministic model, for multi-hop layered networks, we analyze the optimal network throughputs, and illustrate what kinds of common messages should be generated to achieve the optimal throughputs. Our results provide the insight of how users in a network should cooperate with each other to transmit information efficiently.
by Shao-Lun Huang.
Ph.D.
Faghfoor, Maghrebi Mohammad. "Information gain in quantum theory." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2724.
Full textVedral, Vlatko. "Quantum information theory of entanglement." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299786.
Full textGirolami, Davide. "Quantum correlations in information theory." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13397/.
Full textHawes, Vanessa Lucey. "Music's experiment with information theory." Thesis, University of East Anglia, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514351.
Full textDaemi, M. F. "Information theory and pattern recognition." Thesis, University of Nottingham, 1990. http://eprints.nottingham.ac.uk/14003/.
Full textBooks on the topic "Information theory"
Duplantier, Bertrand, and Vincent Rivasseau, eds. Information Theory. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81480-9.
Full textKrippendorff, Klaus. Information Theory. 2455 Teller Road, Newbury Park California 91320 United States of America: SAGE Publications, Inc., 1986. http://dx.doi.org/10.4135/9781412984485.
Full textGoldman, Stanford. Information theory. Mineola, N.Y: Dover Publications, 2005.
Find full textChambert-Loir, Antoine. Information Theory. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21561-2.
Full textWinter, Stephan, Matt Duckham, Lars Kulik, and Ben Kuipers, eds. Spatial Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74788-8.
Full textHayashi, Masahito. Quantum Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49725-8.
Full textSeibt, Peter. Algorithmic Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33219-0.
Full textEgenhofer, Max, Nicholas Giudice, Reinhard Moratz, and Michael Worboys, eds. Spatial Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23196-4.
Full textCohn, Anthony G., and David M. Mark, eds. Spatial Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11556114.
Full textHornsby, Kathleen Stewart, Christophe Claramunt, Michel Denis, and Gérard Ligozat, eds. Spatial Information Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03832-7.
Full textBook chapters on the topic "Information theory"
Shekhar, Shashi, and Hui Xiong. "Information Theory." In Encyclopedia of GIS, 582. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_638.
Full textHolt, Anatol W. "Information (Theory)." In Organized Activity and its Support by Computer, 119–37. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5590-8_8.
Full textBossomaier, Terry, Lionel Barnett, Michael Harré, and Joseph T. Lizier. "Information Theory." In An Introduction to Transfer Entropy, 33–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43222-9_3.
Full textMaña, Carlos. "Information Theory." In UNITEXT for Physics, 221–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55738-0_4.
Full textJou, David, José Casas-Vázquez, and Georgy Lebon. "Information Theory." In Extended Irreversible Thermodynamics, 143–67. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3074-0_6.
Full textWeik, Martin H. "information theory." In Computer Science and Communications Dictionary, 779. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_8973.
Full textBeigi, Homayoon. "Information Theory." In Fundamentals of Speaker Recognition, 265–300. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-77592-0_7.
Full textDobrushin, R. L. "Information Theory." In Mathematics and Its Applications, 222–25. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2973-4_15.
Full textJou, David, José Casas-Vázquez, and Georgy Lebon. "Information Theory." In Extended Irreversible Thermodynamics, 165–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56565-6_7.
Full textUtgoff, Paul E., James Cussens, Stefan Kramer, Sanjay Jain, Frank Stephan, Luc De Raedt, Ljupčo Todorovski, et al. "Information Theory." In Encyclopedia of Machine Learning, 548. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_404.
Full textConference papers on the topic "Information theory"
Jiang, Xianyang, and Jianhua Lu. "Match Information Theory." In 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2010. http://dx.doi.org/10.1109/wicom.2010.5600702.
Full textBorade, Shashi, and Lizhong Zheng. "Euclidean Information Theory." In 2008 IEEE International Zurich Seminar on Communications (IZS). IEEE, 2008. http://dx.doi.org/10.1109/izs.2008.4497265.
Full textEnßlin, Torsten. "Information field theory." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2013. http://dx.doi.org/10.1063/1.4819999.
Full textFeria, Erlan H. "Latency-information theory." In 2010 IEEE Sarnoff Symposium. IEEE, 2010. http://dx.doi.org/10.1109/sarnof.2010.5469775.
Full text"Network Information Theory." In 2022 IEEE 4th International Conference on Advanced Trends in Information Theory (ATIT). IEEE, 2022. http://dx.doi.org/10.1109/atit58178.2022.10024186.
Full text"Network Information Theory." In 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). IEEE, 2021. http://dx.doi.org/10.1109/atit54053.2021.9678710.
Full textFeria, Erlan H. "Latency-Information Theory: A Novel Latency Theory Revealed as Time Dual of Information Theory." In 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. IEEE, 2009. http://dx.doi.org/10.1109/dsp.2009.4785904.
Full textYarichin, E. M. "Theory of full information (video-information)." In 2011 International Siberian Conference on Control and Communications (SIBCON 2011). IEEE, 2011. http://dx.doi.org/10.1109/sibcon.2011.6072609.
Full textYingxu Wang. "A cognitive informatics theory for visual information processing." In 2008 7th IEEE International Conference on Cognitive Informatics (ICCI). IEEE, 2008. http://dx.doi.org/10.1109/coginf.2008.4639184.
Full textMoskowitz, Ira S., Pedro N. Safier, and Paul Cotae. "Algebraic Information Theory and Kosko's Forbidden Interval Theorem." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.801-053.
Full textReports on the topic "Information theory"
Spivak, David. Categorical Information Theory. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada543905.
Full textMoran, William. Coding Theory Information Theory and Radar. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada456510.
Full textCalderbank, Arthur R. Coding Theory Information Theory and Radar. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada434253.
Full textAdami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.
Full textParlett, Beresford. Some Basic Information on Information-Based Complexity Theory. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada256585.
Full textGorecki, Frank D. Passive Tracking and Information Theory. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada385452.
Full textBurnett, Margaret M. Information Foraging Theory in Software Maintenance. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada579505.
Full textDowski, Edward R., and Jr. An Information Theory Approach to Three Incoherent Information Processing Systems,. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada299683.
Full textCalabrese, P. G. A Theory of Conditional Information with Applications. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada278164.
Full textAllwein, Gerard T., Ira S. Moskowitz, and LiWu Chang. A New Framework for Shannon Information Theory. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada420108.
Full text