Dissertations / Theses on the topic 'Inertial navigation systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Inertial navigation systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhao, Yong 1980. "Discrete-time observers for inertial navigation systems." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17956.
Full textIncludes bibliographical references (p. 65-66).
In this thesis, we derive an exact deterministic nonlinear observer to compute the continuous-time states of inertial navigation system based on partial discrete measurements, the so-called strapdown problem. Nonlinear contraction theory is used as the main analysis tool. The hierarchical structure of the system physics is sytematically exploited and the use of nonlinear measurements, such as distances to time-varying reference points, is discussed. Effects of bounded errors on model and measurements are quantified, and can be used for active measurement selection. Work on vehicle state computation is carried out by using a similar observer design method. Finally, the approach is used to compute the head orientation of a simulated planar hopping robot, where the information provided by the observer is used for head stabilization and obstacle jump.
by Yong Zhao.
S.M.
Mohamadabadi, Kaveh. "Anisotropic Magnetoresistance Magnetometer for inertial navigation systems." Phd thesis, Ecole Polytechnique X, 2013. http://tel.archives-ouvertes.fr/tel-00946970.
Full textRuiz, Mario. "Optimization of a strapdown inertial navigation system." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textHewitson, Steve Surveying & Spatial Information Systems Faculty of Engineering UNSW. "Quality control for integrated GNSS and inertial navigation systems." Awarded by:University of New South Wales. Surveying and Spatial Information Systems, 2006. http://handle.unsw.edu.au/1959.4/25534.
Full textWall, John H. "A study of the effects of stochastic inertial sensor errors in dead-reckoning navigation." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/WALL_JOHN_59.pdf.
Full textSkog, Isaac. "Low-Cost Navigation Systems : A Study of Four Problems." Doctoral thesis, KTH, Signalbehandling, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11736.
Full textQC 20100810
Walchko, Kevin J. "Low cost inertial navigation learning to integrate noise and find your way /." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001193.
Full textLi, Wei. "On the study of mixed signal interface circuit for inertial navigation system." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691765.
Full textSoloviev, Andrey. "Investigation into performance enhancement of integrated global positioning/inertial navigation systems by frequency domain implementation of inertial computational procedures." Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1178652218.
Full textSukkarieh, Salah. "Low Cost, High Integrity, Aided Inertial Navigation Systems for Autonomous Land Vehicles." Thesis, The University of Sydney, 2000. http://hdl.handle.net/2123/18358.
Full textNewlin, Michael Linton Hung John Y. Bevly David M. "Design and development of a GPS intermediate frequency and IMU data acquisition system for advanced integrated architectures." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Theses/NEWLIN_MICHAEL_7.pdf.
Full textHarris, William M. "Integrated Global Positioning System and inertial navigation system integrity monitor performance." Ohio : Ohio University, 2003. http://www.ohiolink.edu/etd/view.cgi?ohiou1175091451.
Full textKiran, Sai. "An inertial measurement unit interface and processing system synchronized to global positioning system time." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176489175.
Full textRamaswamy, Sridhar. "An investigation of integrarted Global Positioning System and inertial navigation system fault detection." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172777336.
Full textLi, Xiaopeng. "Moving base INS/GPS vector gravimetry on a land vehicle." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195677222.
Full textMathur, Navin G. "Feasibility of using a low-cost inertial measurement unit with centimeter accuracy differential global positioning system." Ohio University / OhioLINK, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181173720.
Full textStavish, Kenneth V. "Resilience Analysis of Inertial Navigation Systems (INS) through an Enhanced INS Tool Kit." Thesis, The George Washington University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10743838.
Full textResilience is explained as an entity’s capacity to survive and recover from disruptions. Approaches to design resilient systems are in growing demand; however, there have been few demonstrations for measuring and quantifying systems resilience. This research presents a Resilience Analysis regarding Inertial Navigation System (INS) architectures. Specifically for the case study at hand, it is not clear which INS architecture to choose (tightly coupled or loosely coupled) for resilience. This research tests whether Robustness and Recovery measures of effectiveness (MOEs) can be used to determine which INS architecture is most resilient.
The methodology of this research included enhancing an INS Tool Kit with Resilience Analysis functions. The INS Tool Kit was used to collect resilience data for different INS configurations dealing with Global Positioning System (GPS) outages. Robustness and Recovery data were collected for 500 observations of five different INS configurations. Three configurations were loosely coupled and two were tightly coupled; therefore, 1500 observations of resilience data for loosely coupled INS were compared to 1000 observations for tightly coupled INS. Using data from this Resilience Analysis, a series of nonparametric Mann-Whitney tests showed there is a statistically significant difference between tightly coupled and loosely coupled INS architectures in terms of resilience. Based on these results, greater resilience to GPS outages can be added to the list of advantages for tightly coupled INS architectures. The conclusion of this research is that Robustness and Recovery measures can be used to determine and compare the resilience of different INS architectures.
Bacilieri, Federico. "Solutions and algorithms for inertial navigation of railroad vehicles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14209/.
Full textMarti, Lukas Michael. "Integration of local area augmentation system and inertial navigation system for aircraft surface movement guidance." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1172603243.
Full textSkog, Isaac, John-Olof Nilsson, Dave Zachariah, and Peter Händel. "Fusing the information from two navigation systems using an upper bound on their maximum spatial separation." KTH, Signalbehandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107445.
Full textQC 20121221
Anderson, Abby Hodel A. Scottedward. "Design, testing, and simulation of a low-cost, light-weight, low-g IMU for the navigation of an indoor blimp." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Spring/master's/ANDERSON_ABBY_43.pdf.
Full textTetewsky, Avram Ross Jeff Soltz Arnold Vaughn Norman Anszperger Jan O'Brien Chris Graham Dave Craig Doug Lozow Jeff. "Making sense of inter-signal corrections : accounting for GPS satellite calibration parameters in legacy and modernized ionosphere correction algorithms /." [Eugene, Ore. : Gibbons Media & Research], 2009. http://www.insidegnss.com/auto/julyaug09-tetewsky-final.pdf.
Full text"July/August 2009." Web site title: Making Sense of GPS Inter-Signal Corrections : Satellite Calibration Parameters in Legacy and Modernized Ionosphere Correction Algorithms.
Clark, Benjamin J. Bevly David M. "GPS/INS operation in shadowed environments." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Mechanical_Engineering/Thesis/Clark_Benjamin_45.pdf.
Full textClanton, Joshua M. Bevly David M. Hodel A. Scottedward. "GPS and inertial sensor enhancements for vision-based highway lane tracking." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/CLANTON_JOSHUA_8.pdf.
Full textWolfaardt, H. Jurgens. "Theory of the microfluidic channel angular accelerometer for inertial measurement applications." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-05152007-120803.
Full textWright, James. "Use of ground based signals of opportunity for smart projectile navigation." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33885.
Full textPanahandeh, Ghazaleh, Nasser Mohammadiha, and Magnus Jansson. "Ground Plane Feature Detection in Mobile Vision-Aided Inertial Navigation." KTH, Signalbehandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-99448.
Full textQC 20121107
Edwan, Ezzaldeen [Verfasser]. "Novel approaches for improved performance of inertial sensors and integrated navigation systems / Ezzaldeen Edwan." Siegen : Universitätsbibliothek der Universität Siegen, 2013. http://d-nb.info/103442596X/34.
Full textBergendorff, Markus. "Simuleringsmodell av tröghetsnavigator." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185046.
Full textWhen time for development of new products is shortened, testing and verification must be performed at an earlier stage of development. By simulating the system, tests can be performed without access to the actual system and thus the development process can be accelerated. BAE Systems Hägglunds manufacture combat vehicles and use an Inertial Navigation System (INS) to calculate the combat vehicle’s position without external references. Testing and verification of navigation with this unit in the test bench is not entirely possible. The aim of this thesis is to enable realistic tests, in a test bench in the development phase, by simulating the navigator’s functions. Since communication with the Vehicle Control System (VCS) must take place in real time at the same time as navigation data must be read from external program, the model is required to have sufficient performance to provide a realistic simulation. The overall question in this thesis is whether a model realized on a microcontroller (MCU) has sufficient performance to be used for simulation of an INS. To answer the question at issue, hardware for adapting the interface between the VCS, MCU and external program as well as software for simulating an INS have been created. Thereafter, the model has been verified by measuring the time for selected processes. Not all functions of the navigator have been implemented in the simulation model, but the results show that the model can be used for realistic tests in the test bench.
Henderson, Harold Paulk Bevly David M. "Relative positioning of unmanned ground vehicles using ultrasonic sensors." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mechanical_Engineering/Thesis/Henderson_Harold_55.pdf.
Full textNielsen, Jerel Bendt. "Robust Visual-Inertial Navigation and Control of Fixed-Wing and Multirotor Aircraft." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7584.
Full textShiel, Michael P. "Multi-level information fusion for environment aware robotic navigation." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/61955/1/Michael_Shiel_Thesis.pdf.
Full textTabatabaei, Balaei Asghar Surveying & Spatial Information Systems Faculty of Engineering UNSW. "Detection, characterization and mitigation of interference in receivers for global navigation satellite systems." Publisher:University of New South Wales. Surveying & Spatial Information Systems, 2007. http://handle.unsw.edu.au/1959.4/40545.
Full textGARRAFFA, Giovanni. "Real Time Localization Systems for autonomous navigation: Modelling, Analysis and Control." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/514955.
Full textThis thesis work concerns the derivation of hybrid state observers, analysis and control, of real-time localization and navigation systems (RTLS). In particular, the hybrid systems framework was used to take into account the continuous and discrete dynamics involved in the estimation process and the sporadic and time-random nature of the measurements from various distance and / or inertial sensors. Convergence analyzes were carried out to demonstrate the stability of the proposed solutions and the filtering capacity of the noises present in the measurements. This work is accompanied by the results of the experimental laboratory tests confirming the validity of the proposed solutions.
Cork, Lennon R. "Aircraft dynamic navigation for unmanned aerial vehicles." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/71396/1/Lennon_Cork_Thesis.pdf.
Full textCastillo-Effen, Mauricio. "Cooperative localization in wireless networked systems." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002220.
Full textAkcay, Emre Mustafa. "Land Vehicle Navigation With Gps/ins Sensor Fusion Using Kalman Filter." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12610327/index.pdf.
Full texts surface independent of his position. Yet, there are some conditions that the receiver encounters difficulties, such as weather conditions and some blockage problems due to buildings, trees etc. Due to these difficulties, GPS receivers&rsquo
errors increase. On the other hand, IMU works with respect to Newton&rsquo
s laws. Thus, in stark contrast with other navigation sensors (i.e. radar, ultrasonic sensors etc.), it is not corrupted by external signals. Owing to this feature, IMU is used in almost all navigation applications. However, it has some disadvantages such as possible alignment errors, computational errors and instrumentation errors (e.g., bias, scale factor, random noise, nonlinearity etc.). Therefore, a fusion or integration of GPS and IMU provides a more accurate navigation data compared to only GPS or only IMU navigation data. v In this thesis, loosely coupled GPS/IMU integration systems are implemented using feed forward and feedback configurations. The mechanization equations, which convert the IMU navigation data (i.e. acceleration and angular velocity components) with respect to an inertial reference frame to position, velocity and orientation data with respect to any desired frame, are derived for the geographical frame. In other words, the mechanization equations convert the IMU data to the Inertial Navigation System (INS) data. Concerning this conversion, error model of INS is developed using the perturbation of the mechanization equations and adding the IMU&rsquo
s sensor&rsquo
s error model to the perturbed mechanization equation. Based on this error model, a Kalman filter is constructed. Finally, current navigation data is calculated using IMU data with the help of the mechanization equations. GPS receiver supplies external measurement data to Kalman filter. Kalman filter estimates the error of INS using the error mathematical model and current navigation data is updated using Kalman filter error estimates. Within the scope of this study, some real experimental tests are carried out using the software developed as a part of this study. The test results verify that feedback GPS/INS integration is more accurate and reliable than feed forward GPS/INS. In addition, some tests are carried out to observe the results when the GPS receiver&rsquo
s data lost. In these tests also, the feedback GPS/INS integration is observed to have better performance than the feed forward GPS/INS integration.
Kayasal, Ugur. "Modeling And Simulation Of A Navigation System With An Imu And A Magnetometer." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608786/index.pdf.
Full textmeasurement equations of magnetometer for Kalman filtering are developed
the unique method to self align the MEMS navigation system is developed. In the motion estimation, the performance of the developed algorithms are compared using a GPS aided system and magnetometer aided system. Some experiments are conducted for self alignment algorithms.
Bommakanti, Hemanth Ram Kartik. "Impact of Time Synchronization Accuracy in Integrated Navigation Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260239.
Full textGNSS / IMU integrerade navigationssystem kombinerar de positiva egenskaperna hos GNSS och IMU för optimal prestanda i noggranna navigationssystem. Detta görs med hjälp av sensorfusion, till exempel EKF. Tidssynkronisering av IMU-data med exakt GNSS-baserad tid är nödvändigt för att noggrant synkronisera de två systemen. Detta måste göras i realtid för tidskänsliga navigationsapplikationer såsom autonoma fordon. Forskningen görs i två delar. Den första delen är simulering av icke-linjär rörelse i en axel med felaktig tidsstämpling hos ett gyroskop och en accelerometer. Detta görs för att erhålla det högsta tidsfel som är acceptabelt hos ett GNSS / INS-system med hög noggrannhet. Den andra delen är skapandet av en realtidsalgoritm med ett inbyggt STM32-system med FreeRTOS som realtidskärna för en GNSSmottagare och antenn, tillsammans med en IMU-sensor. En jämförande analys av det tidssynkroniserade systemet mot ett osynkroniserat system görs baserat på de positionsfel längs en axel som produceras av gyroskopoch accelerometermätningar. Detta görs genom att utföra statiska och roterande tester med hjälp av en roterande stol.Simuleringen visar att ett noggrant GNSS / INS-system tolererar ett tidsfel på upp till 1 millisekund. Realtidslösningen ger IMU-data med tidsstämplar synkroniserade med GNSS-tid var femte millisekund. Tidsjittret reduceras till ett intervall mellan ± 1 millisekund. Analysen av det slutliga vinkelrotationsfelet och positionsfelet från gyroskopoch accelerometermätningar indikerar att realtidsalgoritmen ger ett lägre fel när systemet är statiskt. Det finns dock inga statistiska bevis för förbättringen från resultaten av rotationstesterna.
Huff, Joel E. "Absolute and Relative Navigation of an sUAS Swarm Using Integrated GNSS, Inertial and Range Radios." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1535040500005309.
Full textRandeniya, Duminda I. B. "Automatic geo-referencing by integrating camera vision and inertial measurements." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002045.
Full textChung, Charles Choi. "Thermomigrated Junction Isolation of Deep Reactive Ion Etched, Single Crystal Silicon Devices, and its Application to Inertial Navigation Systems." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5120.
Full textMurangira, Achille. "Nouvelles approches en filtrage particulaire : application au recalage de la navigation inertielle." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0011/document.
Full textThis thesis deals with the development of a mixture particle filtering algorithm for inertial navigation update via radar-altimeter measurements. This particle filter, the so-called MRPF (Mixture Regularized Particle Filter), combines mixture modelling of the posterior density, the regularized particle filter and the mean-shift clustering algorithm. A version adapted to the Rao-Blackwellized particle filter, the MRBPF (Mixture Rao-Blackwellized Particle Filter), is also presented. The main goal is to design a filter well suited to multimodal densities caused by terrain amibiguity. The use of mixture models enables us to introduce an alternative importance sampling procedure aimed at proposing samples in the high likelihood regions of the state space. A second research axis is concerned with the development of particle filtering integrity monitoring tools. A novel particle filter divergence sequential detector, based on change detection theory, is presented. The performances of the MRPF, MRBPF and the divergence detector are reported on several terrain navigation scenarios
Roskilly, Kyle. "Sensor augmentation of GPS for position and speed sensing in animal locomotion." Thesis, Royal Veterinary College (University of London), 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669198.
Full textChan, Francis Chun Ngai Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Statistical methods on detecting superpositional signals in a wireless channel." Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/30596.
Full textCookson, Jeremy L. "A method for testing the dynamic accuracy of Microelectro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors for Inertial Navigation Systems (INS) and human motion tracking applications." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Jun/10Jun%5FCookson.pdf.
Full textThesis Advisor(s): Yun, Xiaoping ; Second Reader: Romano, Marcello. "June 2010." Description based on title screen as viewed on July 14, 2010. Author(s) subject terms: micro-electro-mechanical systems, MEMS, magnetic, angular rate, gravity sensor, MARG sensors, inertial navigation system, INS, inertial test, MicroStrain, 3DM-GX1, 3DMGX3, CompactRIO, MATLAB GUI, dynamic accuracy test. Includes bibliographical references (p. 187-189). Also available in print.
Kirkpatrick, Daniel Eugene. "Design of a Hardware Platform for GPS-Based Orientation Sensing." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2197.
Full textKayasal, Ugur. "Research On Transfer Alignment For Increased Speed And Accuracy." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614771/index.pdf.
Full texts inertial navigation system with the aid of the carrier platform&rsquo
s navigation system, which is generally done by comparing the navigation data of missile and carrier&rsquo
s navigation data. In the literature, there are different studies of transfer alignment, especially for aircraft launched munitions. One important problem in transfer alignment is the attitude uncertainty of lever arm between munition&rsquo
s and carrier&rsquo
s navigation systems. In order to overcome this problem, most of the studies in the literature do not use carrier&rsquo
s attitude data in the transfer alignment, only velocity data is used. In order to estimate attitude and related inertial sensor errors, specific maneuvers of carrier platform are required which can take 1-5 minutes. The purpose of this thesis is to compensate the errors arising from the dynamics of the Helicopter, lever arm, mechanical vibration effects and inertial sensor error amplification, thus designing a transfer alignment algorithm under real environment conditions. The algorithm design begins with observability analysis, which is not done for helicopter transfer alignment in literature. In order to make proper compensations, characterization and modeling of vibration and lever arm environment is done for the helicopter. Also, vibration based errors of MEMS based inertial sensors are experimentally shown. The developed transfer alignment algorithm is tested by simulated and experimental data
McCrink, Matthew H. "Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1449142886.
Full textChotaš, Kryštof. "Polohový a kursový referenční systém." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220851.
Full text