Dissertations / Theses on the topic 'Inertial navigation systems'

To see the other types of publications on this topic, follow the link: Inertial navigation systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Inertial navigation systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhao, Yong 1980. "Discrete-time observers for inertial navigation systems." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17956.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.
Includes bibliographical references (p. 65-66).
In this thesis, we derive an exact deterministic nonlinear observer to compute the continuous-time states of inertial navigation system based on partial discrete measurements, the so-called strapdown problem. Nonlinear contraction theory is used as the main analysis tool. The hierarchical structure of the system physics is sytematically exploited and the use of nonlinear measurements, such as distances to time-varying reference points, is discussed. Effects of bounded errors on model and measurements are quantified, and can be used for active measurement selection. Work on vehicle state computation is carried out by using a similar observer design method. Finally, the approach is used to compute the head orientation of a simulated planar hopping robot, where the information provided by the observer is used for head stabilization and obstacle jump.
by Yong Zhao.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
2

Mohamadabadi, Kaveh. "Anisotropic Magnetoresistance Magnetometer for inertial navigation systems." Phd thesis, Ecole Polytechnique X, 2013. http://tel.archives-ouvertes.fr/tel-00946970.

Full text
Abstract:
This work addresses the relevant errors of the anisotropic magnetoresistance sensor for inertial navigation systems. The manuscript provides resulting guidelines and solution for using the AMR sensors in a robust and appropriate way relative to the applications. New methods also are proposed to improve the performance and, reduce the power requirements and cost design of the magnetometer. The new compensation method is proposed by developing an optimization algorithm. The necessity of the sensor calibration is shown and the source of the errors and compensating model are investigated. Two novel methods of indoor calibration are proposed and examples of operating systems are presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Ruiz, Mario. "Optimization of a strapdown inertial navigation system." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hewitson, Steve Surveying &amp Spatial Information Systems Faculty of Engineering UNSW. "Quality control for integrated GNSS and inertial navigation systems." Awarded by:University of New South Wales. Surveying and Spatial Information Systems, 2006. http://handle.unsw.edu.au/1959.4/25534.

Full text
Abstract:
The availability of GPS signals is a major limitation for many existing and potential applications. Fortunately, with the development of Galileo by the European Commission (EC) and European Space Agency (ESA) and new funding for the restoration of the Russian GLONASS announced by the Russian Federation the future for satellite based positioning and navigation applications is extremely promising. This research primarily investigates the benefits of GNSS interoperability and GNSS/INS integration to Receiver Autonomous Integrity Monitoring (RAIM) from a geometrical perspective. In addition to these investigations, issues regarding multiple outlier detection and identification are examined and integrity procedures addressing these issues are proposed. Moreover, it has been shown how the same RAIM algorithms can be effectively applied to the various static and kinematic navigation architectures used in this research.
APA, Harvard, Vancouver, ISO, and other styles
5

Wall, John H. "A study of the effects of stochastic inertial sensor errors in dead-reckoning navigation." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/WALL_JOHN_59.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skog, Isaac. "Low-Cost Navigation Systems : A Study of Four Problems." Doctoral thesis, KTH, Signalbehandling, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11736.

Full text
Abstract:
Today the area of high-cost and high-performance navigation for vehicles is a well-developed field. The challenge now is to develop high-performance navigation systems using low-cost sensortechnology. This development involves problems spanning from signal processing of the dirty measurements produced by low-costsensors via fusion and synchronization of information produced by a large set of diverse sensors, to reducing the size and energyconsumption of the systems. This thesis examines and proposessolutions to four of these problems. The first problem examined is the time synchronizing of the sensordata in a global positioning system aided inertial navigationsystem in which no hardware clock synchronization is possible. A poor time synchronization results in an increased mean squareerror of the navigation solution and expressions for calculating this mean square error are presented. A method to solve the timesynchronization issue in the data integration software is proposed. The potential of the method is illustrated with tests onreal-world data that are subjected to timing errors. The second problem examined is the achievable clocksynchronization accuracy in a sensor network employing a two-waymessage exchange model. The Cramer-Rao bound for the estimation of the clock parameters is derived and transformed in to a lower bound on the mean square error of the clock offset.Further, an approximate maximum likelihood estimator for the clockparameters is proposed. The estimator is shown to be of low complexity and to have a mean square error in the vicinity of the Cramer-Rao bound. The third problem examined is the detection of the time epochswhen zero-velocity updates can be applied in a foot-mountedpedestrian navigation system. Four general likelihood ratio testsfor detecting when the navigation system is stationary based onthe inertial measurement data are studied. The performance of thefour detectors is evaluated using levelled ground, forward-gaitdata. The results show that the signals from the gyroscopes holdthe most reliable information for the zero-velocity detection. The fourth problem examined is the calibration of a low-costinertial measurement unit. A calibration procedure that relaxesthe accuracy requirements of the orientation angles the inertialmeasurement unit must be placed in during the calibration isstudied. The proposed calibration method is compared with theCramer-Rao bound for the case when the inertial measurementunit is rotated into precisely controlled orientations. Simulationresults show that the mean square error of the estimated sensormodel parameters reaches the Cramer-Rao bound within fewdecibels. Thus, the proposed method may be acceptable for a widerange of low-cost applications.
QC 20100810
APA, Harvard, Vancouver, ISO, and other styles
7

Walchko, Kevin J. "Low cost inertial navigation learning to integrate noise and find your way /." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Wei. "On the study of mixed signal interface circuit for inertial navigation system." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soloviev, Andrey. "Investigation into performance enhancement of integrated global positioning/inertial navigation systems by frequency domain implementation of inertial computational procedures." Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1178652218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sukkarieh, Salah. "Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles." Thesis, The University of Sydney, 2000. http://hdl.handle.net/2123/18358.

Full text
Abstract:
This thesis describes the theoretical and practical development of a low cost, high integrity, aided inertial navigation system for use in autonomous land vehicle applications. The demand for fail safe navigation systems which can be used on large autonomous land vehicles such as those found in container terminals, agriculture, construction and in mines, has driven research and technology into the development of high integrity navigation suites. Integrity, in this thesis, is defined as the ability of a navigation system to provide reliable navigation information while also monitoring the health of the data and either correcting any faults that may occur or rejecting faulty data. Thus integrity encapsulates reliability while the reverse is not necessarily true. This thesis provides, both in practical and theoretical terms, the fusion processes adopted and the implementation of fault detection techniques required for a high integrity aided inertial navigation system. There are three main contributions: Firstly, the development of an aided inertial navigation system using the Global Navigation Satellite System (GNSS) as an aiding source for use in autonomous land vehicles. This is accomplished by using a Kalman filter as the estimation algorithm along with the addition of fault detection techniques so as to increase the integrity of the system. The real time structure of the navigation architecture is provided along with results of its implementation in an autonomous 65 tonne straddle carrier. However, the algorithm development provides a generic structure thus allowing the use of the navigation suite on any land vehicle. Secondly is the use of vehicle modelling to bound drift errors associated with inertial navigation. This provides a sensor-free aiding source due to the inherent constrained motion of land vehicles. Vehicle constraints can thus be used as an extra aiding source with other sensors which in turn improves the accuracy and integrity of the overall navigation system. This is demonstrated with the real time implementation of an inertial navigation system being aided by three separate aiding sources; GNSS, vehicle modelling and speed data provided by an encoder. Finally, the understanding of the effect of inertial sensor redundancy to navigation accuracy and fault detection is addressed. A redundant inertial measurement unit is developed and tested and provides the necessary physical sensor for future fault detection work. This concludes this thesis by providing the foundation for the autonomous detection of faults in inertial units and furthermore the final level of integrity required for a navigation system.
APA, Harvard, Vancouver, ISO, and other styles
11

Newlin, Michael Linton Hung John Y. Bevly David M. "Design and development of a GPS intermediate frequency and IMU data acquisition system for advanced integrated architectures." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Theses/NEWLIN_MICHAEL_7.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Harris, William M. "Integrated Global Positioning System and inertial navigation system integrity monitor performance." Ohio : Ohio University, 2003. http://www.ohiolink.edu/etd/view.cgi?ohiou1175091451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kiran, Sai. "An inertial measurement unit interface and processing system synchronized to global positioning system time." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176489175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ramaswamy, Sridhar. "An investigation of integrarted Global Positioning System and inertial navigation system fault detection." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172777336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Xiaopeng. "Moving base INS/GPS vector gravimetry on a land vehicle." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195677222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mathur, Navin G. "Feasibility of using a low-cost inertial measurement unit with centimeter accuracy differential global positioning system." Ohio University / OhioLINK, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181173720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stavish, Kenneth V. "Resilience Analysis of Inertial Navigation Systems (INS) through an Enhanced INS Tool Kit." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10743838.

Full text
Abstract:

Resilience is explained as an entity’s capacity to survive and recover from disruptions. Approaches to design resilient systems are in growing demand; however, there have been few demonstrations for measuring and quantifying systems resilience. This research presents a Resilience Analysis regarding Inertial Navigation System (INS) architectures. Specifically for the case study at hand, it is not clear which INS architecture to choose (tightly coupled or loosely coupled) for resilience. This research tests whether Robustness and Recovery measures of effectiveness (MOEs) can be used to determine which INS architecture is most resilient.

The methodology of this research included enhancing an INS Tool Kit with Resilience Analysis functions. The INS Tool Kit was used to collect resilience data for different INS configurations dealing with Global Positioning System (GPS) outages. Robustness and Recovery data were collected for 500 observations of five different INS configurations. Three configurations were loosely coupled and two were tightly coupled; therefore, 1500 observations of resilience data for loosely coupled INS were compared to 1000 observations for tightly coupled INS. Using data from this Resilience Analysis, a series of nonparametric Mann-Whitney tests showed there is a statistically significant difference between tightly coupled and loosely coupled INS architectures in terms of resilience. Based on these results, greater resilience to GPS outages can be added to the list of advantages for tightly coupled INS architectures. The conclusion of this research is that Robustness and Recovery measures can be used to determine and compare the resilience of different INS architectures.

APA, Harvard, Vancouver, ISO, and other styles
18

Bacilieri, Federico. "Solutions and algorithms for inertial navigation of railroad vehicles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14209/.

Full text
Abstract:
Obiettivo di questa tesi è lo studio e lo sviluppo di soluzioni innovative di navigazione inerziale per applicazioni ferroviarie, strumento utile per il tracciamento del moto durante l'assenza prolungata di sistemi di localizzazione esterni, tipo GPS, come può avvenire in galleria. Definiti gli strumenti di lavoro, è stata poi eseguita un'analisi dello stato dell'arte al fine di mettere in evidenza le metodologie teoriche utilizzate, nonchè le prestazioni dei sistemi già esistenti. Sono poi caratterizzati i sensori e le misure disponibili. Sono proposte varie soluzioni al problema della navigazione inerziale, con l'obiettivo di valutarne le prestazioni durante periodi prolungati assenza del GPS e con varie condizioni al contorno. Dopo una prima versione basata su un singolo EKF, si è scelto di svilupparne una seconda classe in cui il problema di stimadi assetto (AHRS) e diposizione/velocità sono separati e risolti mediante due algoritmi distinti. È stato implementato un AHRS basato su EKF e uno mediante un osservatore non lineare; inoltre, sono stati sviluppati un EKF di ordine completo e uno ridotto per le dinamiche di traslazione. È stata poi sviluppata una soluzione per l'integrazione dei dati delle mappe, in modo da fornire correzioni più frequenti all'INS, mantenendo inoltre un ridotto carico computazionale e facilità di integrazione. Si è infine proceduto implementando e simulando la soluzione a singolo stadio e le varie combinazioni di INS a due stadi in ambiente Matlab-Simulink. Gli algoritmi a due stadi hanno mostrato in simulazione prestazioni migliori rispetto alla struttura a EKF singolo la quale presenta un dominio di convergenza troppo limitato per fini pratici. A conclusione del lavoro, svolto avvalendosi della collaborazione di Sadel, sono state gettate le basi per una successiva analisi atta a verificare se la struttura a due stadi consente la convergenza anche dei bias di accelerometro
APA, Harvard, Vancouver, ISO, and other styles
19

Marti, Lukas Michael. "Integration of local area augmentation system and inertial navigation system for aircraft surface movement guidance." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172603243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Skog, Isaac, John-Olof Nilsson, Dave Zachariah, and Peter Händel. "Fusing the information from two navigation systems using an upper bound on their maximum spatial separation." KTH, Signalbehandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107445.

Full text
Abstract:
A method is proposed to fuse the information from two navigation systems whose relative position is unknown, but where there exists an upper limit on how far apart the two systems can be. The proposed information fusion method is applied to a scenario in which a pedestrian is equipped with two foot-mounted zero-velocity-aided inertial navigation systems; one system on each foot. The performance of the method is studied using experimental data. The results show that the method has the capability to significantly improve the navigation performance when compared to using two uncoupled foot-mounted systems.

QC 20121221

APA, Harvard, Vancouver, ISO, and other styles
21

Anderson, Abby Hodel A. Scottedward. "Design, testing, and simulation of a low-cost, light-weight, low-g IMU for the navigation of an indoor blimp." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/ANDERSON_ABBY_43.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tetewsky, Avram Ross Jeff Soltz Arnold Vaughn Norman Anszperger Jan O'Brien Chris Graham Dave Craig Doug Lozow Jeff. "Making sense of inter-signal corrections : accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms /." [Eugene, Ore. : Gibbons Media & Research], 2009. http://www.insidegnss.com/auto/julyaug09-tetewsky-final.pdf.

Full text
Abstract:
"Author biographies are available in the expanded on-line version of this article [http://www.insidegnss.com/auto/julyaug09-tetewsky-final.pdf]"
"July/August 2009." Web site title: Making Sense of GPS Inter-Signal Corrections : Satellite Calibration Parameters in Legacy and Modernized Ionosphere Correction Algorithms.
APA, Harvard, Vancouver, ISO, and other styles
23

Clark, Benjamin J. Bevly David M. "GPS/INS operation in shadowed environments." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Mechanical_Engineering/Thesis/Clark_Benjamin_45.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Clanton, Joshua M. Bevly David M. Hodel A. Scottedward. "GPS and inertial sensor enhancements for vision-based highway lane tracking." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/CLANTON_JOSHUA_8.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wolfaardt, H. Jurgens. "Theory of the microfluidic channel angular accelerometer for inertial measurement applications." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-05152007-120803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wright, James. "Use of ground based signals of opportunity for smart projectile navigation." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33885.

Full text
Abstract:
GPS is a widely accepted means of navigation, whether it is for civilian or military means. With the implementation of GPS on smart projectiles, these weapons have been able to achieve remarkable accuracy. Even though the improvements in accuracy are impressive, GPS signals are susceptible to jamming and spoofing by a sufficiently motivated enemy. The work reported here examines the viability of constructing a navigation solution using ground based signals of opportunity that provide range and range rate information. Using a generalized sensor model encompassing the key error terms, a variety of physical devices are included in the analysis. For a typical indirect fire trajectory, navigation solutions are computed as a function of the number and density of signal sources, terrain type, and sensor errors. Systematic studies were performed using these parameters in order to better understand the merits and demerits of this type of system to create a useful navigation solution. Based on these studies, results indicate that navigation solutions can be computed with the same accuracy as current GPS systems with a moderate number of signal sources. Generally, more accurate solutions are obtained when the projectile is directly over the signal sources and there is variation of signal source location in all three axes.
APA, Harvard, Vancouver, ISO, and other styles
27

Panahandeh, Ghazaleh, Nasser Mohammadiha, and Magnus Jansson. "Ground Plane Feature Detection in Mobile Vision-Aided Inertial Navigation." KTH, Signalbehandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99448.

Full text
Abstract:
In this paper, a method for determining ground plane features in a sequence of images captured by a mobile camera is presented. The hardware of the mobile system consists of a monocular camera that is mounted on an inertial measurement unit (IMU). An image processing procedure is proposed, first to extract image features and match them across consecutive image frames, and second to detect the ground plane features using a two-step algorithm. In the first step, the planar homography of the ground plane is constructed using an IMU-camera motion estimation approach. The obtained homography constraints are used to detect the most likely ground features in the sequence of images. To reject the remaining outliers, as the second step, a new plane normal vector computation approach is proposed. To obtain the normal vector of the ground plane, only three pairs of corresponding features are used for a general camera transformation. The normal-based computation approach generalizes the existing methods that are developed for specific camera transformations. Experimental results on real data validate the reliability of the proposed method.

QC 20121107

APA, Harvard, Vancouver, ISO, and other styles
28

Edwan, Ezzaldeen [Verfasser]. "Novel approaches for improved performance of inertial sensors and integrated navigation systems / Ezzaldeen Edwan." Siegen : Universitätsbibliothek der Universität Siegen, 2013. http://d-nb.info/103442596X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bergendorff, Markus. "Simuleringsmodell av tröghetsnavigator." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185046.

Full text
Abstract:
När tiden för utveckling av nya produkter kortas ner måste testning och verifiering utföras i ett tidigare utvecklingsstadie. Genom simulering av systemet kan tester utföras utan tillgång till det faktiska systemet och därmed kan utvecklingsprocessen accelereras. I BAE Systems Hägglunds stridsvagnar används en tröghetsnavigator som kan beräkna stridsvagnens position utan externa referenser. Test och verifiering av navigation med denna enhet i testbänk är ej fullt möjligt. Syftet med detta arbete är att kunna genomföra verklighetstrogna tester, i testbänk i utvecklingsfasen, genom att simulera navigatorns funktioner. Eftersom kommunikation med fordonssystemet ska ske i realtid samtidigt som navigationsdata läses från ett externt program, så ställs krav på att modellen har tillräcklig prestanda för att ge en verklighetstrogen simulering. Den övergripande frågeställningen i detta examensarbete är om en modell realiserad på en mikrokontroller (MCU) har tillräcklig prestanda för att användas vid simulering av en tröghetsnavigator. För att besvara frågeställningen har hårdvara för anpassning av gränssnittet mellan fordonssystem, MCU och externt program samt mjukvara för att simulera en tröghetsnavigator skapats. Därefter har modellen verifierats genom att mäta tiden för utvalda processer. Alla funktioner hos navigatorn har inte implementerats i simuleringsmodellen men resultaten visar att modellen kan användas för verklighetstrogna tester i testbänk.
When time for development of new products is shortened, testing and verification must be performed at an earlier stage of development. By simulating the system, tests can be performed without access to the actual system and thus the development process can be accelerated.  BAE Systems Hägglunds manufacture combat vehicles and use an Inertial Navigation System (INS) to calculate the combat vehicle’s position without external references. Testing and verification of navigation with this unit in the test bench is not entirely possible.  The aim of this thesis is to enable realistic tests, in a test bench in the development phase, by simulating the navigator’s functions. Since communication with the Vehicle Control System (VCS) must take place in real time at the same time as navigation data must be read from external program, the model is required to have sufficient performance to provide a realistic simulation.  The overall question in this thesis is whether a model realized on a microcontroller (MCU) has sufficient performance to be used for simulation of an INS. To answer the question at issue, hardware for adapting the interface between the VCS, MCU and external program as well as software for simulating an INS have been created. Thereafter, the model has been verified by measuring the time for selected processes.  Not all functions of the navigator have been implemented in the simulation model, but the results show that the model can be used for realistic tests in the test bench.
APA, Harvard, Vancouver, ISO, and other styles
30

Nielsen, Jerel Bendt. "Robust Visual-Inertial Navigation and Control of Fixed-Wing and Multirotor Aircraft." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7584.

Full text
Abstract:
With the increased performance and reduced cost of cameras, the robotics community has taken great interest in estimation and control algorithms that fuse camera data with other sensor data.In response to this interest, this dissertation investigates the algorithms needed for robust guidance, navigation, and control of fixed-wing and multirotor aircraft applied to target estimation and circumnavigation.This work begins with the development of a method to estimate target position relative to static landmarks, deriving and using a state-of-the-art EKF that estimates static landmarks in its state.Following this estimator, improvements are made to a nonlinear observer solving part of the SLAM problem.These improvements include a moving origin process to keep the coordinate origin within the camera field of view and a sliding window iteration algorithm to drastically improve convergence speed of the observer.Next, observers to directly estimate relative target position are created with a circumnavigation guidance law for a multirotor aircraft.Taking a look at fixed-wing aircraft, a state-dependent LQR controller with inputs based on vector fields is developed, in addition to an EKF derived from error state and Lie group theory to estimate aircraft state and inertial wind velocity.The robustness of this controller/estimator combination is demonstrated through Monte Carlo simulations.Next, the accuracy, robustness, and consistency of a state-of-the-art EKF are improved for multirotors by augmenting the filter with a drag coefficient, partial updates, and keyframe resets.Monte Carlo simulations demonstrate the improved accuracy and consistency of the augmented filter.Lastly, a visual-inertial EKF using image coordinates is derived, as well as an offline calibration tool to estimate the transforms needed for accurate, visual-inertial estimation algorithms.The imaged-based EKF and calibrator are also shown to be robust under various conditions through numerical simulation.
APA, Harvard, Vancouver, ISO, and other styles
31

Henderson, Harold Paulk Bevly David M. "Relative positioning of unmanned ground vehicles using ultrasonic sensors." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mechanical_Engineering/Thesis/Henderson_Harold_55.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shiel, Michael P. "Multi-level information fusion for environment aware robotic navigation." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/61955/1/Michael_Shiel_Thesis.pdf.

Full text
Abstract:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
APA, Harvard, Vancouver, ISO, and other styles
33

Tabatabaei, Balaei Asghar Surveying &amp Spatial Information Systems Faculty of Engineering UNSW. "Detection, characterization and mitigation of interference in receivers for global navigation satellite systems." Publisher:University of New South Wales. Surveying & Spatial Information Systems, 2007. http://handle.unsw.edu.au/1959.4/40545.

Full text
Abstract:
GPS has become very popular in recent years. It is used in wide range of applications including aircraft navigation, search and rescue, space borne attitude and position determination and cellular network synchronization. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI) which results from many sources such as TV/FM harmonics, radar or mobile satellite systems, presents a challenge to the use of GPS. It can affect all the service performance indices mentioned above. To improve the accuracy of GPS positioning, a continuously operating reference station (CORS) network can be used. A CORS network provides all the enabled GPS users in an area with corrections to the fundamental measurements, producing more precise positioning. A threat to these networks is a threat to all high-accuracy GPS users. It is therefore necessary to monitor the quality of the received signal with the objective of promptly detecting the presence of RFI and providing a timely warning of the degradation of system accuracy, thereby boosting the integrity of GPS. This research was focused on four main tasks: a) Detection. The focus here is on a power spectral density fluctuation detection technique, in which statistical inference is used to detect narrowband continuous-wave (CW) interference in the GPS signal band after being captured by the RF front-end. An optimal detector algorithm is proposed. At this optimal point, for a fixed Detection Threshold (DT), probability of false alarm becomes minimal and for a fixed probability of false alarm, we can achieve the minimum value for the detection threshold. Experiments show that at this point we have the minimum computational load. This theoretical result is supported by real experiments. Finally this algorithm is employed to detect a real GPS interference signal generated by a TV transmitter in Sydney. b) Characterization. In the characterization section, using the GNSS signal structure and the baseband signal processing inside the GNSS receiver, a closed formula is derived for the received signal quality in terms of effective carrier to noise ratio ( ). This formula is tested and proved by calculating the C/No using the I and Q data from a software GPS receiver. For pulsed CW, a similar analysis is done to characterize the effect of parameters such as pulse repetition period (PRP) and also duty cycle on the received signal quality. Considering this characterization and the commonality between the GPS C/A code and Galileo signal as a basis to build up a common term for satellite availability, the probability of satellite availability in the presence of CW interference is defined and for the two currently available satellite navigation systems (GPS L1 signal and Galileo signal (GIOVE-A BOC(1, 1) in the E1/L1 band)) it is shown that they can be considered as alternatives to each other in the presence of different RFI frequencies as their availability in the presence of CW RFI is different in terms of RFI frequency. c) Mitigation. The last section of the research presents a new concept of ?Satellite Exclusion Zone?. In this technique, using our previously developed characterization techniques, and considering the fact that RFI has different effects on different satellite signals at different times depending on satellite Doppler frequency, the idea of excluding the most vulnerable satellite signal from positioning calculations is proposed. Using real data and real interference, the effectiveness of this technique is proven and its performance analyzed. d) Hardware implementation. The above detection technique is implemented using the UNSW FPGA receiver board called NAMURU.
APA, Harvard, Vancouver, ISO, and other styles
34

Cork, Lennon R. "Aircraft dynamic navigation for unmanned aerial vehicles." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/71396/1/Lennon_Cork_Thesis.pdf.

Full text
Abstract:
This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.
APA, Harvard, Vancouver, ISO, and other styles
35

Castillo-Effen, Mauricio. "Cooperative localization in wireless networked systems." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Akcay, Emre Mustafa. "Land Vehicle Navigation With Gps/ins Sensor Fusion Using Kalman Filter." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12610327/index.pdf.

Full text
Abstract:
Inertial Measurement Unit (IMU) and Global Positioning System (GPS) receivers are sensors that are widely used for land vehicle navigation. GPS receivers provide position and/or velocity data to any user on the Earth&rsquo
s surface independent of his position. Yet, there are some conditions that the receiver encounters difficulties, such as weather conditions and some blockage problems due to buildings, trees etc. Due to these difficulties, GPS receivers&rsquo
errors increase. On the other hand, IMU works with respect to Newton&rsquo
s laws. Thus, in stark contrast with other navigation sensors (i.e. radar, ultrasonic sensors etc.), it is not corrupted by external signals. Owing to this feature, IMU is used in almost all navigation applications. However, it has some disadvantages such as possible alignment errors, computational errors and instrumentation errors (e.g., bias, scale factor, random noise, nonlinearity etc.). Therefore, a fusion or integration of GPS and IMU provides a more accurate navigation data compared to only GPS or only IMU navigation data. v In this thesis, loosely coupled GPS/IMU integration systems are implemented using feed forward and feedback configurations. The mechanization equations, which convert the IMU navigation data (i.e. acceleration and angular velocity components) with respect to an inertial reference frame to position, velocity and orientation data with respect to any desired frame, are derived for the geographical frame. In other words, the mechanization equations convert the IMU data to the Inertial Navigation System (INS) data. Concerning this conversion, error model of INS is developed using the perturbation of the mechanization equations and adding the IMU&rsquo
s sensor&rsquo
s error model to the perturbed mechanization equation. Based on this error model, a Kalman filter is constructed. Finally, current navigation data is calculated using IMU data with the help of the mechanization equations. GPS receiver supplies external measurement data to Kalman filter. Kalman filter estimates the error of INS using the error mathematical model and current navigation data is updated using Kalman filter error estimates. Within the scope of this study, some real experimental tests are carried out using the software developed as a part of this study. The test results verify that feedback GPS/INS integration is more accurate and reliable than feed forward GPS/INS. In addition, some tests are carried out to observe the results when the GPS receiver&rsquo
s data lost. In these tests also, the feedback GPS/INS integration is observed to have better performance than the feed forward GPS/INS integration.
APA, Harvard, Vancouver, ISO, and other styles
37

Kayasal, Ugur. "Modeling And Simulation Of A Navigation System With An Imu And A Magnetometer." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608786/index.pdf.

Full text
Abstract:
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. An alternative reference source is a three axis magnetometer, which provides direct attitude measurements. In this study, error propagation equations of an inertial navigation system are derived
measurement equations of magnetometer for Kalman filtering are developed
the unique method to self align the MEMS navigation system is developed. In the motion estimation, the performance of the developed algorithms are compared using a GPS aided system and magnetometer aided system. Some experiments are conducted for self alignment algorithms.
APA, Harvard, Vancouver, ISO, and other styles
38

Bommakanti, Hemanth Ram Kartik. "Impact of Time Synchronization Accuracy in Integrated Navigation Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260239.

Full text
Abstract:
Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) Integrated Navigation Systems (INS) integrate the positive features of GNSS and IMU for optimal navigation guidance in high accuracy outdoor navigation systems, for example using Extended Kalman Filter (EKF) techniques. Time synchronization of IMU data with precise GNSS based time is necessary to accurately synchronize the two systems. This must be done in real-time for time sensitive navigation applications such as autonomous vehicles. The research is done in two parts. The first part is the simulation of inaccurate time-stamping in a single axis of nonlinear input data in a gyroscope and an accelerometer, to obtain the timing error value that is tolerable by a high accuracy GNSS/INS system. The second part is the creation of a real-time algorithm using an STM32 embedded system enabled with FreeRTOS real-time kernel for a GNSS receiver and antenna, along with an IMU sensor. A comparative analysis of the time synchronized system and an unsynchronized system is done based on the errors produced using gyroscope and accelerometer readings along a single axis from the IMU sensor, by conducting static and rotational tests on a revolving chair.The simulation concludes that a high accuracy GNSS/INS system can tolerate a timing error of up to 1 millisecond. The real-time solution provides IMU data paired with updated GNSS based time-stamps every 5 milliseconds. The timing jitter is reduced to a range of ±1 millisecond. Analysis of final angular rotation error and final position error from gyroscope and accelerometer readings respectively, indicate that the real-time algorithm produces a reduction in errors when the system is static, but there is no statistical evidence showing the reduction of errors from the results of the rotational tests.
GNSS / IMU integrerade navigationssystem kombinerar de positiva egenskaperna hos GNSS och IMU för optimal prestanda i noggranna navigationssystem. Detta görs med hjälp av sensorfusion, till exempel EKF. Tidssynkronisering av IMU-data med exakt GNSS-baserad tid är nödvändigt för att noggrant synkronisera de två systemen. Detta måste göras i realtid för tidskänsliga navigationsapplikationer såsom autonoma fordon. Forskningen görs i två delar. Den första delen är simulering av icke-linjär rörelse i en axel med felaktig tidsstämpling hos ett gyroskop och en accelerometer. Detta görs för att erhålla det högsta tidsfel som är acceptabelt hos ett GNSS / INS-system med hög noggrannhet. Den andra delen är skapandet av en realtidsalgoritm med ett inbyggt STM32-system med FreeRTOS som realtidskärna för en GNSSmottagare och antenn, tillsammans med en IMU-sensor. En jämförande analys av det tidssynkroniserade systemet mot ett osynkroniserat system görs baserat på de positionsfel längs en axel som produceras av gyroskopoch accelerometermätningar. Detta görs genom att utföra statiska och roterande tester med hjälp av en roterande stol.Simuleringen visar att ett noggrant GNSS / INS-system tolererar ett tidsfel på upp till 1 millisekund. Realtidslösningen ger IMU-data med tidsstämplar synkroniserade med GNSS-tid var femte millisekund. Tidsjittret reduceras till ett intervall mellan ± 1 millisekund. Analysen av det slutliga vinkelrotationsfelet och positionsfelet från gyroskopoch accelerometermätningar indikerar att realtidsalgoritmen ger ett lägre fel när systemet är statiskt. Det finns dock inga statistiska bevis för förbättringen från resultaten av rotationstesterna.
APA, Harvard, Vancouver, ISO, and other styles
39

Huff, Joel E. "Absolute and Relative Navigation of an sUAS Swarm Using Integrated GNSS, Inertial and Range Radios." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1535040500005309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Randeniya, Duminda I. B. "Automatic geo-referencing by integrating camera vision and inertial measurements." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chung, Charles Choi. "Thermomigrated Junction Isolation of Deep Reactive Ion Etched, Single Crystal Silicon Devices, and its Application to Inertial Navigation Systems." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5120.

Full text
Abstract:
The introduction of deep reactive ion etching (DRIE) technology has greatly expanded the accessible design space for microscopic systems. Structures that are hundreds of micrometers tall with aspect ratios of 40:1, heretofore impossible, can now be achieved. However, this technology is primarily a forming technology, sculpting structures from a substrate. This work seeks to complement deep reactive ion etching by developing an electrical isolation technology to enable electro-mechanical function in these new deep reactive ion etched structures. The objective of the research is twofold. The first is to develop and characterize an electrical isolation technology for DRIE, single crystal silicon (SCS) micro-electro-mechanical systems (MEMS) using temperature gradient zone melting (TGZM) of aluminum junctions for diodic isolation. The second is to demonstrate the utility of this electrical isolation technology in the design, simulation, fabrication, and testing of a MEMS device, i.e. a micro-gyroscope, in such a way that the benefits from junction isolated, deep reactive ion etched, single crystal silicon devices are preserved.
APA, Harvard, Vancouver, ISO, and other styles
42

Murangira, Achille. "Nouvelles approches en filtrage particulaire : application au recalage de la navigation inertielle." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0011/document.

Full text
Abstract:
Les travaux présentés dans ce mémoire de thèse concernent le développement et la mise en oeuvre d'un algorithme de filtrage particulaire pour le recalage de la navigation inertielle par mesures altimétriques. Le filtre développé, le MRPF (Mixture Regularized Particle Filter), s'appuie à la fois sur la modélisation de la densité a posteriori sous forme de mélange fini, sur le filtre particulaire régularisé ainsi que sur l'algorithme mean-shift clustering. Nous proposons également une extension du MRPF au filtre particulaire Rao-Blackwellisé appelée MRBPF (Mixture Rao-Blackwellized Particle Filter). L'objectif est de proposer un filtre adapté à la gestion des multimodalités dues aux ambiguïtés de terrain. L'utilisation des modèles de mélange fini permet d'introduire un algorithme d'échantillonnage d'importance afin de générer les particules dans les zones d'intérêt. Un second axe de recherche concerne la mise au point d'outils de contrôle d'intégrité de la solution particulaire. En nous appuyant sur la théorie de la détection de changement, nous proposons un algorithme de détection séquentielle de la divergence du filtre. Les performances du MRPF, MRBPF, et du test d'intégrité sont évaluées sur plusieurs scénarios de recalage altimétrique
This thesis deals with the development of a mixture particle filtering algorithm for inertial navigation update via radar-altimeter measurements. This particle filter, the so-called MRPF (Mixture Regularized Particle Filter), combines mixture modelling of the posterior density, the regularized particle filter and the mean-shift clustering algorithm. A version adapted to the Rao-Blackwellized particle filter, the MRBPF (Mixture Rao-Blackwellized Particle Filter), is also presented. The main goal is to design a filter well suited to multimodal densities caused by terrain amibiguity. The use of mixture models enables us to introduce an alternative importance sampling procedure aimed at proposing samples in the high likelihood regions of the state space. A second research axis is concerned with the development of particle filtering integrity monitoring tools. A novel particle filter divergence sequential detector, based on change detection theory, is presented. The performances of the MRPF, MRBPF and the divergence detector are reported on several terrain navigation scenarios
APA, Harvard, Vancouver, ISO, and other styles
43

Roskilly, Kyle. "Sensor augmentation of GPS for position and speed sensing in animal locomotion." Thesis, Royal Veterinary College (University of London), 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chan, Francis Chun Ngai Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Statistical methods on detecting superpositional signals in a wireless channel." Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/30596.

Full text
Abstract:
The objective of the thesis is concerned on the problem of detecting superpositional signals in a wireless channel. In many wireless systems, an observed signal is commonly represented as a linear combination of the transmitted signal with the interfering signals dispersed in space and time. These systems are generally known as the interference-limited systems. The mathematical model of these systems is generally referred as a superpositional model. A distinguished characteristic of signal transmission in a time-varying wireless channel is that the channel process is not known a priori. Reliable signal reception inherently requires exploiting the structure of the interfering signals under channel uncertainty. Our goal is to design computational efficient receivers for various interference-limited systems by using advanced statistical signal processing techniques. The thesis consists of four main parts. Firstly, we have proposed a novel Multi-Input Multi-Output (MIMO) signal detector, known as the neighbourhood exploring detector (NED). According to the maximum likelihood principle, the space time MIMO detection problem is equivalent to a NP-hard combinatorial optimization problem. The proposed detector is a sub-optimal maximum likelihood detector which eliminates exhaustive multidimensional searches. Secondly, we address the problem of signal synchronization for Global Positioning System (GPS) in a multipath environment. The problem of multipath mitigation constitutes a joint estimation of the unknown amplitudes, phases and time delays of the linearly combined signals. The complexity of the nonlinear joint estimation problem increases exponentially with the number of signals. We have proposed two robust GPS code acquisition systems with low complexities. Thirdly, we deal with the problem of multipath mitigation in the spatial domain. A GPS receiver integrated with the Inertial Navigation System (INS) and a multiple antenna array is considered. We have designed a software based GPS receiver which effectively estimates the directions of arrival and the time of arrival of the linearly combined signals. Finally, the problem of communications with unknown channel state information is investigated. Conventionally, the information theoretical communication problem and the channel estimation problem are decoupled. However the training sequence, which facilitates the estimation of the channel, reduces the throughput of the channel. We have analytically derived the optimal length of the training sequence which maximizes the mutual information in a block fading channel.
APA, Harvard, Vancouver, ISO, and other styles
45

Cookson, Jeremy L. "A method for testing the dynamic accuracy of Microelectro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors for Inertial Navigation Systems (INS) and human motion tracking applications." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Jun/10Jun%5FCookson.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2010.
Thesis Advisor(s): Yun, Xiaoping ; Second Reader: Romano, Marcello. "June 2010." Description based on title screen as viewed on July 14, 2010. Author(s) subject terms: micro-electro-mechanical systems, MEMS, magnetic, angular rate, gravity sensor, MARG sensors, inertial navigation system, INS, inertial test, MicroStrain, 3DM-GX1, 3DMGX3, CompactRIO, MATLAB GUI, dynamic accuracy test. Includes bibliographical references (p. 187-189). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
46

Kirkpatrick, Daniel Eugene. "Design of a Hardware Platform for GPS-Based Orientation Sensing." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2197.

Full text
Abstract:
Unmanned aerial vehicles (UAV's) have recently gained popularity in military, civil service, agriculture, commercial, and hobby use. This is due in part to their affordability, which comes from advances in component technology. That technology includes microelectromechanical systems (MEMS) for inertial sensing, microprocessor technology for sequential algorithm processing, field programmable gate arrays (FPGA's) for parallel data processing, camera technology, global navigation satellite systems (GNSS's) for navigation, and battery technology such as the high energy density of lithium polymer batteries. Despite the success of the technology to date, there remains development before UAV's should be flying alongside manned aircraft or over populated areas. One concern is that UAV electronics are not as safe, reliable or robust as manned-aircraft electronics because UAV's are not certified by the FAA. Another concern for UAV operation is with control algorithms and sensors, particularly in the estimation of the aircraft state, which is the position, velocity, and orientation of the aircraft. Some problems, such as numerical stability of a control algorithm or flight in windy and turbulent conditions have only been solved for certain conditions of wind, weather, or maneuvers. Outside those conditions, the actual orientation of a flying craft can mislead to the control system, and the control system may not be able to recover without a crash. When pilots fly manned aircraft in instrument meteorological conditions, or conditions of limited visibility of the ground, terrain, and obstacles, the pilot must fly in a manner which avoids abrupt maneuvers which could disturb accuracy of the aircraft's instruments. In a UAV without a pilot, there is a need to estimate the position and orientation of a UAV in an absolute manner unambiguous relative to the Earth. The position and orientation estimate must not depend on carefully controlled flight paths, but instead the estimate must be robust in the presence of UAV flight dynamics. This thesis describes the design, implementation, and evaluation of a hardware platform for GPS based orientation sensing research. In this work, we considered a receiver with three or four RF sections, each connected to an antenna in a triangular or tetrahedral pyramid constellation. Specific requirements for the receiver hardware and functionality were created. Circuitry was designed to meet the requirements using commercial off-the-shelf (COTS) radio frequency (RF) modules, a mid-sized microcontroller, an FPGA, and other supporting components. A printed circuit board (PCB) was designed, fabricated, assembled, and tested. A GPS baseband processor was designed and coded in Verilog hardware description language. The design was synthesized and loaded to the FPGA, and the microcontroller was programmed to track satellites. With the hardware platform implemented, live satellite signals were found and tracked, and experiments were performed to explore the validity of GPS based orientation sensing using short antenna baselines. The platform successfully allows the user to develop correlator designs and explore carrier phase based orientation measurement using only software/Verilog modifications. Initial results of carrier phase based orientation sensing are promising, but the presence of multipath signal interference shows room for improvement to the baseband processing code.
APA, Harvard, Vancouver, ISO, and other styles
47

Kayasal, Ugur. "Research On Transfer Alignment For Increased Speed And Accuracy." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614771/index.pdf.

Full text
Abstract:
In this thesis, rapid transfer alignment algorithm for a helicopter launched guided munition is studied. Transfer alignment is the process of initialization of a guided munition&rsquo
s inertial navigation system with the aid of the carrier platform&rsquo
s navigation system, which is generally done by comparing the navigation data of missile and carrier&rsquo
s navigation data. In the literature, there are different studies of transfer alignment, especially for aircraft launched munitions. One important problem in transfer alignment is the attitude uncertainty of lever arm between munition&rsquo
s and carrier&rsquo
s navigation systems. In order to overcome this problem, most of the studies in the literature do not use carrier&rsquo
s attitude data in the transfer alignment, only velocity data is used. In order to estimate attitude and related inertial sensor errors, specific maneuvers of carrier platform are required which can take 1-5 minutes. The purpose of this thesis is to compensate the errors arising from the dynamics of the Helicopter, lever arm, mechanical vibration effects and inertial sensor error amplification, thus designing a transfer alignment algorithm under real environment conditions. The algorithm design begins with observability analysis, which is not done for helicopter transfer alignment in literature. In order to make proper compensations, characterization and modeling of vibration and lever arm environment is done for the helicopter. Also, vibration based errors of MEMS based inertial sensors are experimentally shown. The developed transfer alignment algorithm is tested by simulated and experimental data
APA, Harvard, Vancouver, ISO, and other styles
48

McCrink, Matthew H. "Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1449142886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chotaš, Kryštof. "Polohový a kursový referenční systém." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220851.

Full text
Abstract:
This thesis deals with inertial navigation systems issues. It describes basics of reference frames, coordinate systems and matrix calculations for AHRS. There are also basic information about inertial sensors, inertial measurements units and its mistakes. One of the purposes of this paper could be explanation of inertial navigation systems terms. The main object of this thesis is to explore the influence of using multiple sensors of same type to enhance measurements of AHRS systems.
APA, Harvard, Vancouver, ISO, and other styles
50

McIntyre, David S. "GPS effective data rate optimization with applications to integrated GPS/INS attitude and heading determination." Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1182445154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography