Academic literature on the topic 'Industrial waste heat'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial waste heat.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Industrial waste heat"

1

Chen, Mengjun, Jianbo Wang, Haiyian Chen, Oladele A. Ogunseitan, Mingxin Zhang, Hongbin Zang, and Jiukun Hu. "Electronic Waste Disassembly with Industrial Waste Heat." Environmental Science & Technology 47, no. 21 (October 15, 2013): 12409–16. http://dx.doi.org/10.1021/es402102t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Biscan, Davor, and Veljko Filipan. "Potential of waste heat in Croatian industrial sector." Thermal Science 16, no. 3 (2012): 747–58. http://dx.doi.org/10.2298/tsci120124123b.

Full text
Abstract:
Waste heat recovery in Croatian industry is of the highest significance regarding the national efforts towards energy efficiency improvements and climate protection. By recuperation of heat which would otherwise be wasted, the quantity of fossil fuels used for production of useful energy could be lowered thereby reducing the fuel costs and increasing the competitiveness of examined Croatian industries. Another effect of increased energy efficiency of industrial processes and plants is reduction of greenhouse gases i.e. the second important national goal required by the European Union (EU) and United Nations Framework Convention on Climate Change (UNFCCC). Paper investigates and analyses the waste heat potential in Croatian industrial sector. Firstly, relevant industrial sectors with significant amount of waste heat are determined. Furthermore, significant companies in these sectors are selected with respect to main process characteristics, operation mode and estimated waste heat potential. Data collection of waste heat parameters (temperature, mass flow and composition) is conducted. Current technologies used for waste heat utilization from different waste heat sources are pointed out. Considered facilities are compared with regard to amount of flue gas heat. Mechanisms for more efficient and more economic utilization of waste heat are proposed.
APA, Harvard, Vancouver, ISO, and other styles
3

Backlund, E. L., and B. G. Karlsson. "Cogeneration versus industrial waste heat." Heat Recovery Systems and CHP 8, no. 4 (January 1988): 333–41. http://dx.doi.org/10.1016/0890-4332(88)90027-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duke, Mikel. "Industrial waste heat powers desalination." Membrane Technology 2012, no. 5 (May 2012): 9. http://dx.doi.org/10.1016/s0958-2118(12)70106-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jouhara, Hussam, and Abdul Ghani Olabi. "Editorial: Industrial waste heat recovery." Energy 160 (October 2018): 1–2. http://dx.doi.org/10.1016/j.energy.2018.07.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bendig, Matthias, François Maréchal, and Daniel Favrat. "Defining “Waste Heat” for industrial processes." Applied Thermal Engineering 61, no. 1 (October 2013): 134–42. http://dx.doi.org/10.1016/j.applthermaleng.2013.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khlystov, Aleksey, Vladimir Shirokov, and Elena Vlasova. "Specific utilization methods of high-melting wastes from the enterprises of chemistry and non-ferrous metallurgy." MATEC Web of Conferences 196 (2018): 04010. http://dx.doi.org/10.1051/matecconf/201819604010.

Full text
Abstract:
The article provides information on industrial waste generation at enterprises of the Samara region, suitable for use as raw materials components of such heat-resistant composites as solutions, concretes, gun mixes, coatings. The research indicates rational ways of some heat-resistant binders application for utilization of mineral high-melting and heat-resistant industrial wastes. It proves that the enrichment of certain types of industrial waste, i.e. bringing the chemical composition of their components to the required state, allowed to expand the raw material base for the synthesis of heat-resistant binders and concrete in general. The use of sludge waste in the processes of synthesizing liquid phosphate binders allowed to obtain such effective binders as aluminophosphates and aluminocalciumphosphates. The research proves that application of technogenic wastes of non-ferrous metallurgy enterprises allows to receive heat-resistant materials solutions, concretes, coatings, gun mixes which characteristics are similar to their industrial analogues.
APA, Harvard, Vancouver, ISO, and other styles
8

Krönauer, Andreas, Eberhard Lävemann, Sarah Brückner, and Andreas Hauer. "Mobile Sorption Heat Storage in Industrial Waste Heat Recovery." Energy Procedia 73 (June 2015): 272–80. http://dx.doi.org/10.1016/j.egypro.2015.07.688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Woolley, Elliot, Yang Luo, and Alessandro Simeone. "Industrial waste heat recovery: A systematic approach." Sustainable Energy Technologies and Assessments 29 (October 2018): 50–59. http://dx.doi.org/10.1016/j.seta.2018.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mukherjee, Sanjay, Abhishek Asthana, Martin Howarth, and Ryan Mcniell. "Waste heat recovery from industrial baking ovens." Energy Procedia 123 (September 2017): 321–28. http://dx.doi.org/10.1016/j.egypro.2017.07.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Industrial waste heat"

1

Uusitalo, E. (Eeli). "Review of heat storage technologies:utilizing industrial waste heat for residential heating." Bachelor's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201906042319.

Full text
Abstract:
Abstract. Industry produces large amounts of waste heat, which is not utilized. This thermal energy could be used for an example in residential heating in the colder seasons of the year, when the heating demand is larger. Using heat storage technologies, waste heat could be stored for later use. In this thesis, heat storage technologies were reviewed. The main technologies reviewed for heat storages were sensible heat storages and latent heat storages. In addition, chemical heat storage is a promising technology, which is currently in the research phase. Furthermore, some heat storage pilot projects were reviewed reviewed as well. The heat demand for space heating, heat production and industrial waste heat production in Finland are also reviewed. Heat demand for space heating in 2017 was some 45,35 GTWh in total, and 13,88 GWh of that was district heating. The production of district heat in 2017 was 38,29 TWh in total. At the same time, annual industrial waste heat production in Finland was estimated to be 54 TWh. Although of this, only 4 TWh was estimated to be commercially usable; notwithstanding, it can be concluded that utilizing industrial waste heat for space heating could lead to substantial emission reductions.Lämmön varastointiteknologiat : teollisuuden hukkalämmön hyödyntäminen asuintilojen lämmitykseen. Tiivistelmä. Teollisuus tuottaa paljon hukkalämpöä, jota ei hyödytetä. Tätä energiaa voitaisiin käyttää esimerkiksi kaukolämpöverkossa vuoden kylmempinä aikoina, kun lämmityksen tarve on suurempi. Lämpövarastojen avulla tuotettu hukkalämpö voitaisiin varastoida myöhempää käyttöä varten, mikäli lämmityksen tarve ei ole hukkalämmön syntyhetkellä korkea. Tämän työn tavoitteena oli etsiä tietoa lämmönvarastointi teknologioista, jotka ovat sopivia teollisen hukkalämmön varastointiin. Pääasialliset lämpövarastoteknologiat ovat havaittavan lämmön sekä sitoutuneen lämmön varastointiteknologiat. Lisäksi myös kemiallinen lämmönvarastointi on lupaava teknologia, mikä on vielä tutkimusvaiheessa. Työssä käytiin läpi myös projekteja, jotka liittyvät lämmön varastoinnin ja hyötykäytön pilotteihin ja mitoitukseen. Työssä myös selvitettiin myös asuintilojen lämmitystarve Suomessa, lämmityksen tuotantomäärät ja -tavat, sekä teollisuuden hukkalämmön tuotannon määrä. Talojen lämmöntarve Suomessa vuonna 2017 oli noin 45,35 TWh josta 13,4 TWh oli kaukolämpöä. Kaukolämpöä tuotettiin Suomessa vuonna 2017 38,29 TWh. Samalla teollisuuden hukkalämmön arvioitiin syntyvän vuosittain 54 TWh, josta 4 TWh olisi taloudellisesti kannattavasti käytettävissä. Taloudellisesti käytettävissä olevaa hukkalämpöä verrattaessa kaukolämmöntarpeeseen nähtiin, että hukkalämmön käytölle kaukolämmössä olisi potentiaalia. Jos teollisuuden hukkalämpöä pystyttäisiin käyttää tehokkaasti tilojen lämmityksessä, voitaisiin saavuttaa huomattavia päästövähennyksiä.
APA, Harvard, Vancouver, ISO, and other styles
2

Mateu, Royo Carlos. "Development of High Temperature Heat Pumps for Industrial Waste Heat Recovery." Doctoral thesis, Universitat Jaume I, 2021. http://dx.doi.org/10.6035/14107.2021.744033.

Full text
Abstract:
One of the major challenges of this decade is developing more sustainable energy systems that contribute to environmental concern, especially climate change mitigation. Extending the operating conditions of the heat pump technology to higher temperatures will allow decarbonising the industrial sector from two slopes: recovering heat from waste heat sources that currently is being rejected to the ambient and produce heat at the required industrial thermal levels that become useful for the industrial processes. Both challenges will make possible reduce the equivalent CO2 emissions of the industrial sector and operate at high temperatures that conventional heat pumps. This thesis deals with the development of high temperature heat pumps through a comprehensive theoretical and experimental analysis to overcome different technology challenge: architecture, refrigerants, experimental prototype, advanced applications and system integration, providing new knowledge that represents a step forward in high temperature heat pump technology.
Uno de los mayores desafíos de esta década recae en el desarrollo de sistemas energéticos más sostenibles que contribuyan a la preocupación medioambiental, especialmente la mitigación del cambio climático. Extender las condiciones de funcionamiento de la tecnología de bomba de calor a temperaturas más elevadas permitirá descarbonizar el sector industrial desde dos vertientes: recuperando calor de fuentes de calor residual, actualmente disipado al ambiente y producir calor a los niveles térmicos requeridos, útiles para los procesos industriales, reduciendo así las emisiones de CO2 equivalentes del sector industrial y contribuyendo al desarrollo sostenible. Esta tesis pretende abordar el desarrollo de bombas de calor de alta temperatura a través de un análisis teórico y experimental, para abordar diferentes desafíos tecnológicos: arquitectura, refrigerantes, prototipo experimental, aplicaciones avanzadas e integración de sistemas, generando nuevos conocimientos que representan un paso adelante en la tecnología de bombas de calor de alta temperatura.
Programa de Doctorat en Tecnologies Industrials i Materials
APA, Harvard, Vancouver, ISO, and other styles
3

Miró, Laia. "Industrial waste heat: mapping, estimations and recovery by means of TES." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399633.

Full text
Abstract:
En l’actual context energètic, l'ús de la calor residual industrial (CRI) representa una oportunitat atractiva de substituir el consum d'energia primària per un mitjà amb baix nivell d'emissions i baix cost. Aquesta calor es pot recuperar i reutilitzar en altres processos, ser transformada en electricitat o calor.Tot i el seu prometedor potencial, aquest CRI no s’utilitza. L'objectiu d'aquesta tesi doctoral és el de superar algunes de les barreres tecnològiques i d'informació actuals que dificulten l’ús d’aquesta fot d’energia. En primer lloc, s’ha identificat el potencial mundial actual de CRI a escala de. En segon lloc, es va generar noves avaluacions d’estimació del potencial de CRI: a la indústria de la manufactura espanyola i en la indústria de minerals no metàl•lics Europea. Finalment, es va tractar la recuperació i reutilització d'aquesta calor mitjançant l’emmagatzematge d’energia tèrmica i es va avaluar exhaustivament els casos pràctics on aquesta tecnologia ha estat implementada.
En el actual contexto energético, el uso del calor residual industrial (CRI) representa una oportunidad atractiva de sustituir el consumo de energía primaria por un medio de bajo nivel de emisiones y de bajo coste. Este calor se puede recuperar y reutilizar en otros procesos, ser transformado en electricidad o en calor. A pesar de su prometedor potencial, este CRI está actualmente en desuso. El objetivo de esta tesis doctoral es el de superar algunas de las barreras tecnológicas y de información que existen actualmente en la utilización de esta fuente de energía. En primer lugar, se ha identificado el potencial mundial actual de CRI a escala de país. En segundo lugar, se generaron nuevas evaluaciones de estimación del potencial de CRI: en la industria de la manufactura española y en la industria de minerales no metálicos Europea. Finalmente, se trató la recuperación y reutilización de este calor mediante almacenamiento de energía térmica y se evaluó exhaustivamente los casos prácticos donde esta tecnología ha sido implementada.
In the current energy context, the use of industrial waste heat (IWH) provides an attractive opportunity to substitute primary energy consumption by a low-emission and low-cost energy carrier. Despite its potential, IWH is largely untapped. This heat can be recovered and reused in other processes, transformed into electricity or heat. The aim of this PhD is to overcome some of the current technological and information barriers and to provide the literature and the researchers with more knowledge of the topic and supporting its widespread development. First, current IWH potential worldwide at country scale was identified. Second, new assessments to estimate the regional IWH potential were generated: in the Spanish manufacture industry as well as in the European non-metallic mineral industry. Finally, its reuse by means of thermal energy storage (TES) was analysed and an exhaustive research of current case studies was performed.
APA, Harvard, Vancouver, ISO, and other styles
4

Stengler, Jana [Verfasser], and André [Akademischer Betreuer] Thess. "Combined thermochemical energy storage and heat transformation for industrial waste heat recovery / Jana Stengler ; Betreuer: André Thess." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2021. http://d-nb.info/1231794410/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Norman, Jonathan. "Industrial energy use and improvement potential." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577741.

Full text
Abstract:
This thesis aims to examine energy demand within UK industry and assess the improvement potential available through efficiency measures. The techniques employed throughout the work have been mainly engineering based, drawing on thermodynamics. Alongside this approach, an assessment of drivers and barriers to the technical potential was undertaken. Data availability was a key challenge in the current work. The variety in energy uses meant the use of publically available datasets was limited. A database was constructed utilising site level emissions data, and employed a subsector disaggregation that facilitated energy analysis. The database was used for an analysis of waste heat recovery options. Opportunities were identified in low temperature recovery, heat-ta-power technology, and the transport of heat. Each of these options would require further research and support to be fully realised. It was found that splitting the industrial sector into an energy-intensive and non-energy- intensive subsector, where the grouping was based on the drivers to energy efficiency, allowed generalisations to be made regarding future improvement potential. Based on analysis of past trends, it was found that the energy-intensive subsector has limited potential for further efficiency gains through currently used processes. To make significant improvements radical changes in current processes will be required. A study of the energy-intensive Cement subsector concurred with these findings. Future efficiency improvements in this subsector are likely limited without a shift to alternative cement production. The non-energy-intensive subsector was thought to have relatively greater improvement potential through existing processes. The analysis of these processes is limited by lack of data however. An analysis of the non-energy-intensive Food and drink subsector therefore focussed on improvements in supplying low temperature heat, rather than the efficiency of specific processes. Opportunities through improving steam systems, increasing combined heat-and-power use, and the adoption of heat pumps were found to offer similar improvement potentials.
APA, Harvard, Vancouver, ISO, and other styles
6

Bornemann, Tobias [Verfasser]. "Industrial Waste Heat Utilization : Spannungsfeld zwischen Abwärmenutzung und Kraft-Wärme-Kopplung in der produzierenden Automobilindustrie / Tobias Bornemann." Kassel : Kassel University Press, 2018. http://d-nb.info/1149085762/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peris, Pérez Bernardo. "Thermo-economic assessment of small-scale organic Rankine cycle for low-grade industrial waste heat recovery based on an experimental application." Doctoral thesis, Universitat Jaume I, 2017. http://hdl.handle.net/10803/456991.

Full text
Abstract:
This thesis focuses on the use of small-scale Organic Rankine Cycles (ORC) to produce electricity from low-grade waste heat recovery of industrial processes. In particular, a thermo-economic (combination of thermodynamic and economic) optimization is conducted to achieve more cost-effective systems and, thus, to contribute to the ORC adoption in practical applications. As a novelty, this investigation is based on an experimental application case, which allows developing a comprehensive model of the system and its subsequent validation from actual data. Thereby, more realistic results are reached, which underline the most relevant topics to pay attention to improve the economic feasibility of new projects.
Esta tesis se centra en el uso de sistemas de pequeña escala basados en el ciclo Rankine orgánico (ORC por las siglas en ingles) para la producción de electricidad a partir de la recuperación de calor residual de baja temperatura en procesos industriales. En concreto, se lleva a cabo una optimización termoeconómica (combinación entre termodinámica y económica) como método para mejorar la rentabilidad de los proyectos y, de esta forma, favorecer el uso de los sistemas ORC en aplicaciones prácticas. Como novedad, la investigación se lleva a cabo en torno a un caso experimental de aplicación, lo que permite desarrollar un modelo íntegro del sistema y posteriormente validarlo con datos reales. De este modo, se alcanzan resultados más realistas que ponen de relieve los aspectos clave para mejorar la viabilidad económica de nuevos proyectos.
APA, Harvard, Vancouver, ISO, and other styles
8

Svensson, Klas, and Jonas Wallenskog. "Low Temperature Waste Heat Solutions : with proposals for energy technological actions based on Scania’s building 64." Thesis, Linköping University, Linköping University, Energy Systems, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-28211.

Full text
Abstract:

The report comprises two separate parts:

  • part 1:  Temperature needs for district heating in the paint shop for axles in building 210
  • part 2:  Energy and low temperature waste heat solutions in heating and cooling systems for   building 64 with surroundings

The paint shop for axles in part 1 has air quality requirements in places for coating of axles. Toachieve desired air properties there are different process ventilation systems, which consist ofventilation coils for heating and cooling, plus air humidifier. The ventilations coils for heating usedistrict heating. Today the ventilation coils use water of 100°C to achieve necessary air demands inthe coating boxes. This part of the report investigates whether the existing system would achievethe air requirements with a water temperature of 75°C instead of 100°C in the ventilation coilsduring the coldest parts of the year. The conclusion is that it is not possible; the existing system isadjusted for a water temperature of 100°C to achieve the air requirements. To use a watertemperature of 75°C, more or major ventilation coils are needed.

The focus of the report is at part 2. In this part, possibilities for low temperature waste heatsolutions are investigated. Those partly aim at specific local solutions for building 64 withsurroundings and on the other part of general waste heat solutions for new buildings andreconstructions in the future. To make these parts possible, the systems for heating and cooling inbuilding 64 have been identified. During this identification, potential savings that are not of wasteheat character have also been observed.

The most profitable saving concerns the control of temperature for the inner hardening vat. It isthe hardening vat for gas carburizing oven SV16838 that has been studied in this report. Today thetemperature of the hardening vat is controlled very ineffective. The conclusion is that a betteradjustment of the controller would save 180 000 SEK/year with a pay off time around two months.Worth mentioning (SV16838 included), is that there are at least five similar gas carburizing ovens atthe Scania area in Södertälje.

A pinch analysis has also been done for building 64, with it’s primarily conclusion that the groundheating is violating the pinch rules during long periods of the year. To remedy the ground heatingwill only need a different control and will lead to a saving between 20 000 – 75 000 SEK/year. Tomore accurate determine the saving, an investigation of the ground heating during winter time isneeded. Another conclusion concerning the pinch analysis is that the method for a real scenariorather shows the potential of the system than gives you an optimal solution possible to implement.More actions are to use the exhaustions of the endo gas generators and that the washing andrinsing systems if possible not should be heated with electricity. The exhaustions from the endo gasgenerators have a very high temperature, more then 300°C. If these, instead of hot water boilers,could warm the closely located water for the LPG (liquefied petroleum gas) evaporation, 125 000SEK/year can be saved. Today the hot water boilers are heated with electricity. If the washing andrinsing systems existing electricity heating instead can be heated with secondary heat (˜ districtheating), a save of 500 000 SEK/year is possible.

For waste heat solutions there are a few different approaches. Close to building 64, the largestpotential to use waste heat is in building 62 and 75, where air heaters are assessed with the largestpotential. In difference to other investigated buildings, building 210 has the possibility to use wasteheat even during the summer. This building is located 1 km from building 64. To use waste water inbuilding 210, a complex net of waste heating will be required where several buildings with asurplus of waste heat can be connected. A net like this has calculated pipe costs of 5, 2 million SEK.The saving for the use of waste heat only in building 210 will be around 1,4 million SEK/year. Thissave corresponds to the air handling systems that occur in part 1.

APA, Harvard, Vancouver, ISO, and other styles
9

Bergseije, Victor. "Effects of Heat Transfer Fluid from District Heating Networks on Activated Sludge : A respirometric analysis using a dilution series to assess disruption of biological treatment processes in wastewater treatment facilities." Thesis, Linnéuniversitetet, Institutionen för biologi och miljö (BOM), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34038.

Full text
Abstract:
District heating has a long standing tradition in Sweden and today it is the most common way of producing and transporting heat. A District heating system (DH system) is divided into three parts: a production facility, distribution network (DH network) and one more heat stations. The heat produced in the facilities is distributed to the customers via a heat transfer medium, usually water (DH water), in piping networks that make up the DH network. The heat is transferred to the customers via the heat exchanger at which point they can use it as heated tap water or for heating purposes. The DH networks are often constructed in steel as it is cheap and a relatively resistant material. However it has the disadvantages of corrosion and expansions when it is exposed high temperatures which lead to damages in the DH network resulting in loss of the DH water, this is an unavoidable occurrence in any DH network. This results in addition of pollutants by leakages into the DH network or with the water that is used to compensate for the losses. The pollutants cause further corrosion, leading to metal contamination, and more damages on the DH network meaning there is a continuous degradation. Therefore various treatments are used to clean and ascertain an acceptable chemical environment in the DH systems. These treatments are effective but not at a level which is required so many chemicals are used to enhance the treatment of the water. Some of these are known to be toxic to humans and water ecosystems. As leakages are abundant and often end up in the WWTPs of the concerned municipality, which often have troubles with disturbances of the biological treatment, it was decided that an assessment of the toxic effects that DH water pose on activated sludge was to be investigated. This was done by testing water from two DH networks, Växjö and Kalmar, on the same activated sludge obtained from Tegelviken WWTP in Kalmar. A respirometric bioassay approach established by the Organization for Economic Co-operation and Development (OECD), OECD standard 209; OECD Guidelines for the Testing of Chemicals was used with changes made to exposure and measuring time as this decrease the risk of misinterpretation of the results. A dilution series using different concentrations (6.25%, 25% and 100%) of DH water was tested and compered to a blank control samples containing only activated sludge. Assessment of toxicity on total oxidation, oxidation carbon and oxidation of nitrogen was made. To get some idea of what might cause toxic effect samples of the waters was sent to outside laboratories for analyses of metals. The result from the bioassay and metal analysis was used to formulate risk factors associated with a DH water spill and exposure to WWTPs. It was found that both DH waters have a significant inhibition on nitrification in WWTPs. The DH water from Kalmar exhibited similar toxicity dynamics, roughly 20% inhibition, despite large differences in concentration. The DH water from Växjö showed a negative correlation between an increase in concentration of DH water and toxicity, 74% for the lowest concentration and 11% for the highest. The metal analysis concluded that there was no abundance of metal contamination which led to the inference that toxicity is probably caused by the chemicals used for treatment. This poses a great risk for the Baltic Ocean as many WWTPs release their treated water directly into water courses with a short detention time before reaching the sea.
APA, Harvard, Vancouver, ISO, and other styles
10

Björnsdotter, Anna. "Återvinning av industriell restvärme som värdeskapande process : En fallstudie på SSAB EMEA i Borlänge." Thesis, KTH, Tillämpad termodynamik och kylteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118745.

Full text
Abstract:
The industrial sector accounts for a large share of greenhouse gas emissions. To reduce its negative impact on the environment is crucial in the quest for a sustainable future. In discussions of the industrial sector's impact on the environment guidelines have been highlighted as a tool to assist the industries in their efforts to change the relationship between the consumption of energy and production. This by improving energy efficiency and a shift to the best available technology. During the past 30 years the steel industry has reduced its energy consumption per ton of steel produced by 50 percent. However, due to this dramatic improvement in energy efficiency, it is estimated there is now only room for a marginal further improvement on the basis of existing technology. More innovative solutions are therefore required to further improve energy efficiency and achieve a more sustainable use of resources. In a description of the program Efficiency of Energy Use in Industry – Research and Development undertaken by the Swedish Energy Agency the interaction between industry and society is accentuated as an important factor in energy efficiency efforts. Today, there are already several examples of where the industry and the community work together to achieve a better utilization of resources. The steel industry SSAB EMEA has a manufacturing plant in Borlänge, Sweden, where they have been recycling waste heat from the industrial processes for a long period of time. In 1991 SSAB initiated collaboration with the local energy company regarding recovery of waste heat within the industrial enterprise. Since then, SSAB has contributed to the heating of the residences that are connected to the local district heating network. The present study aims to examine the values that the utilization of waste heat add to the industrial company and the community, and to explore how the use of industrial waste heat can be developed ahead. The examination consists of a case study and is mainly based on qualitative interviews with people from SSAB, the local energy company Borlänge Energi, Borlänge Municipality and the Swedish Energy Agency. Some quantitative data, such as measurements of heat deliveries, have also been used for the analysis. In addition a literature review with a focus on district heating in Sweden, industrial waste heat and instruments in energy and climate policy has been conducted. Through varied system levels the waste heat collaboration in Borlänge has been analyzed from a business, social and sustainable perspective. The result of the case study proves that the waste heat collaboration has added value in all perspectives. Business values that have been identified are reduced purchases of oil, compensation for delivered waste heat, exchange from vapour to in-house district heating within the steel factory site, reduced emissions of carbon dioxide, media attention and an improved brand and that the waste heat collaboration possibly made SSAB a more desirable employer. The use of industrial waste heat for district heating in Borlänge has also generated a range of social benefits, which consist of low operating costs for heat, low price of district heating, good energy mix and better air quality and less acidity. From a sustainability perspective, the waste heat utilization resulted in reduced emissions of carbon dioxide and other air pollutants and has been contributive to a sustainable use of raw materials and energy resources. The results also demonstrate that there are both opportunities and threats to a continued use of industrial waste heat. The opportunities identified are regional district heating networks, which can improve the conditions for effective use of waste heat, district cooling, which may increase the need for waste heat in the summer and in-house electricity production, which can accommodate some of the steel company's electricity need. A few threats to a continued use of waste heat have also been identified, which the first consists of co-generation and waste incineration, which can adversely affect energy companies incentives to enter into and renew agreements on waste heat deliveries since the companies do not want to be afflicted with reduced revenues from sales of electricity and electricity certificates or from the reception of waste. Furthermore has changes in energy policy been identified as a threat since for example a new tax on waste heat could worsen the conditions for both continuing and new waste heat collaborations.
Industrisektorn står för en stor andel av växthusgasutsläppen. Att minska dess negativa inverkan på klimatet är således grundläggande i strävan efter ett hållbart samhälle. I diskussioner kring industrisektorns påverkan på miljön har riktlinjer lyfts fram som ett instrument för att bistå industrin i arbetet med att förändra förhållandet mellan konsumtion av energi och produktion. Detta genom en förbättring av energieffektiviteten och en förskjutning till bästa möjliga teknik. Under de senaste 30 åren har stålindustrin reducerat sin energikonsumtion per ton producerat stål med 50 procent. Det sägs dock att dessa dramatiska framsteg i energieffektivitet har lett till att det nu endast finns rum för en marginell fortsatt förbättring förutsatt befintlig teknik. Om så är fallet måste våra vyer vidgas för att vi ska kunna hitta lösningar som innebär större effektivitetsvinster och ett bättre nyttjande av resurser. I en beskrivning av programmet Effektivisering av industrins energianvändning – forskning och utveckling som drivs av Energimyndigheten betonas samspelet mellan industri och samhälle som en viktig faktor i energieffektiviseringsarbetet. Idag finns det redan flera exempel på där industrin och samhället samarbetar för att uppnå ett bättre nyttjande av resurser. I Borlänge har stålföretaget SSAB EMEA en produktionsanläggning där de sedan länge återvinner restenergier från verksamhetens processer. År 1991 ingick SSAB avtal med det lokala energibolaget avseende tillvaratagande av restvärme vid industriföretaget. Sedan dess har SSAB bidragit till uppvärmningen av de bostäder som är anslutna till ortens fjärrvärmenät. Föreliggande studie har som syfte att undersöka vilka värden som tillvaratagandet av restvärmen tillför industriföretaget och samhället, samt ta reda på hur användandet av industriell restvärme kan komma att utvecklas framåt. Undersökningen består av en fallstudie och bygger i huvudsak på kvalitativa intervjuer med personer från SSAB, det lokala energibolaget Borlänge Energi, Borlänge kommun och Energimyndigheten men också på kvantitativ data, såsom mätningar av värmeleveranser. Sedan har även en litteraturstudie genomförts med fokus på fjärrvärme i Sverige, industriell restvärme och styrmedel i energi- och klimatpolitiken. Genom varierade systemnivåer har restvärmesamarbetet i Borlänge analyserats ur företagsekonomiskt, samhällsekonomiskt och hållbart perspektiv. Resultatet av fallstudien visar att restvärmesamarbetet tillfört värden inom samtliga perspektiv. De företagsekonomiska vinster som har identifierats är minskade inköp av olja, ersättning för levererad restvärme, byte från ånga till intern fjärrvärme inom stålföretagets verksområde, minskade utsläpp av koldioxid, medial uppmärksamhet och stärkt varumärke och att restvärmesamarbetet eventuellt gjort SSAB till en mer attraktiv arbetsgivare. Användandet av industriell restvärme som fjärrvärme i Borlänges lokala fjärrvärmenät har även genererat en rad samhällsekonomiska vinster, vilka utgörs av låg driftskostnad för värmeproduktion, lågt pris på fjärrvärme, bra miljömix samt bättre luftkvalitet och mindre försurning. Ur ett hållbarhetsperspektiv har restvärmenyttjandet resulterat i minskade utsläpp av koldioxid och andra luftföroreningar och varit bidragande till ett hållbart nyttjande av råvaror och energiresurser. Resultatet visar också att det finns både möjligheter och hot för ett fortsatt användande av industriell restvärme. De möjligheter som identifierats är regionala fjärrvärmenät, som genom omfattande värmeunderlag kan förbättra förutsättningarna för effektiv användning av restvärmen, fjärrkyla, som kan öka behovet av restvärmen under sommarhalvåret och egen elproduktion, som kan tillgodose en del av industriföretagets elbehov. Sedan har även hot för ett fortsatt användande av restvärme identifierats, vilken den första utgörs av kraftvärme och avfallsförbränning, som kan inverka negativt på energibolags incitament till att ingå och förnya avtal om restvärmeleveranser då bolagen inte vill riskera att drabbas av minskade intäkter från försäljning av el och elcertifikat eller från mottagande av avfall. Även förändringar i energipolitiken har identifierats som ett hot då exempelvis en ny beskattning på restvärme kan försämra förutsättningarna för både fortsatta och nya restvärmesamarbeten.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Industrial waste heat"

1

Pohl, John H. Evaluation of the efficiency of industrial flares: Flare head design and gas composition. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Minerals, Metals and Materials Society. Meeting, Minerals, Metals and Materials Society, and Minerals, Metals and Materials Society. Extraction and Processing Division, eds. Energy Technology 2011: Carbon dioxide and other greenhouse gas reduction metallurgy and waste heat recovery : proceedings of a symposium sponsored by the Energy Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society) held during the TMS 2011 Annual Meeting & Exhibition, San Diego, California, USA, February 27-March 3, 2011. Hoboken, N.J: John Wiley & Sons Inc. [for] TMS, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

New York State Energy Research and Development Authority., ed. A guide to industrial heat pumps for waste heat recovery. [Albany, N.Y.]: New York State Energy Research and Development Authority, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wors<179>e-Schmidt, P., and K. S<179>rensen. Multi-stage Solid Absorption Heat Transformers for Recovery of Industrial Waste Heat. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Great Britain. Energy Efficiency Office. and Atomic Energy Research Establishment. Energy Technology Support Unit., eds. Industrial heat recovery: The availability of waste heat in eight UK high temperature process industries. Newmarket: Energy Publications, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guinn, Gerald R. Technologies and applications of industrial heat pumps for recovery of waste heat: A manual to improve the energy effic. Alabama Dept. of Economic and Community, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Industrial utilization of heat exchangers for waste heat recovery in New York State: Final report : prepared for New York State Energy Research and Development Authority, Project Manager: David Wentworth. [Albany, N.Y.?: The Authority?], 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), Courtney Young, Metals and Materials Society Minerals (Corporate Author), Larry Tidwell (Editor), and Corby Anderson (Editor), eds. Cyanide: Social, Industrial, and Economic Aspects. Tms, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frid, Christopher L. J., and Bryony A. Caswell. Marine Pollution. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198726289.001.0001.

Full text
Abstract:
We use more than 100 000 chemicals in our daily lives to promote health, treat disease, facilitate transportation, use in industrial processes, grow food and access clean water. While these developments have improved human lives, many of these compounds ultimately end up in our seas and oceans where they represent a threat to marine life, ourselves and our continued use of the oceans to treat our waste, provide us with food and offer us recreation. Many of the pollution problems of previous decades seem to have been resolved, in the developed world, or at least managed to minimise their environmental impacts. However, despite treatments being available that reduce their damaging qualities, a potent mixture of toxic compounds enter the marine environment every day along with other potentially harmful additions including heat, noise and light and non-native species. The question thus arises: is pollution a problem that has really been solved? How well are we managing traditional pollutants? What are the challenges we still face today? What are the upcoming marine pollution challenges that face society? This volume describes the different marine pollutants, the science behind measuring their ecological impacts and how they are monitored in the environment, including traditional and new management approaches. This is an up-to-date account of marine pollution within the broad ecological and social context of a growing, technologically advanced, global population.
APA, Harvard, Vancouver, ISO, and other styles
10

A, Young Courtney, Twidwell L. G, Anderson Corby G, Minerals, Metals and Materials Society. Extraction and Processing Division., Minerals, Metals and Materials Society. Meeting, and Symposium on Cyanide: Social, Industrial and Economic Aspects (2001 : New Orleans, Louisiana), eds. Cyanide : social, industrial and economic aspects: The proceedings of a symposium held at [the] annual meeting of TMS (The Minerals, Metals & Materials Society) New Orleans, Louisiana, February 12-15, 2001. Warrendale, Pa: TMS, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Industrial waste heat"

1

Wedde, Geir, and Anders Sorhuus. "Waste Heat Recovery from Industrial Smelting Exhaust Gas." In International Smelting Technology Symposium, 31–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364765.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Majumder, Prasanta, Abhijit Sinha, and Rajat Gupta. "Futuristic Approaches of Low-Grade Industrial Waste Heat Recovery." In Lecture Notes in Mechanical Engineering, 163–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Yu-Lin, and Chun-Wei Lin. "Optimal Organic Rankine Cycle Installation Planning for Factory Waste Heat Recovery." In Proceedings of the Institute of Industrial Engineers Asian Conference 2013, 569–76. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-98-7_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laazaar, Kaoutar, and Noureddine Boutammachte. "Modelling and Optimization of Stirling Engine for Waste Heat Recovery from Cement Plant Based on Adiabatic Model and Genetics Algorithms." In Artificial Intelligence and Industrial Applications, 287–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53970-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kondratenko, Yuriy, Serhiy Serbin, Volodymyr Korobko, and Oleksiy Korobko. "Optimisation of Bi-directional Pulse Turbine for Waste Heat Utilization Plant Based on Green IT Paradigm." In Green IT Engineering: Social, Business and Industrial Applications, 469–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00253-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sengupta, Prasunjit. "Refractories for Boiler and Waste Heat Recovery." In Refractories for the Chemical Industries, 303–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61240-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matheri, Anthony Njuguna, Belaid Mohamed, and Jane Catherine Ngila. "Smart Climate Resilient and Efficient Integrated Waste to Clean Energy System in a Developing Country: Industry 4.0." In African Handbook of Climate Change Adaptation, 1053–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_69.

Full text
Abstract:
AbstractClimate change impacts a natural and human system on the entire globe. Climate-related extreme weather such as drought, floods, and heat waves alters the ecosystems that society depends on. Climate, land, energy, and water systems (CLEWS) are a critical aspect of high importance on resource availability, distribution, and interconnection. The nexus provides a set of guidelines to South Africa that aims on creating a level playing field for all sectors while achieving the aims of the SDGs that are cross-sectoral and multilevel approaches to climate change. The nexus expressed three domains that included resources, governance, and security. It integrated a smart climate resilient with inclusion of the governance and involvement of the stakeholders. Recognition of spatial and sector interdependencies should inform policies, investment and institutional for enhancing nexus security and climate change towards making transition green carbon deals. The nexus offers an integrated approach that analyzes the trade-offs and synergies between the different sectors in order to maximize the efficiency of using the resources that adapt institutional and optimum policy arrangements. Economic transformation and creation of employment through green economy is one of the COP26 green deal agendas in curbing the carbon emissions (green house emission, industrial processes, fuel combustion, and fugitive emissions) as mitigation to climate change, which is cost-effective and economically efficient. The future climate change policy in the developing countries is likely to be both promoted by climate technology transfer and public-private cooperation (cross-sector partnership) through the technology mechanism of the nexus and inclusion of the gender.
APA, Harvard, Vancouver, ISO, and other styles
8

Golwalkar, Kiran R. "Examples of Waste Heat Recovery in Chemical Industries." In Integrated Maintenance and Energy Management in the Chemical Industries, 327–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32526-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Redko, Andriy, Oleksandr Redko, and Ronald DiPippo. "Industrial waste heat resources." In Low-Temperature Energy Systems with Applications of Renewable Energy, 329–62. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816249-1.00009-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Storm, Kenneth. "Waste heat boiler." In Industrial Process Plant Construction Estimating and Man-Hour Analysis, 67–78. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-818648-0.00004-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Industrial waste heat"

1

Liu, Huazhen. "Research on Industrial Waste Heat Utilization Technology." In 2017 4th International Conference on Education, Management and Computing Technology (ICEMCT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icemct-17.2017.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ko¨ster, M., and T. Sadek. "A Product-Service System for Industrial Waste Heat Recovery Using Mobile Latent Heat Accumulators." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62661.

Full text
Abstract:
To operate industrial processes like the generation of hot water and steam or the melting and heat treatment of materials, thermal energy is usually required. In all these processes, a waste of thermal energy occurs, which is referred to as industrial waste heat. In order to reduce the primary energy consumption and environmental impacts due to CO2 emissions, the wasted energy should be recovered efficiently. Different technologies to reuse industrial waste heat for other applications exist. Companies interested in applying these technologies are confronted with risks and uncertainties, such as the lack of knowledge in this field of technology and risks involved with investments in these technologies. Due to these risks and uncertainties, the potential of existing technologies for industrial waste heat recovery is not realized sufficiently. The aim of this article is to discuss a Product-Service System (PSS) that is adequate for a flexible, sustainable and profitable waste heat recovery. This solution is based on the storage, transportation and utilization of industrial waste heat via mobile phase change material devices. Based on the introduction, existing and established concepts for waste heat recovery as well as the theoretical fundamentals of the Product-Service System approach and latent heat accumulators are described. Afterwards, the PSS concept for waste heat utilization is presented. In particular, appropriate business models are introduced for this solution.
APA, Harvard, Vancouver, ISO, and other styles
3

Skop, Helen, and Yaroslav Chudnovsky. "Strategy for Integrated Use of the Industrial Waste Heat." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14176.

Full text
Abstract:
The domestic industrial sector uses over 32 quads of energy that represents one-third of the total energy consumed annually in United States of America. Energy consumption details can be found at www.eia.doe.gov/aer/. Obviously, that the efficient use of available energy has a substantial impact on the competitiveness of domestic manufacturers as well as on the environment. Efficient conversion of raw materials into usable products and usable work/energy strictly depends on the commercially available technologies and equipment. Energy efficiency significantly varies across multiple industries and different applications but one of the major energy losses is thermal energy loss, so-called waste heat. Sources of the waste heat comprise of variety of gaseous exhausts, waste process liquids, cooling media, chemical waste and environmental losses. Over 30 years the engineering community has been trying to develop cost-effective approaches for waste heat recovery and utilization. However, so far there is no universal and cost-effective solution or approach for the industrial waste heat recovery and utilization. In this paper authors discuss an integrated strategy of the industrial waste heat use through the consideration of the closest surrounding of the waste heat source and other types of waste (chemical, mechanical, acoustical, etc.) along with most promising heat exchanger design concepts to be appropriate for integrated waste heat recovery and utilization.
APA, Harvard, Vancouver, ISO, and other styles
4

Saab, Richard, and Rob van den Bosch. "Standardized Offshore Waste Heat Recovery Behind Industrial Gas Turbines." In Offshore Technology Conference. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30630-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sitorus, Febrin, and Totok Soehartanto. "Utilization of waste heat (off gas) from electric furnace no.4 to generate saturated steam using waste heat recovery boiler." In ADVANCED INDUSTRIAL TECHNOLOGY IN ENGINEERING PHYSICS. Author(s), 2019. http://dx.doi.org/10.1063/1.5095314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Minea, Vasile. "Using Geothermal Energy and Industrial Waste Heat for Power Generation." In 2007 IEEE Canada Electrical Power Conference (EPC 2007). IEEE, 2007. http://dx.doi.org/10.1109/epc.2007.4520390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pintacsi, Daniel, and Peter Bihari. "Investigation of a low-grade industrial waste heat recovery system." In 2013 4th International Youth Conference on Energy (IYCE). IEEE, 2013. http://dx.doi.org/10.1109/iyce.2013.6604191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

M. Al-Noman, Saeed, and Ahmed Abdullah Al-Balawi. "Utilization of Industrial Waste Heat in Cooling and Air/Conditioning Applications." In 4th International Conference on Applied Research in Science, Technology and Knowledge. Acavent, 2019. http://dx.doi.org/10.33422/4th.stk.2019.11.679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Battisti, Luca, Marco Cozzini, and David Macii. "Industrial waste heat recovery strategies in urban contexts: A performance comparison." In 2016 IEEE International Smart Cities Conference (ISC2). IEEE, 2016. http://dx.doi.org/10.1109/isc2.2016.7580785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sathish, Sharath, Pramod Kumar, Logesh Nagarathinam, Lokesh Swami, Adi Narayana Namburi, Venkata Subbarao Bandarupalli, and Pramod Chandra Gopi. "Brayton Cycle Supercritical CO2 Power Block for Industrial Waste Heat Recovery." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2347.

Full text
Abstract:
Abstract The Brayton cycle based supercritical CO2 (sCO2) power plant is an emerging technology with benefits such as; higher cycle efficiency, smaller component sizes, reduced plant footprint, lower water usage, etc. There exists a high potential for its applicability in waste heat recovery cycles, either as bottoming cycles for gas turbines in a combined cycle or for industrial waste heat recovery in process industries such as iron & steel, cement, paper, glass, textile, fertilizer and food manufacturing. Conventionally steam Rankine cycle is employed for the gas turbine and industrial waste heat recovery applications. The waste heat recovery from a coke oven plant in an iron & steel industry is considered in this paper due to the high temperature of the waste heat and the technological expertise that exists in the author’s company, which has supplied over 50 steam turbines/ power blocks across India for various steel plants. An effective comparison between steam Rankine cycle and sCO2 Brayton cycle is attempted with the vast experience of steam power block technology and extending the high pressure-high temperature steam turbine design practices to the sCO2 turbine while also introducing the design of sCO2 compressor. The paper begins with an analysis of sCO2 cycles, their configurations for waste heat recovery and its comparison to a working steam cycle producing 15 MW net power in a coke oven plant. The sCO2 turbomachinery design follows from the boundary conditions imposed by the cycle and iterated with the cycle analysis for design point convergence. The design of waste heat recovery heat exchanger and other heat exchangers of the sCO2 cycle are not in the scope of this analysis. The design emphasis is on the sCO2 compressor and turbine that make up the power block. This paper highlights the design of a sCO2 compressor and turbine beginning from the specific speed-specific diameter (Ns-Ds) charts, followed by the meanline design. Subsequently, a detailed performance map is generated. The relevance of this paper is underscored by the first of a kind design and comparative analysis of a Brayton sCO2 power block with a working Steam Power block for the waste heat recovery in the energy intensive iron and steel industry.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Industrial waste heat"

1

Viswanathan, V. V., R. W. Davies, and J. Holbery. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1218710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Viswanathan, Vish V., Richard W. Davies, and Jim D. Holbery. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/1012899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hendricks, Terry, and William T. Choate. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/1218711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thekdi, Arvind, and Sachin U. Nimbalkar. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1185778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mac Dougall, James. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1242987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adam Polcyn and Moe Khaleel. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/944968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography