Academic literature on the topic 'Inferenza'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inferenza.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inferenza"
Costantini, Barbara. "Empatia umana: una forma complessa di inferenza." MODELLI DELLA MENTE, no. 1 (February 2020): 67–77. http://dx.doi.org/10.3280/mdm1-2019oa9177.
Full textDe Iorio, A., M. Guida, F. Penta, and P. Pinto. "Inferenza bayesiana per l'analisi dei dati di prove di fatica." Frattura ed Integrità Strutturale 2, no. 6 (March 22, 2008): 11–19. http://dx.doi.org/10.3221/igf-esis.06.02.
Full textManetti, Giovanni. "Un trattato sui segni." PARADIGMI, no. 2 (July 2010): 165–97. http://dx.doi.org/10.3280/para2010-002013.
Full textSilvestri, F. "Relationship between Time in target and Glycosilated Haemoglobin in a cohort of Type 1 Diabetes paediatric patients with Continuous Glucose Monitoring vs Self- Monitoring Blood Glucose." Journal of AMD 25, no. 2 (July 2022): 112. http://dx.doi.org/10.36171/jamd22.25.2.6.
Full textWaluyo, Tri. "Meningkatkan Kemampuan Membaca Reading for Reference dalam Teks Bahasa Inggris Siswa Kelas VII-1 SMP Muhammadiyah Palangka Raya Semester 2 Tahun Pelajaran 2015-2016 melalui Teknik Inference." Pedagogik: Jurnal Pendidikan 11, no. 2 (October 1, 2016): 25–57. http://dx.doi.org/10.33084/pedagogik.v11i2.420.
Full textUnsöld, Ilka H., and Gerhild Nieding. "Die Bildung prädiktiver Inferenzen von Kindern und Erwachsenen bei der kognitiven Verarbeitung audiovisueller und auditiver Texte." Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie 41, no. 2 (April 2009): 87–95. http://dx.doi.org/10.1026/0049-8637.41.2.87.
Full textHasanah, Nur, and Retantyo Wardoyo. "Purwarupa Sistem Pakar dengan Mamdani Product untuk Menentukan Menu Harian Penderita DM." IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 7, no. 1 (January 1, 2013): 45. http://dx.doi.org/10.22146/ijccs.3051.
Full textKusanti, Jani, and Sri Hartati. "Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS)." IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 9, no. 2 (July 31, 2015): 187. http://dx.doi.org/10.22146/ijccs.7547.
Full textPehala, Ilfan Askul. "INFERENSI KONTEKS BERDASARKAN ANALISIS RELASI MAKNA WEBTOON “SMILE BRUSH: MY OLD PICTURES”." Adabiyyāt: Jurnal Bahasa dan Sastra 6, no. 2 (January 9, 2023): 209. http://dx.doi.org/10.14421/ajbs.2022.06204.
Full textRincón Alfonso, Eduardo, and Miguel Ángel Pérez Jiménez. "Conditionals: Inference and Relevance." Eidos, no. 29 (July 15, 2018): 313–38. http://dx.doi.org/10.14482/eidos.29.9742.
Full textDissertations / Theses on the topic "Inferenza"
AGOSTINELLI, Claudio. "Inferenza statistica robusta basata sulla funzione di verosimiglianza pesata: alcuni sviluppi." Doctoral thesis, country:ITA, 1998. http://hdl.handle.net/10278/25831.
Full textZanotto, Davide <1991>. "Inferenza Bayesiana applicata alla teoria di portafoglio: il Modello Black-Litterman." Master's Degree Thesis, Università Ca' Foscari Venezia, 2017. http://hdl.handle.net/10579/9595.
Full textMonda, Anna. "Inferenza non parametrica nel contesto di dati dipendenti: polinomi vocali e verosimiglianza empirica." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/1285.
Full textIl presente lavoro si inserisce nel contesto delle più recenti ricerche sugli strumenti di analisi non parametrica ed in particolare analizza l'utilizzo dei Polinomi Locali e della Verosimiglianza Empirica, nel caso di dati dipendenti. Le principali forme di dipendenza che verranno trattate in questo lavoro sono quelle che rispondono alla definizione di alpha-mixing ed in particolare il nostro si presenta come un tentativo di conciliare, in questo ambito, tecniche non parametriche, rappresentate dai Polinomi Locali, all'approccio di Empirical Likelihood, cercando di aggregare ed enfatizzare i punti di forza di entrambe le metodologie: i Polinomi Locali ci forniranno una stima più e accurata da collocare all'interno della definizione di Verosimiglianza Empirica fornita da Owen (1988). I vantaggi sono facili da apprezzare in termini di immediatezza ed utilizzo pratico di questa tecnica. I risultati vengono analizzati sia da un punto di vista teorico, sia confermati poi, da un punto di vista empirico, riuscendo a trarre dai dati anche utili informazioni in grado di fornire l'effettiva sensibilità al più cruciale e delicato parametro da stabilire nel caso di stimatori Polinomi Locali: il parametro di bandwidth. Lungo tutto l'elaborato presenteremo, in ordine, dapprima il contesto all'interno del quale andremo ad operare, precisando più nello specifico le forme di dipendenza trattate, nel capitolo secondo, enunceremo le caratteristiche e proprietà dei polinomi locali, successivamente, nel corso del capitolo terzo, analizzeremo nel dettaglio la verosimiglianza empirica, con particolare attenzione, anche in questo caso, alle proprietà teoriche, infine, nel quarto capitolo presenteremo risultati teorici personali, conseguiti a partire dalla trattazione teorica precedente. Il capitolo conclusivo propone uno studio di simulazione, sulla base delle proprietà teoriche ottenute nel capitolo precedente. Nelle battute conclusive troveranno spazio delucidazioni sugli esiti delle simulazioni, i quali, non soltanto confermano la validità dei risultati teorici esposti nel corso dell'elaborato, ma forniscono anche evidenze a favore di un'ulteriore analisi, per i test proposti, rispetto alla sensibilità verso il parametro di smoothing impiegato. [a cura dell'autore]
X n.s.
PENNACCHIO, Roberto. "L'ermeneutica triadica sistemica. Analisi dei campi di inferenza nel senso comune e in psicoterapia." Doctoral thesis, Università degli studi di Bergamo, 2011. http://hdl.handle.net/10446/862.
Full textNella prima ricerca sono state analizzate le spiegazioni fornite da 400 soggetti (studenti universitari) ad un comportamento inaspettato presentato attraverso 4 situazioni-stimolo in cui è stata manipolata l’ampiezza del campo di osservazione. I risultati dimostrano che le spiegazioni triadiche sono inconsuete, ma non del tutto estranee al senso comune e aumentano significativamente con l’allargamento del campo di osservazione dalla monade alla triade.
La teoria sistemico-narrativista del cambiamento terapeutico suppone che le persone: a) normalmente non utilizzino schemi esplicativi triadici, b) ma siano in grado di accedere all’ermeneutica triadica in seduta, grazie alle tecniche di conduzione del terapeuta. Per verificare questi presupposti sono state effettuate due ricerche.
The second study analyses the explanations’ breadth of inference field introduced by 12 clients and the therapist during the first two sessions of individual systemic therapy in reference to two distinct classes of behaviour: 1) symptoms; 2) behaviours, emotions or events that concern a significant relationship of the client. The results show that in a non-artificial and highly motivated context, like therapeutic one, clients access easier to triadic hermeneutics. However, triadic explanations are infrequent to account for the symptomatic behaviour. There were no differences in the breadth of inference field between clients and therapist: in fact the activity of the systemic-relational therapist during the first sessions, unlike in the later stages of the therapeutic process, is mainly intended to widen the observational field rather the inference field.
To test these two assumptions the first study analyses the explanations (provided by 400 undergraduates) of an unexpected behaviour framed into 4 stimulus situations where the breadth of observation field was manipulated. The results show that triadic explanations are rather unusual, but not completely extraneous to lay-thinking and they increase significantly with the widening of the observation field from the monad to the triad.
Systemic-narrative theory of therapeutic change assumes but does not prove that persons: a) normally do not use triadic hermeneutics, b) are able, thanks to the therapist’s interviewing techniques, to construe triadic explanations.
Mancini, Martina. "Teorema di Cochran e applicazioni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9145/.
Full textCAMPAGNER, ANDREA. "Robust Learning Methods for Imprecise Data and Cautious Inference." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404829.
Full textThe representation, quantification and proper management of uncertainty is one of the central problems in Artificial Intelligence, and particularly so in Machine Learning, in which uncertainty is intrinsically tied to the inductive nature of the learning problem. Among different forms of uncertainty, the modeling of imprecision, that is the problem of dealing with data or knowledge that are imperfect} and incomplete, has recently attracted interest in the research community, for its theoretical and application-oriented implications on the practice and use of Machine Learning-based tools and methods. This work focuses on the problem of dealing with imprecision in Machine Learning, from two different perspectives. On the one hand, when imprecision affects the input data to a Machine Learning pipeline, leading to the problem of learning from imprecise data. On the other hand, when imprecision is used a way to implement uncertainty quantification for Machine Learning methods, by allowing these latter to provide set-valued predictions, leading to so-called cautious inference methods. The aim of this work, then, will be to investigate theoretical as well as empirical issues related to the two above mentioned settings. Within the context of learning from imprecise data, focus will be given on the investigation of the learning from fuzzy labels setting, both from a learning-theoretical and algorithmic point of view. Main contributions in this sense include: a learning-theoretical characterization of the hardness of learning from fuzzy labels problem; the proposal of a novel, pseudo labels-based, ensemble learning algorithm along with its theoretical study and empirical analysis, by which it is shown to provide promising results in comparison with the state-of-the-art; the application of this latter algorithm in three relevant real-world medical problems, in which imprecision occurs, respectively, due to the presence of conflicting expert opinions, the use of vague technical vocabulary, and the presence of individual variability in biochemical parameters; as well as the proposal of feature selection algorithms that may help in reducing the computational complexity of this task or limit the curse of dimensionality. Within the context of cautious inference, focus will be given to the theoretical study of three popular cautious inference frameworks, as well as to the development of novel algorithms and approaches to further the application of cautious inference in relevant settings. Main contributions in this sense include the study of the theoretical properties of, and relationships among, decision-theoretic, selective prediction and conformal prediction methods; the proposal of novel cautious inference techniques drawing from the interaction between decision-theoretic and conformal predictions methods, and their evaluation in medical settings; as well as the study of ensemble of cautious inference models, both from an empirical point of view, as well as from a theoretical one, by which it is shown that such ensembles could be useful to improve robustness, generalization, as well as to facilitate application of cautious inference methods on multi-source and multi-modal data.
Capriati, Paola Bianca Martina. "L'utilizzo del metodo Bootstrap nella statistica inferenziale." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8715/.
Full textBOLZONI, MATTIA. "Variational inference and semi-parametric methods for time-series probabilistic forecasting." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/313704.
Full textProbabilistic forecasting is a common task. The usual approach assumes a fixed structure for the outcome distribution, often called model, that depends on unseen quantities called parameters. It uses data to infer a reasonable distribution over these latent values. The inference step is not always straightforward, because single-value can lead to poor performances and overfitting while handling a proper distribution with MCMC can be challenging. Variational Inference (VI) is emerging as a viable optimisation based alternative that models the target posterior with instrumental variables called variational parameters. However, VI usually imposes a parametric structure on the proposed posterior. The thesis's first contribution is Hierarchical Variational Inference (HVI) a methodology that uses Neural Networks to create semi-parametric posterior approximations with the same minimum requirements as Metropolis-Hastings or Hamiltonian MCMC. The second contribution is a Python package to conduct VI on time-series models for mean-covariance estimate, using HVI and standard VI techniques combined with Neural Networks. Results on econometric and financial data show a consistent improvement using VI, compared to point estimate, obtaining lower variance forecasting.
MASPERO, DAVIDE. "Computational strategies to dissect the heterogeneity of multicellular systems via multiscale modelling and omics data analysis." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/368331.
Full textHeterogeneity pervades biological systems and manifests itself in the structural and functional differences observed both among different individuals of the same group (e.g., organisms or disease systems) and among the constituent elements of a single individual (e.g., cells). The study of the heterogeneity of biological systems and, in particular, of multicellular systems is fundamental for the mechanistic understanding of complex physiological and pathological phenomena (e.g., cancer), as well as for the definition of effective prognostic, diagnostic, and therapeutic strategies. This work focuses on developing and applying computational methods and mathematical models for characterising the heterogeneity of multicellular systems and, especially, cancer cell subpopulations underlying the evolution of neoplastic pathology. Similar methodologies have been developed to characterise viral evolution and heterogeneity effectively. The research is divided into two complementary portions, the first aimed at defining methods for the analysis and integration of omics data generated by sequencing experiments, the second at modelling and multiscale simulation of multicellular systems. Regarding the first strand, next-generation sequencing technologies allow us to generate vast amounts of omics data, for example, related to the genome or transcriptome of a given individual, through bulk or single-cell sequencing experiments. One of the main challenges in computer science is to define computational methods to extract useful information from such data, taking into account the high levels of data-specific errors, mainly due to technological limitations. In particular, in the context of this work, we focused on developing methods for the analysis of gene expression and genomic mutation data. In detail, an exhaustive comparison of machine-learning methods for denoising and imputation of single-cell RNA-sequencing data has been performed. Moreover, methods for mapping expression profiles onto metabolic networks have been developed through an innovative framework that has allowed one to stratify cancer patients according to their metabolism. A subsequent extension of the method allowed us to analyse the distribution of metabolic fluxes within a population of cells via a flux balance analysis approach. Regarding the analysis of mutational profiles, the first method for reconstructing phylogenomic models from longitudinal data at single-cell resolution has been designed and implemented, exploiting a framework that combines a Markov Chain Monte Carlo with a novel weighted likelihood function. Similarly, a framework that exploits low-frequency mutation profiles to reconstruct robust phylogenies and likely chains of infection has been developed by analysing sequencing data from viral samples. The same mutational profiles also allow us to deconvolve the signal in the signatures associated with specific molecular mechanisms that generate such mutations through an approach based on non-negative matrix factorisation. The research conducted with regard to the computational simulation has led to the development of a multiscale model, in which the simulation of cell population dynamics, represented through a Cellular Potts Model, is coupled to the optimisation of a metabolic model associated with each synthetic cell. Using this model, it is possible to represent assumptions in mathematical terms and observe properties emerging from these assumptions. Finally, we present a first attempt to combine the two methodological approaches which led to the integration of single-cell RNA-seq data within the multiscale model, allowing data-driven hypotheses to be formulated on the emerging properties of the system.
PINNA, ANDREA. "Simulation and identification of gene regulatory networks." Doctoral thesis, Università degli Studi di Cagliari, 2014. http://hdl.handle.net/11584/266423.
Full textBooks on the topic "Inferenza"
Interazione e inferenza: Epistemologia scientifica ispirata al pensiero di Ch.S. Peirce. Roma: Gregorian & Biblical Press, 2010.
Find full textTuzet, Giovanni. La prima inferenza: L'abduzione di C. S. Peirce fra scienza e diritto. Torino: G. Giappichelli, 2006.
Find full textTuzet, Giovanni. La prima inferenza: L'abduzione di C. S. Peirce fra scienza e diritto. Torino: G. Giappichelli, 2006.
Find full textSandrini, Maria Grazia. L' inferenza induttiva in Bayes e in Fisher: Due metodi a confronto in un saggio storico-critico di epistemologia e metodologia scientifica. Milano, Italy: F. Angeli, 1987.
Find full textINFERENCE. [Place of publication not identified]: RINGWOOD Publishing, 2019.
Find full textBibel, Wolfgang. Wissensrepräsentation und Inferenz. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-86814-5.
Full textStatistical inference. Chestnut Hill, MA: Epidemiology Resources Inc., 1990.
Find full textT, Jolliffe I., and Jones Byron 1951-, eds. Statistical inference. Oxford: Oxford University Press, 2002.
Find full textBazett, Trefor. Bayesian Inference. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95792-6.
Full textWieczorek, Wojciech. Grammatical Inference. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46801-3.
Full textBook chapters on the topic "Inferenza"
Battaglia, Francesco. "Inferenza per processi stazionari." In UNITEXT, 147–85. Milano: Springer Milan, 2007. http://dx.doi.org/10.1007/978-88-470-0603-4_9.
Full textRotondi, Alberto, Paolo Pedroni, and Antonio Pievatolo. "Inferenza statistica e verosimiglianza." In UNITEXT, 323–72. Milano: Springer Milan, 2005. http://dx.doi.org/10.1007/88-470-0348-2_9.
Full textRotondi, Alberto, Paolo Pedroni, and Antonio Pievatolo. "Inferenza statistica e verosimiglianza." In UNITEXT, 405–62. Milano: Springer Milan, 2021. http://dx.doi.org/10.1007/978-88-470-4010-6_10.
Full textRotondi, Alberto, Paolo Pedroni, and Antonio Pievatolo. "Inferenza statistica e verosimiglianza." In UNITEXT, 347–98. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2364-2_9.
Full textBattaglia, Francesco. "Inferenza statistica per processi aleatori." In UNITEXT, 143–45. Milano: Springer Milan, 2007. http://dx.doi.org/10.1007/978-88-470-0603-4_8.
Full textBattaglia, Francesco. "Inferenza per catene di Markov e processi di punti." In UNITEXT, 243–49. Milano: Springer Milan, 2007. http://dx.doi.org/10.1007/978-88-470-0603-4_12.
Full textGenesereth, Michael R., and Nils J. Nilsson. "Inferenz." In Logische Grundlagen der Künstlichen Intelligenz, 63–88. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-92881-8_3.
Full textBibel, Wolfgang. "Automatische Inferenz." In Artificial Intelligence — Eine Einführung, 151–74. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-322-93997-5_8.
Full textKlima, André, Paul W. Thurner, Christoph Molnar, Thomas Schlesinger, and Helmut Küchenhoff. "Ökologische Inferenz." In Exit Polls und Hybrid-Modelle, 127–54. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-15674-9_8.
Full textSauer, Sebastian. "Simulationsbasierte Inferenz." In Moderne Datenanalyse mit R, 301–17. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-21587-3_17.
Full textConference papers on the topic "Inferenza"
García-García, Jamie, Gonzalo Chávez, Liliana Tauber, and Nicolás Fernández. "Knowledge Elements of Statistical Literacy in Informal Inferential Reasoning of Middle School Students." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t14f1.
Full textHaldimann, Jonas, and Christoph Beierle. "Inference with System W Satisfies Syntax Splitting." In 19th International Conference on Principles of Knowledge Representation and Reasoning {KR-2022}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/kr.2022/41.
Full textBorovcnik, Manfred. "Informal inference – approaches towards statistical inference." In Decision Making Based on Data. International Association for Statistical Education, 2019. http://dx.doi.org/10.52041/srap.19101.
Full textKutsch, Steven, and Christoph Beierle. "InfOCF-Web: An Online Tool for Nonmonotonic Reasoning with Conditionals and Ranking Functions." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/711.
Full textSharma, Ashish, Puneesh Khanna, and Jaimin Maniyar. "Screening Deep Learning Inference Accelerators at the Production Lines." In 9th International Conference on Foundations of Computer Science & Technology (CST 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121911.
Full textRamírez, Julio C. "Inference Optimization Approach in Fuzzy Inference Systems." In 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA). IEEE, 2008. http://dx.doi.org/10.1109/cerma.2008.42.
Full textNarra, Krishna Giri, Zhifeng Lin, Yongqin Wang, Keshav Balasubramanian, and Murali Annavaram. "Origami Inference: Private Inference Using Hardware Enclaves." In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). IEEE, 2021. http://dx.doi.org/10.1109/cloud53861.2021.00021.
Full textde Cooman, Gert, Jasper De Bock, and Márcio Alves Diniz. "Coherent Predictive Inference under Exchangeability with Imprecise Probabilities (Extended Abstract)." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/709.
Full textCaticha, Ariel, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Entropic Inference." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573619.
Full textFrank, Martin R., Piyawadee "Noi" Sukaviriya, and James D. Foley. "Inference bear." In the conference. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/225434.225453.
Full textReports on the topic "Inferenza"
Kyburg Jr, Henry E. Probabilistic Inference and Non-Monotonic Inference. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada250603.
Full textKyburg Jr, Henry E. Probabilistic Inference. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada255471.
Full textGay, David. Barrier Inference. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada637072.
Full textWarde, Cardinal. Optical Inference Machines. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada197880.
Full textChertkov, Michael, Sungsoo Ahn, and Jinwoo Shin. Gauging Variational Inference. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1360686.
Full textSmith, David E., Michael R. Genesereth, and Matthew I. Ginsberg. Controlling Recursive Inference,. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada327440.
Full textAndrews, Isaiah, Toru Kitagawa, and Adam McCloskey. Inference on Winners. Cambridge, MA: National Bureau of Economic Research, January 2019. http://dx.doi.org/10.3386/w25456.
Full textMcCloskey, Adam, Isaiah Andrews, and Toru Kitagawa. Inference on winners. The IFS, May 2018. http://dx.doi.org/10.1920/wp.cem.2018.3118.
Full textKitagawa, Toru, Isaiah Andrews, and Adam McCloskey. Inference on winners. The IFS, January 2019. http://dx.doi.org/10.1920/wp.cem.2018.7318.
Full textAndrews, Donald W. K., and James Stock. Inference with Weak Instruments. Cambridge, MA: National Bureau of Economic Research, August 2005. http://dx.doi.org/10.3386/t0313.
Full text