Contents
Academic literature on the topic 'Inférence de réseau omic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inférence de réseau omic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inférence de réseau omic"
Carillo, David. "Estimation et inférence du coefficient d'autorégression du modèle de Whittle sur un réseau d'interactions aléatoires faibles." Revue internationale de géomatique 17, no. 3-4 (December 30, 2007): 261–75. http://dx.doi.org/10.3166/geo.17.261-275.
Full textDissertations / Theses on the topic "Inférence de réseau omic"
Arsenteva, Polina. "Statistical modeling and analysis of radio-induced adverse effects based on in vitro and in vivo data." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK074.
Full textIn this work we address the problem of adverse effects induced by radiotherapy on healthy tissues. The goal is to propose a mathematical framework to compare the effects of different irradiation modalities, to be able to ultimately choose those treatments that produce the minimal amounts of adverse effects for potential use in the clinical setting. The adverse effects are studied in the context of two types of data: in terms of the in vitro omic response of human endothelial cells, and in terms of the adverse effects observed on mice in the framework of in vivo experiments. In the in vitro setting, we encounter the problem of extracting key information from complex temporal data that cannot be treated with the methods available in literature. We model the radio-induced fold change, the object that encodes the difference in the effect of two experimental conditions, in the way that allows to take into account the uncertainties of measurements as well as the correlations between the observed entities. We construct a distance, with a further generalization to a dissimilarity measure, allowing to compare the fold changes in terms of all the important statistical properties. Finally, we propose a computationally efficient algorithm performing clustering jointly with temporal alignment of the fold changes. The key features extracted through the latter are visualized using two types of network representations, for the purpose of facilitating biological interpretation. In the in vivo setting, the statistical challenge is to establish a predictive link between variables that, due to the specificities of the experimental design, can never be observed on the same animals. In the context of not having access to joint distributions, we leverage the additional information on the observed groups to infer the linear regression model. We propose two estimators of the regression parameters, one based on the method of moments and the other based on optimal transport, as well as the estimators for the confidence intervals based on the stratified bootstrap procedure
Hulot, Audrey. "Analyses de données omiques : clustering et inférence de réseaux Female ponderal index at birth and idiopathic infertility." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL034.
Full textThe development of biological high-throughput technologies (next-generation sequencing and mass spectrometry) have provided researchers with a large amount of data, also known as -omics, that help better understand the biological processes.However, each source of data separately explains only a very small part of a given process. Linking the differents -omics sources between them should help us understand more of these processes.In this manuscript, we will focus on two approaches, clustering and network inference, applied to omics data.The first part of the manuscript presents three methodological developments on this topic. The first two methods are applicable in a situation where the data are heterogeneous.The first method is an algorithm for aggregating trees, in order to create a consensus out of a set of trees. The complexity of the process is sub-quadratic, allowing to use it on data leading to a great number of leaves in the trees. This algorithm is available in an R-package named mergeTrees on the CRAN.The second method deals with the integration data from trees and networks, by transforming these objects into distance matrices using cophenetic and shortest path distances, respectively. This method relies on Multidimensional Scaling and Multiple Factor Analysis and can be also used to build consensus trees or networks.Finally, we use the Gaussian Graphical Models setting and seek to estimate a graph, as well as communities in the graph, from several tables. This method is based on a combination of Stochastic Block Model, Latent Block Model and Graphical Lasso.The second part of the manuscript presents analyses conducted on transcriptomics and metagenomics data to identify targets to gain insight into the predisposition of Ankylosing Spondylitis
Kazhuthuveettil, Sreedharan Jithin. "Échantillonnage et inférence dans réseaux complexes." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4121/document.
Full textThe recent emergence of large networks, mainly due to the rise of online social networks, brought out the difficulty to gather a complete picture of a network and it prompted the development of new distributed techniques. In this thesis, we design and analyze algorithms based on random walks and diffusion for sampling, estimation and inference of the network functions, and for approximating the spectrum of graph matrices. The thesis starts with the classical problem of finding the dominant eigenvalues and the eigenvectors of symmetric graph matrices like Laplacian of undirected graphs. Using the fact that the eigenspectrum is associated with a Schrödinger-type differential equation, we develop scalable techniques with diffusion over the graph and with gossiping algorithms. They are also adaptable to a simple algorithm based on quantum computing. Next, we consider sampling and estimation of network functions (sum and average) using random walks on graph. In order to avoid the burn-in time of random walks, with the idea of regeneration at its revisits to a fixed node, we develop an estimator for the aggregate function which is non-asymptotically unbiased and derive an approximation to its Bayesian posterior. An estimator based on reinforcement learning is also developed making use of regeneration. The final part of the thesis deals with the use of extreme value theory to make inference from the stationary samples of the random walks. Extremal events such as first hitting time of a large degree node, order statistics and mean cluster size are well captured in the parameter “extremal index”. We theoretically study and estimate extremal index of different random walk sampling techniques
Castel, David. "Inférence du réseau génétique d'Id2 dans les kératinocytes humains par intégration de données génomiques à large échelle." Evry-Val d'Essonne, 2007. http://www.biblio.univ-evry.fr/theses/2007/interne/2007/2007EVRY0026.pdf.
Full textWe report in the present study the characterization of the genetic regulatory network of Id2, a dominant negative regulator of bHLH, to further understand its role in the control of the proliferation/differentiation balance in human keratinocytes. To identify Id2 gene targets, we first used gene expression profiling in cells exhibiting Id2 overexpression or knock-down. At the same time we screened an siRNA library using an siRNA microarrays approach to characterize Id2 transcriptionnal regulators. These results, with additional phenotypic observations, show that Id2 exert a key role in the control of keratinocyte commitment into differentiation or proliferation. Furthermore, we unravel new functions of Id2 in anaphase promotion and DNA recombination control. Overal, our results alllowed a first description of Id2 genetic regulatory network topology
Vincent, Jonathan. "Inférence des réseaux de régulation de la synthèse des protéines de réserve du grain de blé tendre (Triticum aestivum L.) en réponse à l'approvisionnement en azote et en soufre." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22485/document.
Full textGrain storage protein content and composition are the main determinants of bread wheat (Triticum aestivum L.) end-use value. Scaling laws governing grain protein composition according to grain nitrogen and sulfur content could be the outcome of a finely tuned regulation network. Although it was demonstrated that the main regulation of grain storage proteins accumulation occurs at the transcriptomic level in cereals, knowledge of the underlying molecular mechanisms is elusive. Moreover, the effects of nitrogen and sulfur on these mechanisms are unknown. The issue of skyrocketing data generation in research projects is addressed by developing high-throughput bioinformatics approaches. Extracting knowledge on from such massive amounts of data is therefore an important challenge. The work presented herein aims at elucidating regulatory networks involved in grain storage protein synthesis and their response to nitrogen and sulfur supply using a rule discovery approach. This approach was extended, implemented in the form of a web-oriented platform dedicated to the inference and analysis of regulatory networks from qualitative and quantitative –omics data. This platform allowed us to define different semantics in a comprehensive framework; each semantic having its own biological meaning, thus providing us with global informative networks. Spatiotemporal specificity of transcription factors expression was observed and particular attention was paid to their relationship with grain storage proteins in the inferred networks. The work initiated here opens up a field of innovative investigation to identify new targets for plant breeding and for an improved end-use value and nutritional quality of wheat in the context of inputs limitation. Further analyses should enhance the understanding of the control of grain protein composition and allow providing wheat adapted to specific uses or deficient in protein fractions responsible for gluten allergenicity and intolerance
Gallopin, Mélina. "Classification et inférence de réseaux pour les données RNA-seq." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS174/document.
Full textThis thesis gathers methodologicals contributions to the statistical analysis of next-generation high-throughput transcriptome sequencing data (RNA-seq). RNA-seq data are discrete and the number of samples sequenced is usually small due to the cost of the technology. These two points are the main statistical challenges for modelling RNA-seq data.The first part of the thesis is dedicated to the co-expression analysis of RNA-seq data using model-based clustering. A natural model for discrete RNA-seq data is a Poisson mixture model. However, a Gaussian mixture model in conjunction with a simple transformation applied to the data is a reasonable alternative. We propose to compare the two alternatives using a data-driven criterion to select the model that best fits each dataset. In addition, we present a model selection criterion to take into account external gene annotations. This model selection criterion is not specific to RNA-seq data. It is useful in any co-expression analysis using model-based clustering designed to enrich functional annotation databases.The second part of the thesis is dedicated to network inference using graphical models. The aim of network inference is to detect relationships among genes based on their expression. We propose a network inference model based on a Poisson distribution taking into account the discrete nature and high inter sample variability of RNA-seq data. However, network inference methods require a large number of samples. For Gaussian graphical models, we propose a non-asymptotic approach to detect relevant subsets of genes based on a block-diagonale decomposition of the covariance matrix. This method is not specific to RNA-seq data and reduces the dimension of any network inference problem based on the Gaussian graphical model
Brinza, Lilia. "Exploration et inférence du réseau de régulation de la transcription de la bactérie symbiotique intracellulaire à génome réduit Buchnera aphidicola." Phd thesis, INSA de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00750363.
Full textHaury, Anne-Claire. "Sélection de variables à partir de données d'expression : signatures moléculaires pour le pronostic du cancer du sein et inférence de réseaux de régulation génique." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00818345.
Full textChevalier, Stéphanie. "Inférence logique de réseaux booléens à partir de connaissances et d'observations de processus de différenciation cellulaire." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG061.
Full textDynamic models are essential tools for exploring regulatory mechanisms in biology. This thesis was guided by the need expressed in oncology and developmental biology to automatically infer Boolean networks reproducing cellular differentiation processes.By considering observations and knowledge that the modelers have at their disposal, this thesis presents an approach that allows to model the richness of this cellular behavior by inferring all the compatible Boolean networks at that scale of the regulatory networks commonly considered in biology.To develop this method, three main contributions are presented.The first contribution is a formal framework of the properties of data collected to study cellular differentiation. This framework allows reasoning about the desired dynamic properties within Boolean networks to be consistent with this cellular behavior.The second contribution concerns the encoding of the model inference problem as a Boolean satisfiability problem whose solutions are the Boolean networks compatible with the biological data. For this, constraints on the dynamics of Boolean networks corresponding to the previously formalized properties have been implemented in logic programming.The last contribution was to apply to real biological problems the model inference method, named BoNesis, which was developed thanks to the constraints. These applications showed the benefit of inferring a set of models for the process analysis and illustrated the modeling methodology, from the preparation of biological data to the analysis of the inferred models
Maesano, Ariele. "Bayesian dynamic scheduling for service composition testing." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066100/document.
Full textIn present times connectivity between systems becomes more common. It removes human mediation and allows complex distributed systems to autonomously complete long and complex tasks. SOA is a model driven contract based approach that allows legacy systems to collaborate by messages exchange. Collaboration, here, is a key word in the sense that multiple organisation can, with this approach, automate services exchanges between them without putting at risks their confidentiality. This cause to encounter the first difficulty, because if there are exchanges between the different partners, the inner-processes resulting in the exchange information is restricted to some partners and therefor to some of the testers. That put us in a grey-box testing case where the systems are black-boxes and only the message exchange is visible. That is why we propose a probabilistic approach using Bayesian Inference to test the architectures. The second Challenge is the size of the SOA. Since the systems are connected by loosely coupling them two by two according to SOA Specifications, SOA can contain a very important number of participants. In Fact most of the existing SOA are very important in there size. The size of the SOA is reflected in the complexity of the Bayesian inference. This second challenge constraints us to search for better solution for the Bayesian Inference. In order to cope with the size and density of the BN for even small services architectures, techniques of model-driven inference by compilation that allows quick generation of arithmetic circuits directly from the services architecture model and the test suite are being developed