To see the other types of publications on this topic, follow the link: Infinte products.

Journal articles on the topic 'Infinte products'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Infinte products.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ELDAR, YONINA C., and TOBIAS WERTHER. "GENERAL FRAMEWORK FOR CONSISTENT SAMPLING IN HILBERT SPACES." International Journal of Wavelets, Multiresolution and Information Processing 03, no. 03 (September 2005): 347–59. http://dx.doi.org/10.1142/s0219691305000890.

Full text
Abstract:
We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinte-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and the corresponding positive operators for which this geometrical interpretation applies.
APA, Harvard, Vancouver, ISO, and other styles
2

Jeong, JA A., Kazunori Kodaka, and Hiroyuki Osaka. "Purely Infinite Simple C*-Crossed Products II." Canadian Mathematical Bulletin 39, no. 2 (June 1, 1996): 203–10. http://dx.doi.org/10.4153/cmb-1996-025-2.

Full text
Abstract:
AbstractWe study the pure infiniteness of C* -crossed products by endomorphisms and automorphisms. Let A be a purely infinité simple unital C*-algebra. At first we show that a crossed product A × p N by a corner endomorphism p is purely infinite if it is simple. From this observation we prove that any simple C*-crossed products A ×αZ by an automorphism α is purely infinite. Combining this with the result in [Je] on pure infiniteness of crossed products by finite groups, one sees that if α is an outer action by a countable abelian group G then the simple C*-algebra A ×α G is purely infinite.
APA, Harvard, Vancouver, ISO, and other styles
3

Loeb, Peter A., and David A. Ross. "Infinite products of infinite measures." Illinois Journal of Mathematics 49, no. 1 (January 2005): 153–58. http://dx.doi.org/10.1215/ijm/1258138311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meier, John. "The topology of graph products of groups." Proceedings of the Edinburgh Mathematical Society 37, no. 3 (October 1994): 539–44. http://dx.doi.org/10.1017/s001309150001899x.

Full text
Abstract:
Given a finite (connected) simplicial graph with groups assigned to the vertices, the graph product of the vertex groups is the free product modulo the relation that adjacent groups commute. The graph product of finitely presented infinite groups is both semistable at infinity and quasi-simply filtrated. Explicit bounds for the isoperimetric inequality and isodiametric inequality for graph products is given, based on isoperimetric and isodiametric inequalities for the vertex groups.
APA, Harvard, Vancouver, ISO, and other styles
5

Magnot, Jean-Pierre. "The Mean Value for Infinite Volume Measures, Infinite Products, and Heuristic Infinite Dimensional Lebesgue Measures." Journal of Mathematics 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/9853672.

Full text
Abstract:
One of the goals of this article is to describe a setting adapted to the description of means (normalized integrals or invariant means) on an infinite product of measured spaces with infinite measure and of the concentration property on metric measured spaces, inspired from classical examples of means. In some cases, we get a linear extension of the limit at infinity. Then, the mean value on an infinite product is defined, first for cylindrical functions and secondly taking the uniform limit. Finally, the mean value for the heuristic Lebesgue measure on a separable infinite dimensional topological vector space (e.g., on a Hilbert space) is defined. This last object, which is not the classical infinite dimensional Lebesgue measure but its “normalized” version, is shown to be invariant under translation, scaling, and restriction.
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, K. A. "INFINITE CROSSED PRODUCTS." Bulletin of the London Mathematical Society 22, no. 4 (July 1990): 394–96. http://dx.doi.org/10.1112/blms/22.4.394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meir, Nadav. "Infinite lexicographic products." Annals of Pure and Applied Logic 173, no. 1 (January 2022): 102991. http://dx.doi.org/10.1016/j.apal.2021.102991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Izuchi, Keiji. "Weak infinite products of Blaschke products." Proceedings of the American Mathematical Society 129, no. 12 (April 16, 2001): 3611–18. http://dx.doi.org/10.1090/s0002-9939-01-05957-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muthuvel, Kandasamy. "Infinite products of alephs." Fundamenta Mathematicae 131, no. 3 (1988): 255–56. http://dx.doi.org/10.4064/fm-131-3-255-256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

HANCL, JAROSLAV, and ONDREJ KOLOUCH. "Irrationality of infinite products." Publicationes Mathematicae Debrecen 83, no. 4 (December 1, 2013): 667–81. http://dx.doi.org/10.5486/pmd.2013.5676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Desbrow, Darrell. "96.15 Three infinite products." Mathematical Gazette 96, no. 535 (March 2012): 130–31. http://dx.doi.org/10.1017/s0025557200004150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Short, L. "Some further infinite products." International Journal of Mathematical Education in Science and Technology 24, no. 1 (January 1993): 91–99. http://dx.doi.org/10.1080/0020739930240112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dehornoy, Patrick. "Infinite products in monoids." Semigroup Forum 34, no. 1 (December 1986): 21–68. http://dx.doi.org/10.1007/bf02573152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Toyoizumi, Masao. "On certain infinite products III." Acta Arithmetica 51, no. 3 (1988): 221–31. http://dx.doi.org/10.4064/aa-51-3-221-231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Trench, William F. "Conditional Convergence of Infinite Products." American Mathematical Monthly 106, no. 7 (August 1999): 646. http://dx.doi.org/10.2307/2589494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tachiya, Yohei. "Transcendence of certain infinite products." Journal of Number Theory 125, no. 1 (July 2007): 182–200. http://dx.doi.org/10.1016/j.jnt.2006.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stephens, E. "79.52 Slowly Convergent Infinite Products." Mathematical Gazette 79, no. 486 (November 1995): 561. http://dx.doi.org/10.2307/3618092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DUKE, WILLIAM, and HA NAM NGUYEN. "INFINITE PRODUCTS OF CYCLOTOMIC POLYNOMIALS." Bulletin of the Australian Mathematical Society 91, no. 3 (February 26, 2015): 400–411. http://dx.doi.org/10.1017/s0004972715000039.

Full text
Abstract:
We study analytic properties of certain infinite products of cyclotomic polynomials that generalise some products introduced by Mahler. We characterise those that have the unit circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic behaviour near roots of unity.
APA, Harvard, Vancouver, ISO, and other styles
19

Trench, William F. "Conditional Convergence of Infinite Products." American Mathematical Monthly 106, no. 7 (August 1999): 646–51. http://dx.doi.org/10.1080/00029890.1999.12005098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Montgomery, Susan. "Book Review: Infinite crossed products." Bulletin of the American Mathematical Society 24, no. 2 (April 1, 1991): 391–403. http://dx.doi.org/10.1090/s0273-0979-1991-16044-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Campbell, Geoffrey B. "Infinite products over hyperpyramid lattices." International Journal of Mathematics and Mathematical Sciences 23, no. 4 (2000): 271–77. http://dx.doi.org/10.1155/s0161171200000764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Budzyńska, Monika, and Simeon Reich. "Infinite products of holomorphic mappings." Abstract and Applied Analysis 2005, no. 4 (2005): 327–41. http://dx.doi.org/10.1155/aaa.2005.327.

Full text
Abstract:
LetXbe a complex Banach space,𝒩a norming set forX, andD⊂Xa bounded, closed, and convex domain such that its norm closureD¯is compact inσ(X,𝒩). Let∅≠C⊂Dlie strictly insideD. We study convergence properties of infinite products of those self-mappings ofCwhich can be extended to holomorphic self-mappings ofD. Endowing the space of sequences of such mappings with an appropriate metric, we show that the subset consisting of all the sequences with divergent infinite products isσ-porous.
APA, Harvard, Vancouver, ISO, and other styles
23

Rohm, Dale M. "Products of infinite-dimensional spaces." Proceedings of the American Mathematical Society 108, no. 4 (April 1, 1990): 1019. http://dx.doi.org/10.1090/s0002-9939-1990-0946625-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ibrahim, Adel K., and Medhat A. Rakha. "Numerical computations of infinite products." Applied Mathematics and Computation 161, no. 1 (February 2005): 271–83. http://dx.doi.org/10.1016/j.amc.2003.12.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Knopfmacher, Arnold, and John Knopfmacher. "Infinite products for power series." Journal of Approximation Theory 59, no. 3 (December 1989): 276–81. http://dx.doi.org/10.1016/0021-9045(89)90091-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hua, Fan Ai. "Multifractal analysis of infinite products." Journal of Statistical Physics 86, no. 5-6 (March 1997): 1313–36. http://dx.doi.org/10.1007/bf02183625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Miranda, Enrique, and Marco Zaffalon. "Independent products in infinite spaces." Journal of Mathematical Analysis and Applications 425, no. 1 (May 2015): 460–88. http://dx.doi.org/10.1016/j.jmaa.2014.12.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Giordano, Thierry, and Adam Sierakowski. "Purely infinite partial crossed products." Journal of Functional Analysis 266, no. 9 (May 2014): 5733–64. http://dx.doi.org/10.1016/j.jfa.2014.02.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zucker, I. J. "A systematic way of converting infinite series into infinite products." Journal of Physics A: Mathematical and General 20, no. 1 (January 11, 1987): L13—L17. http://dx.doi.org/10.1088/0305-4470/20/1/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dydak, Jerzy. "Extension theory of infinite symmetric products." Fundamenta Mathematicae 182, no. 1 (2004): 53–77. http://dx.doi.org/10.4064/fm182-1-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Campbell, Geoffrey B. "Infinite products over visible lattice points." International Journal of Mathematics and Mathematical Sciences 17, no. 4 (1994): 637–54. http://dx.doi.org/10.1155/s0161171294000918.

Full text
Abstract:
About fifty new multivariate combinatorial identities are given, connected with partition theory, prime products, and Dirichlet series. Connections to Lattice Sums in Chemistry and Physics are alluded to also.
APA, Harvard, Vancouver, ISO, and other styles
32

Alaca, Ayşe, Şaban Alaca, and Kenneth S. Williams. "Some Infinite Products of Ramanujan Type." Canadian Mathematical Bulletin 52, no. 4 (December 1, 2009): 481–92. http://dx.doi.org/10.4153/cmb-2009-050-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jeong, Ja A. "Purely Infinite Simple C ∗ -Crossed Products." Proceedings of the American Mathematical Society 123, no. 10 (October 1995): 3075. http://dx.doi.org/10.2307/2160662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Toyoizumi, Masao. "A note on certain infinite products." Proceedings of the Japan Academy, Series A, Mathematical Sciences 68, no. 10 (1992): 345–47. http://dx.doi.org/10.3792/pjaa.68.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Krupski, Mikołaj. "On functional tightness of infinite products." Topology and its Applications 229 (September 2017): 141–47. http://dx.doi.org/10.1016/j.topol.2017.07.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Amou, Masaaki, and Keijo Väänänen. "Arithmetical properties of certain infinite products." Journal of Number Theory 153 (August 2015): 283–303. http://dx.doi.org/10.1016/j.jnt.2015.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Borges, Carlos R. "The sup metric on infinite products." Bulletin of the Australian Mathematical Society 44, no. 3 (December 1991): 461–66. http://dx.doi.org/10.1017/s0004972700029956.

Full text
Abstract:
We study the properties of the sup metric on infinite products Z = X.(If d is a bounded metric on X then ρ, defined by ρ((xα), (yα)) = , is the sup metric on Z.) In particular, we prove that if X is an AR(metric) or a topological group then so is Z.
APA, Harvard, Vancouver, ISO, and other styles
38

Hanna, Yousry S., and Samya F. Ragheb. "On the Infinite Products of Matrices." Advances in Pure Mathematics 02, no. 05 (2012): 349–53. http://dx.doi.org/10.4236/apm.2012.25050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wermuth, Edgar M. E. "Some Elementary Properties of Infinite Products." American Mathematical Monthly 99, no. 6 (June 1992): 530. http://dx.doi.org/10.2307/2324060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Power, S. C. "Infinite Lexicographic Products of Triangular Algebras." Bulletin of the London Mathematical Society 27, no. 3 (May 1995): 273–77. http://dx.doi.org/10.1112/blms/27.3.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Allouche, Jean-Paul, and Henri Cohen. "Dirichlet Series and Curious infinite Products." Bulletin of the London Mathematical Society 17, no. 6 (November 1985): 531–38. http://dx.doi.org/10.1112/blms/17.6.531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wermuth, Edgar M. E. "Some Elementary Properties of Infinite Products." American Mathematical Monthly 99, no. 6 (June 1992): 530–37. http://dx.doi.org/10.1080/00029890.1992.11995887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Trench, William F. "Invertibly convergent infinite products of matrices." Journal of Computational and Applied Mathematics 101, no. 1-2 (January 1999): 255–63. http://dx.doi.org/10.1016/s0377-0427(98)00191-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kimura, Shun-ichi, and Angelo Vistoli. "Chow rings of infinite symmetric products." Duke Mathematical Journal 85, no. 2 (November 1996): 411–30. http://dx.doi.org/10.1215/s0012-7094-96-08517-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chmielewska, Katarzyna, and Aleksander Maliszewski. "Infinite products of Borel measurable functions." Topology and its Applications 155, no. 17-18 (October 2008): 1996–2000. http://dx.doi.org/10.1016/j.topol.2007.04.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chmielewska, Katarzyna, and Aleksander Maliszewski. "Infinite products of quasi-continuous functions." Topology and its Applications 156, no. 18 (December 2009): 3101–8. http://dx.doi.org/10.1016/j.topol.2009.03.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Guu, Sy-Ming, Yung-Yih Lur, and Chin-Tzong Pang. "On Infinite Products of Fuzzy Matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (January 2001): 1190–203. http://dx.doi.org/10.1137/s0895479800366021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Boyer, Robert P., and Yun S. Yoo. "Unitary representations of infinite wreath products." Annals of Functional Analysis 10, no. 1 (February 2019): 97–105. http://dx.doi.org/10.1215/20088752-2018-0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pustylnik, Evgeniy, Simeon Reich, and Alexander J. Zaslavski. "Inexact Infinite Products of Nonexpansive Mappings." Numerical Functional Analysis and Optimization 30, no. 5-6 (June 30, 2009): 632–45. http://dx.doi.org/10.1080/01630560902987998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Xingping, and Zhaolin Cheng. "Infinite products of uniformly paracontracting matrices." Linear and Multilinear Algebra 64, no. 5 (July 8, 2015): 856–62. http://dx.doi.org/10.1080/03081087.2015.1063577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography