Academic literature on the topic 'Industrial waste heat'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial waste heat.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Industrial waste heat"
Chen, Mengjun, Jianbo Wang, Haiyian Chen, Oladele A. Ogunseitan, Mingxin Zhang, Hongbin Zang, and Jiukun Hu. "Electronic Waste Disassembly with Industrial Waste Heat." Environmental Science & Technology 47, no. 21 (October 15, 2013): 12409–16. http://dx.doi.org/10.1021/es402102t.
Full textBiscan, Davor, and Veljko Filipan. "Potential of waste heat in Croatian industrial sector." Thermal Science 16, no. 3 (2012): 747–58. http://dx.doi.org/10.2298/tsci120124123b.
Full textBacklund, E. L., and B. G. Karlsson. "Cogeneration versus industrial waste heat." Heat Recovery Systems and CHP 8, no. 4 (January 1988): 333–41. http://dx.doi.org/10.1016/0890-4332(88)90027-0.
Full textDuke, Mikel. "Industrial waste heat powers desalination." Membrane Technology 2012, no. 5 (May 2012): 9. http://dx.doi.org/10.1016/s0958-2118(12)70106-4.
Full textJouhara, Hussam, and Abdul Ghani Olabi. "Editorial: Industrial waste heat recovery." Energy 160 (October 2018): 1–2. http://dx.doi.org/10.1016/j.energy.2018.07.013.
Full textBendig, Matthias, François Maréchal, and Daniel Favrat. "Defining “Waste Heat” for industrial processes." Applied Thermal Engineering 61, no. 1 (October 2013): 134–42. http://dx.doi.org/10.1016/j.applthermaleng.2013.03.020.
Full textKhlystov, Aleksey, Vladimir Shirokov, and Elena Vlasova. "Specific utilization methods of high-melting wastes from the enterprises of chemistry and non-ferrous metallurgy." MATEC Web of Conferences 196 (2018): 04010. http://dx.doi.org/10.1051/matecconf/201819604010.
Full textKrönauer, Andreas, Eberhard Lävemann, Sarah Brückner, and Andreas Hauer. "Mobile Sorption Heat Storage in Industrial Waste Heat Recovery." Energy Procedia 73 (June 2015): 272–80. http://dx.doi.org/10.1016/j.egypro.2015.07.688.
Full textWoolley, Elliot, Yang Luo, and Alessandro Simeone. "Industrial waste heat recovery: A systematic approach." Sustainable Energy Technologies and Assessments 29 (October 2018): 50–59. http://dx.doi.org/10.1016/j.seta.2018.07.001.
Full textMukherjee, Sanjay, Abhishek Asthana, Martin Howarth, and Ryan Mcniell. "Waste heat recovery from industrial baking ovens." Energy Procedia 123 (September 2017): 321–28. http://dx.doi.org/10.1016/j.egypro.2017.07.259.
Full textDissertations / Theses on the topic "Industrial waste heat"
Uusitalo, E. (Eeli). "Review of heat storage technologies:utilizing industrial waste heat for residential heating." Bachelor's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906042319.
Full textMateu, Royo Carlos. "Development of High Temperature Heat Pumps for Industrial Waste Heat Recovery." Doctoral thesis, Universitat Jaume I, 2021. http://dx.doi.org/10.6035/14107.2021.744033.
Full textUno de los mayores desafíos de esta década recae en el desarrollo de sistemas energéticos más sostenibles que contribuyan a la preocupación medioambiental, especialmente la mitigación del cambio climático. Extender las condiciones de funcionamiento de la tecnología de bomba de calor a temperaturas más elevadas permitirá descarbonizar el sector industrial desde dos vertientes: recuperando calor de fuentes de calor residual, actualmente disipado al ambiente y producir calor a los niveles térmicos requeridos, útiles para los procesos industriales, reduciendo así las emisiones de CO2 equivalentes del sector industrial y contribuyendo al desarrollo sostenible. Esta tesis pretende abordar el desarrollo de bombas de calor de alta temperatura a través de un análisis teórico y experimental, para abordar diferentes desafíos tecnológicos: arquitectura, refrigerantes, prototipo experimental, aplicaciones avanzadas e integración de sistemas, generando nuevos conocimientos que representan un paso adelante en la tecnología de bombas de calor de alta temperatura.
Programa de Doctorat en Tecnologies Industrials i Materials
Miró, Laia. "Industrial waste heat: mapping, estimations and recovery by means of TES." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399633.
Full textEn el actual contexto energético, el uso del calor residual industrial (CRI) representa una oportunidad atractiva de sustituir el consumo de energía primaria por un medio de bajo nivel de emisiones y de bajo coste. Este calor se puede recuperar y reutilizar en otros procesos, ser transformado en electricidad o en calor. A pesar de su prometedor potencial, este CRI está actualmente en desuso. El objetivo de esta tesis doctoral es el de superar algunas de las barreras tecnológicas y de información que existen actualmente en la utilización de esta fuente de energía. En primer lugar, se ha identificado el potencial mundial actual de CRI a escala de país. En segundo lugar, se generaron nuevas evaluaciones de estimación del potencial de CRI: en la industria de la manufactura española y en la industria de minerales no metálicos Europea. Finalmente, se trató la recuperación y reutilización de este calor mediante almacenamiento de energía térmica y se evaluó exhaustivamente los casos prácticos donde esta tecnología ha sido implementada.
In the current energy context, the use of industrial waste heat (IWH) provides an attractive opportunity to substitute primary energy consumption by a low-emission and low-cost energy carrier. Despite its potential, IWH is largely untapped. This heat can be recovered and reused in other processes, transformed into electricity or heat. The aim of this PhD is to overcome some of the current technological and information barriers and to provide the literature and the researchers with more knowledge of the topic and supporting its widespread development. First, current IWH potential worldwide at country scale was identified. Second, new assessments to estimate the regional IWH potential were generated: in the Spanish manufacture industry as well as in the European non-metallic mineral industry. Finally, its reuse by means of thermal energy storage (TES) was analysed and an exhaustive research of current case studies was performed.
Stengler, Jana [Verfasser], and André [Akademischer Betreuer] Thess. "Combined thermochemical energy storage and heat transformation for industrial waste heat recovery / Jana Stengler ; Betreuer: André Thess." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2021. http://d-nb.info/1231794410/34.
Full textNorman, Jonathan. "Industrial energy use and improvement potential." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577741.
Full textBornemann, Tobias [Verfasser]. "Industrial Waste Heat Utilization : Spannungsfeld zwischen Abwärmenutzung und Kraft-Wärme-Kopplung in der produzierenden Automobilindustrie / Tobias Bornemann." Kassel : Kassel University Press, 2018. http://d-nb.info/1149085762/34.
Full textPeris, Pérez Bernardo. "Thermo-economic assessment of small-scale organic Rankine cycle for low-grade industrial waste heat recovery based on an experimental application." Doctoral thesis, Universitat Jaume I, 2017. http://hdl.handle.net/10803/456991.
Full textEsta tesis se centra en el uso de sistemas de pequeña escala basados en el ciclo Rankine orgánico (ORC por las siglas en ingles) para la producción de electricidad a partir de la recuperación de calor residual de baja temperatura en procesos industriales. En concreto, se lleva a cabo una optimización termoeconómica (combinación entre termodinámica y económica) como método para mejorar la rentabilidad de los proyectos y, de esta forma, favorecer el uso de los sistemas ORC en aplicaciones prácticas. Como novedad, la investigación se lleva a cabo en torno a un caso experimental de aplicación, lo que permite desarrollar un modelo íntegro del sistema y posteriormente validarlo con datos reales. De este modo, se alcanzan resultados más realistas que ponen de relieve los aspectos clave para mejorar la viabilidad económica de nuevos proyectos.
Svensson, Klas, and Jonas Wallenskog. "Low Temperature Waste Heat Solutions : with proposals for energy technological actions based on Scania’s building 64." Thesis, Linköping University, Linköping University, Energy Systems, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-28211.
Full textThe report comprises two separate parts:
- part 1: Temperature needs for district heating in the paint shop for axles in building 210
- part 2: Energy and low temperature waste heat solutions in heating and cooling systems for building 64 with surroundings
The paint shop for axles in part 1 has air quality requirements in places for coating of axles. Toachieve desired air properties there are different process ventilation systems, which consist ofventilation coils for heating and cooling, plus air humidifier. The ventilations coils for heating usedistrict heating. Today the ventilation coils use water of 100°C to achieve necessary air demands inthe coating boxes. This part of the report investigates whether the existing system would achievethe air requirements with a water temperature of 75°C instead of 100°C in the ventilation coilsduring the coldest parts of the year. The conclusion is that it is not possible; the existing system isadjusted for a water temperature of 100°C to achieve the air requirements. To use a watertemperature of 75°C, more or major ventilation coils are needed.
The focus of the report is at part 2. In this part, possibilities for low temperature waste heatsolutions are investigated. Those partly aim at specific local solutions for building 64 withsurroundings and on the other part of general waste heat solutions for new buildings andreconstructions in the future. To make these parts possible, the systems for heating and cooling inbuilding 64 have been identified. During this identification, potential savings that are not of wasteheat character have also been observed.
The most profitable saving concerns the control of temperature for the inner hardening vat. It isthe hardening vat for gas carburizing oven SV16838 that has been studied in this report. Today thetemperature of the hardening vat is controlled very ineffective. The conclusion is that a betteradjustment of the controller would save 180 000 SEK/year with a pay off time around two months.Worth mentioning (SV16838 included), is that there are at least five similar gas carburizing ovens atthe Scania area in Södertälje.
A pinch analysis has also been done for building 64, with it’s primarily conclusion that the groundheating is violating the pinch rules during long periods of the year. To remedy the ground heatingwill only need a different control and will lead to a saving between 20 000 – 75 000 SEK/year. Tomore accurate determine the saving, an investigation of the ground heating during winter time isneeded. Another conclusion concerning the pinch analysis is that the method for a real scenariorather shows the potential of the system than gives you an optimal solution possible to implement.More actions are to use the exhaustions of the endo gas generators and that the washing andrinsing systems if possible not should be heated with electricity. The exhaustions from the endo gasgenerators have a very high temperature, more then 300°C. If these, instead of hot water boilers,could warm the closely located water for the LPG (liquefied petroleum gas) evaporation, 125 000SEK/year can be saved. Today the hot water boilers are heated with electricity. If the washing andrinsing systems existing electricity heating instead can be heated with secondary heat (˜ districtheating), a save of 500 000 SEK/year is possible.
For waste heat solutions there are a few different approaches. Close to building 64, the largestpotential to use waste heat is in building 62 and 75, where air heaters are assessed with the largestpotential. In difference to other investigated buildings, building 210 has the possibility to use wasteheat even during the summer. This building is located 1 km from building 64. To use waste water inbuilding 210, a complex net of waste heating will be required where several buildings with asurplus of waste heat can be connected. A net like this has calculated pipe costs of 5, 2 million SEK.The saving for the use of waste heat only in building 210 will be around 1,4 million SEK/year. Thissave corresponds to the air handling systems that occur in part 1.
Bergseije, Victor. "Effects of Heat Transfer Fluid from District Heating Networks on Activated Sludge : A respirometric analysis using a dilution series to assess disruption of biological treatment processes in wastewater treatment facilities." Thesis, Linnéuniversitetet, Institutionen för biologi och miljö (BOM), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34038.
Full textBjörnsdotter, Anna. "Återvinning av industriell restvärme som värdeskapande process : En fallstudie på SSAB EMEA i Borlänge." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118745.
Full textIndustrisektorn står för en stor andel av växthusgasutsläppen. Att minska dess negativa inverkan på klimatet är således grundläggande i strävan efter ett hållbart samhälle. I diskussioner kring industrisektorns påverkan på miljön har riktlinjer lyfts fram som ett instrument för att bistå industrin i arbetet med att förändra förhållandet mellan konsumtion av energi och produktion. Detta genom en förbättring av energieffektiviteten och en förskjutning till bästa möjliga teknik. Under de senaste 30 åren har stålindustrin reducerat sin energikonsumtion per ton producerat stål med 50 procent. Det sägs dock att dessa dramatiska framsteg i energieffektivitet har lett till att det nu endast finns rum för en marginell fortsatt förbättring förutsatt befintlig teknik. Om så är fallet måste våra vyer vidgas för att vi ska kunna hitta lösningar som innebär större effektivitetsvinster och ett bättre nyttjande av resurser. I en beskrivning av programmet Effektivisering av industrins energianvändning – forskning och utveckling som drivs av Energimyndigheten betonas samspelet mellan industri och samhälle som en viktig faktor i energieffektiviseringsarbetet. Idag finns det redan flera exempel på där industrin och samhället samarbetar för att uppnå ett bättre nyttjande av resurser. I Borlänge har stålföretaget SSAB EMEA en produktionsanläggning där de sedan länge återvinner restenergier från verksamhetens processer. År 1991 ingick SSAB avtal med det lokala energibolaget avseende tillvaratagande av restvärme vid industriföretaget. Sedan dess har SSAB bidragit till uppvärmningen av de bostäder som är anslutna till ortens fjärrvärmenät. Föreliggande studie har som syfte att undersöka vilka värden som tillvaratagandet av restvärmen tillför industriföretaget och samhället, samt ta reda på hur användandet av industriell restvärme kan komma att utvecklas framåt. Undersökningen består av en fallstudie och bygger i huvudsak på kvalitativa intervjuer med personer från SSAB, det lokala energibolaget Borlänge Energi, Borlänge kommun och Energimyndigheten men också på kvantitativ data, såsom mätningar av värmeleveranser. Sedan har även en litteraturstudie genomförts med fokus på fjärrvärme i Sverige, industriell restvärme och styrmedel i energi- och klimatpolitiken. Genom varierade systemnivåer har restvärmesamarbetet i Borlänge analyserats ur företagsekonomiskt, samhällsekonomiskt och hållbart perspektiv. Resultatet av fallstudien visar att restvärmesamarbetet tillfört värden inom samtliga perspektiv. De företagsekonomiska vinster som har identifierats är minskade inköp av olja, ersättning för levererad restvärme, byte från ånga till intern fjärrvärme inom stålföretagets verksområde, minskade utsläpp av koldioxid, medial uppmärksamhet och stärkt varumärke och att restvärmesamarbetet eventuellt gjort SSAB till en mer attraktiv arbetsgivare. Användandet av industriell restvärme som fjärrvärme i Borlänges lokala fjärrvärmenät har även genererat en rad samhällsekonomiska vinster, vilka utgörs av låg driftskostnad för värmeproduktion, lågt pris på fjärrvärme, bra miljömix samt bättre luftkvalitet och mindre försurning. Ur ett hållbarhetsperspektiv har restvärmenyttjandet resulterat i minskade utsläpp av koldioxid och andra luftföroreningar och varit bidragande till ett hållbart nyttjande av råvaror och energiresurser. Resultatet visar också att det finns både möjligheter och hot för ett fortsatt användande av industriell restvärme. De möjligheter som identifierats är regionala fjärrvärmenät, som genom omfattande värmeunderlag kan förbättra förutsättningarna för effektiv användning av restvärmen, fjärrkyla, som kan öka behovet av restvärmen under sommarhalvåret och egen elproduktion, som kan tillgodose en del av industriföretagets elbehov. Sedan har även hot för ett fortsatt användande av restvärme identifierats, vilken den första utgörs av kraftvärme och avfallsförbränning, som kan inverka negativt på energibolags incitament till att ingå och förnya avtal om restvärmeleveranser då bolagen inte vill riskera att drabbas av minskade intäkter från försäljning av el och elcertifikat eller från mottagande av avfall. Även förändringar i energipolitiken har identifierats som ett hot då exempelvis en ny beskattning på restvärme kan försämra förutsättningarna för både fortsatta och nya restvärmesamarbeten.
Books on the topic "Industrial waste heat"
Pohl, John H. Evaluation of the efficiency of industrial flares: Flare head design and gas composition. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1986.
Find full textMinerals, Metals and Materials Society. Meeting, Minerals, Metals and Materials Society, and Minerals, Metals and Materials Society. Extraction and Processing Division, eds. Energy Technology 2011: Carbon dioxide and other greenhouse gas reduction metallurgy and waste heat recovery : proceedings of a symposium sponsored by the Energy Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society) held during the TMS 2011 Annual Meeting & Exhibition, San Diego, California, USA, February 27-March 3, 2011. Hoboken, N.J: John Wiley & Sons Inc. [for] TMS, 2011.
Find full textNew York State Energy Research and Development Authority., ed. A guide to industrial heat pumps for waste heat recovery. [Albany, N.Y.]: New York State Energy Research and Development Authority, 1985.
Find full textWors<179>e-Schmidt, P., and K. S<179>rensen. Multi-stage Solid Absorption Heat Transformers for Recovery of Industrial Waste Heat. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1989.
Find full textGreat Britain. Energy Efficiency Office. and Atomic Energy Research Establishment. Energy Technology Support Unit., eds. Industrial heat recovery: The availability of waste heat in eight UK high temperature process industries. Newmarket: Energy Publications, 1985.
Find full textGuinn, Gerald R. Technologies and applications of industrial heat pumps for recovery of waste heat: A manual to improve the energy effic. Alabama Dept. of Economic and Community, 1988.
Find full textIndustrial utilization of heat exchangers for waste heat recovery in New York State: Final report : prepared for New York State Energy Research and Development Authority, Project Manager: David Wentworth. [Albany, N.Y.?: The Authority?], 1985.
Find full text(Editor), Courtney Young, Metals and Materials Society Minerals (Corporate Author), Larry Tidwell (Editor), and Corby Anderson (Editor), eds. Cyanide: Social, Industrial, and Economic Aspects. Tms, 2001.
Find full textFrid, Christopher L. J., and Bryony A. Caswell. Marine Pollution. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198726289.001.0001.
Full textA, Young Courtney, Twidwell L. G, Anderson Corby G, Minerals, Metals and Materials Society. Extraction and Processing Division., Minerals, Metals and Materials Society. Meeting, and Symposium on Cyanide: Social, Industrial and Economic Aspects (2001 : New Orleans, Louisiana), eds. Cyanide : social, industrial and economic aspects: The proceedings of a symposium held at [the] annual meeting of TMS (The Minerals, Metals & Materials Society) New Orleans, Louisiana, February 12-15, 2001. Warrendale, Pa: TMS, 2001.
Find full textBook chapters on the topic "Industrial waste heat"
Wedde, Geir, and Anders Sorhuus. "Waste Heat Recovery from Industrial Smelting Exhaust Gas." In International Smelting Technology Symposium, 31–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364765.ch4.
Full textMajumder, Prasanta, Abhijit Sinha, and Rajat Gupta. "Futuristic Approaches of Low-Grade Industrial Waste Heat Recovery." In Lecture Notes in Mechanical Engineering, 163–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_15.
Full textChen, Yu-Lin, and Chun-Wei Lin. "Optimal Organic Rankine Cycle Installation Planning for Factory Waste Heat Recovery." In Proceedings of the Institute of Industrial Engineers Asian Conference 2013, 569–76. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-98-7_68.
Full textLaazaar, Kaoutar, and Noureddine Boutammachte. "Modelling and Optimization of Stirling Engine for Waste Heat Recovery from Cement Plant Based on Adiabatic Model and Genetics Algorithms." In Artificial Intelligence and Industrial Applications, 287–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53970-2_27.
Full textKondratenko, Yuriy, Serhiy Serbin, Volodymyr Korobko, and Oleksiy Korobko. "Optimisation of Bi-directional Pulse Turbine for Waste Heat Utilization Plant Based on Green IT Paradigm." In Green IT Engineering: Social, Business and Industrial Applications, 469–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00253-4_20.
Full textSengupta, Prasunjit. "Refractories for Boiler and Waste Heat Recovery." In Refractories for the Chemical Industries, 303–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61240-5_12.
Full textMatheri, Anthony Njuguna, Belaid Mohamed, and Jane Catherine Ngila. "Smart Climate Resilient and Efficient Integrated Waste to Clean Energy System in a Developing Country: Industry 4.0." In African Handbook of Climate Change Adaptation, 1053–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_69.
Full textGolwalkar, Kiran R. "Examples of Waste Heat Recovery in Chemical Industries." In Integrated Maintenance and Energy Management in the Chemical Industries, 327–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32526-8_16.
Full textRedko, Andriy, Oleksandr Redko, and Ronald DiPippo. "Industrial waste heat resources." In Low-Temperature Energy Systems with Applications of Renewable Energy, 329–62. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816249-1.00009-1.
Full textStorm, Kenneth. "Waste heat boiler." In Industrial Process Plant Construction Estimating and Man-Hour Analysis, 67–78. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818648-0.00004-1.
Full textConference papers on the topic "Industrial waste heat"
Liu, Huazhen. "Research on Industrial Waste Heat Utilization Technology." In 2017 4th International Conference on Education, Management and Computing Technology (ICEMCT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icemct-17.2017.268.
Full textKo¨ster, M., and T. Sadek. "A Product-Service System for Industrial Waste Heat Recovery Using Mobile Latent Heat Accumulators." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62661.
Full textSkop, Helen, and Yaroslav Chudnovsky. "Strategy for Integrated Use of the Industrial Waste Heat." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14176.
Full textSaab, Richard, and Rob van den Bosch. "Standardized Offshore Waste Heat Recovery Behind Industrial Gas Turbines." In Offshore Technology Conference. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30630-ms.
Full textSitorus, Febrin, and Totok Soehartanto. "Utilization of waste heat (off gas) from electric furnace no.4 to generate saturated steam using waste heat recovery boiler." In ADVANCED INDUSTRIAL TECHNOLOGY IN ENGINEERING PHYSICS. Author(s), 2019. http://dx.doi.org/10.1063/1.5095314.
Full textMinea, Vasile. "Using Geothermal Energy and Industrial Waste Heat for Power Generation." In 2007 IEEE Canada Electrical Power Conference (EPC 2007). IEEE, 2007. http://dx.doi.org/10.1109/epc.2007.4520390.
Full textPintacsi, Daniel, and Peter Bihari. "Investigation of a low-grade industrial waste heat recovery system." In 2013 4th International Youth Conference on Energy (IYCE). IEEE, 2013. http://dx.doi.org/10.1109/iyce.2013.6604191.
Full textM. Al-Noman, Saeed, and Ahmed Abdullah Al-Balawi. "Utilization of Industrial Waste Heat in Cooling and Air/Conditioning Applications." In 4th International Conference on Applied Research in Science, Technology and Knowledge. Acavent, 2019. http://dx.doi.org/10.33422/4th.stk.2019.11.679.
Full textBattisti, Luca, Marco Cozzini, and David Macii. "Industrial waste heat recovery strategies in urban contexts: A performance comparison." In 2016 IEEE International Smart Cities Conference (ISC2). IEEE, 2016. http://dx.doi.org/10.1109/isc2.2016.7580785.
Full textSathish, Sharath, Pramod Kumar, Logesh Nagarathinam, Lokesh Swami, Adi Narayana Namburi, Venkata Subbarao Bandarupalli, and Pramod Chandra Gopi. "Brayton Cycle Supercritical CO2 Power Block for Industrial Waste Heat Recovery." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2347.
Full textReports on the topic "Industrial waste heat"
Viswanathan, V. V., R. W. Davies, and J. Holbery. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1218710.
Full textViswanathan, Vish V., Richard W. Davies, and Jim D. Holbery. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1012899.
Full textHendricks, Terry, and William T. Choate. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/1218711.
Full textThekdi, Arvind, and Sachin U. Nimbalkar. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1185778.
Full textMac Dougall, James. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1242987.
Full textAdam Polcyn and Moe Khaleel. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/944968.
Full text