Academic literature on the topic 'Industrial Biotechnology and Food Sciences'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial Biotechnology and Food Sciences.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Industrial Biotechnology and Food Sciences"

1

Popov, Stevan. "Biotechnology: Challenge for the food industry." Chemical Industry 61, no. 5 (2007): 246–50. http://dx.doi.org/10.2298/hemind0704246p.

Full text
Abstract:
According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms) in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU) as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989) European Commission (1999) adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999) are: 1) Plant biotechnology (agricultural cultivars, trees, bushes etc); 2) Animal biotechnology; 3) Biotechnology in environment protection; 4) Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions); 5) Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities); 6) Development of humane and veterinarian diagnostics (therapeutical systems) 7) Development of the basic biotechnology, and 8) Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological products is increasing at the rate of some 30 percents per year, and in the year of 2000 amounted to about 140 billions of US$. Owing to this, biotechnology became one of the most intensive industries in the world. American biotechnological industry spent even in the year of 1998 about US$ 10 millions for R&D activities. European Union included the development of biotechnology into its R&D programs and projects somewhere during eighties of the last century.
APA, Harvard, Vancouver, ISO, and other styles
2

Capozzi, Vittorio, and Francesco Grieco. "Editorial: Lactic Acid Fermentation and the Colours of Biotechnology 2.0." Fermentation 7, no. 1 (February 26, 2021): 32. http://dx.doi.org/10.3390/fermentation7010032.

Full text
Abstract:
Lactic acid bacteria (LAB) belong to an assorted cluster of bacteria that are protagonists of fermentative processes and bio-based solutions of interest in the different fields of biotechnological sciences, from the agri-food sector (green) up to the industrial (white), throughout the pharmaceutical (red) [...]
APA, Harvard, Vancouver, ISO, and other styles
3

Rosales, Marcela Amaro. "Incentives for agro-industrial and food biotechnology innovation in Mexico." Innovation and Development 3, no. 2 (October 2013): 318–19. http://dx.doi.org/10.1080/2157930x.2013.833778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khosravi-Darani, Kianoush. "Research Activities on Supercritical Fluid Science in Food Biotechnology." Critical Reviews in Food Science and Nutrition 50, no. 6 (June 4, 2010): 479–88. http://dx.doi.org/10.1080/10408390802248759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tiwari, B. K., C. P. O' Donnell, and P. J. Cullen. "New challenges in food science and technology: an industrial perspective." Trends in Food Science & Technology 20, no. 3-4 (April 2009): 180–81. http://dx.doi.org/10.1016/j.tifs.2009.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tabassum Samanta, Mahonaz, and Sadia Noor. "PROSPECTS AND CHALLENGES OF PHARMACEUTICAL BIOTECHNOLOGY." International Journal of Advanced Research 9, no. 01 (January 31, 2021): 709–29. http://dx.doi.org/10.21474/ijar01/12349.

Full text
Abstract:
Biotechnology is a broad area of biology, involving the use of living systems and organisms to develop products. Depending on the tools and applications, it often overlaps with related scientific fields. In the late 20th and early 21st centuries, biotechnology has expanded to include new and diverse sciences, such as genomics, recombinant gene techniques, applied immunology, and development of pharmaceutical therapies and diagnostic tests. Biotechnology has also led to the development of antibiotics. Biotechnology has applications in four major industrial areas, including health care (medical), crop production and agriculture, non-food (industrial) uses of crops and other products and environmental uses. In medicine, modern biotechnology has many applications in areas such as pharmaceutical drug discoveries and production, pharmacogenomics, and genetic testing. Pharmaceutical biotechnology is a relatively new and growing field in which the principles of biotechnology are applied to the development of drugs. A majority of therapeutic drugs in the current market are bio formulations, such as antibodies, nucleic acid products and vaccines. Such bio formulations are developed through several stages that include: understanding the principles underlying health and disease the fundamental molecular mechanisms governing the function of related biomolecules synthesis and purification of the molecules determining the product shelf life, stability, toxicity and immunogenicity drug delivery systems patenting and clinical trials. This review article describes the purpose of biotechnology in pharmaceutical industry, particularly pharmaceutical biotechnology along with its prospects and challenges.
APA, Harvard, Vancouver, ISO, and other styles
7

SZYPERSKI, THOMAS. "13C-NMR, MS and metabolic flux balancing in biotechnology research." Quarterly Reviews of Biophysics 31, no. 1 (February 1998): 41–106. http://dx.doi.org/10.1017/s0033583598003412.

Full text
Abstract:
The European Federation of Biotechnology defines biotechnology as ‘the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services’. Biotechnology thus focuses on the industrial exploitation of biological systems and is based on their unique expertise in specific molecular recognition and catalysis. The enormous potential for drug synthesis, design of biomedical diagnostics, large-scale production of biochemicals including fuels, food production, degradation of resistant wastes and extraction of raw materials will very likely make biotechnology, along with electronics and material sciences, one of the key technologies of the 21st century. From the chemical engineer's point of view, the living system participating in a biotechnological process is the central unit that catalyses chemical reactions. It exhibits a complex dependence on the bioprocess parameters, and the engineer focuses on these parameters to achieve optimal control (Hamer, 1985; Bailey & Ollis, 1986). For the natural scientist, the living system itself is in the centre of interest, so that attempts to optimize a bioprocess aim at its appropriate redesign by genetic manipulations. The increase in penicillin production by strain improvement based on random mutagenesis, which was pursued from 1940 to the mid 1970s, represents an early contribution of life scientists to improve a bioprocess that is of utmost medical importance (Hardy & Oliver, 1985).
APA, Harvard, Vancouver, ISO, and other styles
8

Copetti, Marina Venturini. "Fungi as industrial producers of food ingredients." Current Opinion in Food Science 25 (February 2019): 52–56. http://dx.doi.org/10.1016/j.cofs.2019.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kiratsous, Arthur S. "Handbook of industrial seasonings." Trends in Food Science & Technology 5, no. 9 (September 1994): 303. http://dx.doi.org/10.1016/0924-2244(94)90141-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sadilova, Eva. "Pigments in food: a challenge to life sciences." European Food Research and Technology 225, no. 3-4 (March 8, 2007): 613–14. http://dx.doi.org/10.1007/s00217-007-0599-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Industrial Biotechnology and Food Sciences"

1

Zhang, Jingli 1966. "Evaluation of natural antioxidants." Thesis, University of Auckland, 2004. http://hdl.handle.net/2292/2261.

Full text
Abstract:
This thesis relates the physicochemical properties of phenolic compounds to their antioxidant activities. It focuses on the partitioning of phenolic compounds between hydrophilic and lipophilic environments and the relevance this has to their in vivo health effects. Data in the literature was lacking so the phase partition coefficients (log P) of 53 phenolic antioxidants were measured by reversed-phase HPLC and calculated by log P prediction software. There was a very strong linear correlation between measured and calculated values (r=0.91). The importance of log P in determining antioxidant assay values was then tested by developing an assay system capable of measuring activities of both hydrophilic and lipophilic antioxidants. This Lipid Peroxidation Inhibition Capacity Assay (LPIC), based on using liposomes to simulate a cell membrane environment, was then used to measure the activity of antioxidants with a broad range of structures. The activities were correlated against log p, the difference of heat of formation (∆Hf) and half-wave potential (Ep/2) and used to derive a predictive model to calculate the LPIC activity. There was a highly significant linear correlation between the calculated and measured values. The LPIC activities also correlated well to published LDL inhibition activities but not to measured ORAC activities. These findings suggested that behaviours of antioxidants in the small unilamellar vesicles of the LPIC assay were similar to that in the LDL assay but not to the aqueous phase based ORAC assay. The LPIC assay may therefore be a better indicator of potential health benefits of antioxidants in the human body than the ORAC assay. The possible mechanistic reasons are that it may better reflect ability to prevent the oxidation of LDL blood stream particles that leads to cardiovascular disease and also takes into account the importance of membrane solubility which can raise the cellular concentration and thus potential to protect cells from oxidative damage. KEYWORDS: LPIC, LDL; Antioxidant; Phytochemical; Polyphenolic; Phenolic acid; Flavonoids; log P; Partition Coefficient; Liposome; Lipid bilayer; Lipid Membrane; ORAC; Comet assay; Flow Cytometry.
Whole document restricted, but available by request, use the feedback form to request access.
APA, Harvard, Vancouver, ISO, and other styles
2

Brennan, Margaret Anne. "Dietary fibres and their properties : the possibility of fibre lowering the glycaemic index of foods post extrusion : presented in partial fulfilment of the requirement for the degree of MPhil in Food Science and Technology at Massey University, Palmerston North campus, New Zealand." Massey University, 2008. http://hdl.handle.net/10179/829.

Full text
Abstract:
A series of experiments were devised in order to establish the relationship between fibre addition to an extruded breakfast cereal base recipe and the physical, chemical and nutritional qualities of the breakfast cereals. A twin screw extruder was used for all experiments. Preliminary investigations using, guar gum and inulin additions, illustrated that screw configuration was important in determining the physical properties (degree of expansion, firmness and crunchiness) of the extruded products. Thus a screw configuration featuring a reverse screw and mixing zone within the barrel was selected for the larger research study. In the extended experimental design guar gum, inulin, wheat bran, swede fibre, and hi-maize were added to a base recipe at; 5, 10 and 15 % of total dry ingredient content. A further experiment was completed to investigate the synergistic effects of adding differing fibres in combination. Results illustrated that soluble dietary fibres (for instance guar and inulin) created a porous, less firm, but crispier breakfast cereals than the insoluble fibres, which generally produced denser, harder products. The inclusion of fibre into the extruded breakfast cereals did not affect the chemical composition of the breakfast cereal significantly (P=0.05) when taking into account the diluting factor of adding the fibre into the base recipe. However moisture loss / retention on extrusion varied significantly (P=0.05) between fibre combinations. Thus the moisture loss of samples containing guar or inulin were greater than those samples containing wheat bran and swede fibre. The process of extrusion did not significantly effect the amount of protein, starch or fibre in the samples when the extruded samples were compared to the control samples. Pasting properties of samples were evaluated using the Rapid Visco Analyser. This was conducted to try to determine associations between starch pasting properties (gelatinisation events) of the raw and extruded samples and the physical or nutritional quality of the products. However, the results did not show clear associations. An in vitro analysis was conducted to determine the effect of fibre addition on starch breakdown and subsequent release of reducing sugars. Breakfast cereals which included wheat bran, guar and swede fibre all showed a reduced rate of starch degradation compared to the control (P=0.05). These fibres appeared to inhibit the rate of enzyme degradation of starch, in effect increasing the amount of slowly digestible starch in the breakfast cereals. Cereal samples containing inulin did not show this pattern. Generally the rate of inhibition was related to the amount of fibre added to the base recipe. When used in combinations, samples containing inulin and hi-maize were not significantly different to the control in terms of reducing sugar release, whereas inclusion of guar gum significantly reduced this release. In conclusion, the addition of selected fibres can be used effectively as a method of manipulating the starch degradation rates of extruded breakfast cereals. This has nutritional implications in terms of glycaemic index and loading of breakfast cereals. Further work is required to develop clearer associations between the events of starch gelatinisation during extrusion and the potential glycaemic response.
APA, Harvard, Vancouver, ISO, and other styles
3

Oommen, Retty. "Production of blue pigments from the callus cultures of Lavandula augustifolia and red pigments (betalain) from the hairy root culture of Beta vulgaris : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology at Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/997.

Full text
Abstract:
Plants are used to produce many secondary metabolites that are too difficult, expensive or impossible to make by chemical synthesis. Conventional cultivation of plants is of course subject to vagaries of weather, pests and availability of land; hence, the interest in highly controlled culture of plant cells and hairy roots in bioreactors as methods of producing various products. This project focussed on production of blue and red colors of Lavandula augustifolia and Beta vulgaris, respectively. Callus and suspension cell culture were successfully produced from L. augustifolia after extensive trials, but hairy roots could not be generated from this species. In contrast, a successful protocol was developed for consistently producing hairy roots from B. vulgaris, but calli could not be generated from this species. Effects of medium composition on growth of L. augustifolia calli and freely suspended cells and production of the blue pigment by the latter, were investigated. Optimal production of callus occurred in full-strength Murashige and Skoog (MS) medium supplemented with 2 mg/l of indole-3-acetic acid (IAA) and 1 mg/l of kinetin. Stable suspension cultures could be produced and maintained in full-strength MS medium supplemented with 1 mg/l each of IAA and kinetin. In suspension culture in full-strength MS medium, the following hormone combinations were tested: (1) 1 mg/l each of indole-3-acetic acid (IAA) and kinetin; (2) 2 mg/l of IAA and 1 mg/l of kinetin; (3) 2 mg/l of IAA and 1 mg/l of benzyl amino purine (BAP); and (4) 2 mg/l each of IAA and BAP. Combination (3) maximized cell growth, but the highest cell-specific production of the blue pigment was seen in combination (2), although pigment production occurred at all hormone combinations. The medium formulation that gave the best production of the pigment in shake flasks was scaled up to a 2 L aerated stirred tank bioreactor, but both the biomass and pigment productivities were reduced in the bioreactor apparently due to the high shear stress generated by the Rushton turbine impeller. Compared to suspension cultures of L. augustifolia, the hairy root cultures of B. vulgaris grew extremely rapidly. Hairy roots also produced large amounts of the red pigments. Growth of hairy roots was influenced by the composition of the medium. Although the full strength MS medium better promoted biomass growth compared to the half-strength MS medium, the final concentration of the biomass and the pigment were nearly the same in both media. Attempts were made to enhance production by using various hormones (i.e. naphthalene acetic acid, BAP, IAA added individually at a concentration of 0.5 mg/l), but none of the hormones proved useful. BAP adversely affected the growth of hairy roots. In summary, production of pigments by suspension culture of L. augustifolia and hairy root culture of B. vulgaris, is technically possible, but requires substantial further optimization for enhancing productivity than has been possible in this project. iii
APA, Harvard, Vancouver, ISO, and other styles
4

Thamarath, Pranamornkith. "Effects of postharvest treatments on storage quality of lime (Citrus latifolia Tanaka) fruit : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1162.

Full text
Abstract:
Limes (Citrus latifolia Tanaka) are an attractive fruit crop but generally suffer a loss in value as their colour changes from green to yellow. Various approaches were taken to slow degreening including low temperature storage, use of controlled atmosphere (CA) environments, and treatment of fruit with physiologically active agents such as gibberellic acid (GA3). However, the cold storage life of lime fruit can also be restricted by a number of factors including chilling injury (CI) and rots. Various pretreatments such as the use of fungicide (thiabendazole, TBZ) and hot water dipping (HWD) and several postharvest regimes based on temperature conditioning (step down technique) and intermittent warming (IW) regimes were further investigated to protect the fruit against rots and CI during cold storage. The objective of this study was to determine what storage conditions and pretreatments would permit long term storage of NZ limes with minimal loss of quality. CA storage (10% O2 with 0 or 3% CO2) was compared to regular air storage (RA) and IW (varying durations) treatments across a range of temperatures. Although some CA storage regimes could assist in delaying degreening, none of the treatments provided protection against CI. CA storage at 3% CO2 delayed yellowing and gave better fruit quality than the low CO2 treatment. High CO2 CA treatments at 5 or 7°C decreased the rate of colour change compared to other constant temperature treatments but did not protect against CI. CI limited storage of fruit under all conditions at constant low temperatures. Including fungicide (TBZ) in the dip water reduced the incidence of rots and had a secondary effect on protection against CI of lime fruit. However, fungicide use may sometimes exacerbate stresses such as heat injury on lime peel. Hot water dipping has been shown previously to hold potential as a storage pretreatment, but this technique may give risk of damage on produce if it is dipped at too high a temperature. Some HWD treatments did delay degreening, but there was no major effect on CI. HWD at > 47°C for = 4 min caused heat injury to NZ limes. All HWD treatments showed severe CI (>15%) after 10 weeks of cold storage; and HWD fruit stored under RA at 13°C did not show any CI but showed some pitting (= 10%) and degreened rapidly. Overall no suitable HWD treatment for limes was identified in this trial. This project identified the critical periods and temperature conditions for successful IW of limes. The IW conditions successfully delayed losses in quality of lime fruit provided the first warming period was applied within the first 20 days of storage. At least 2-cycle IW was required to maintain lime quality during long term storage. Some benefits were found after just one cycle of IW treatment but there were not enough to extend storage life. IW storage benefited fruit quality and provided the highest overall fruit quality of all postharvest treatments tested. The degreening of lime during cold storage at 5°C could be delayed by IW treatments in which the fruit were stored at 5°C for 12, 16 or 20 days then moved to 15°C for 2 days. Both 2- and 6-cycle IW treatments proved satisfactory for maintaining colour on the green and yellow side of lime for 12 weeks of storage. IW treatments in which fruit were warmed within 20 day of cold storage did not show significant CI symptoms after 12 weeks of storage, and the 2-cycle IW treatment showed only a low percentage of CI fruit at this time. A 2-cycle IW treatment was almost as effective as 6 cycles, and a step down treatment also showed some promising results, indicating that it may be possible to further optimize the time and duration of variable temperature storage regimes to meet both quality requirements and the constraints of temperature management in commercial coolstores. The application of these regimes to other citrus species may also be beneficial. There are a number of physiological explanations that may account for the effectiveness of IW including positive effects on heat shock protein (HSP) and cell membranes. Nutritional factors such as vitamin C and flavonoid compositions were also investigated and fruit that did not show visible CI were found to retain at-harvest levels of these factors. Practical ways of implementing IW are discussed. In order to understand the effectiveness of IW on degreening, I used a logistic model to describe degreening of lime peel. This modelling approach demonstrated that IW did not change the mechanism of lime degreening based on the similarity between the hue values predicted by the model and the actual hue values measured during lime storage. The activation energy (Ea) for degreening based on either hue angle (H°) or colour score (CS) during air storage was estimated to be ~53 and ~86 KJ.mol-1, respectively. Relationship between colour (H° and CS) and chlorophyll content, relationship between reflectance spectra (%), chlorophyll content and H° of lime fruit stored under different conditions are presented and discussed. This data allowed deduction to be made about the changes in individual pigments that are driving colour change during “good” and “bad” storage.
APA, Harvard, Vancouver, ISO, and other styles
5

Md, Zain Siti Norbaizura Binti. "Biofilm formation of Enterobacter sakazakii on three different materials of infant feeding tube : a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Microbiology at Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1012.

Full text
Abstract:
The aim of this study was to observe biofilm formation by Enterobacter sakazakii (E. Sakazakii) from different clinical, dairy and environmental origins on three infant feeding tubes made of different materials. Infant formula milk was selected as the medium for E. sakazakii growth. Seventeen isolates from different origins were retrieved and tested for purity, using a plating method and biochemical tests to eliminate the non E. sakazakii strains from this study. A method to rapidly and accurately detect viable cells of E. sakazakii on infant feeding tube surfaces using of the BacTrac® 4000 microbiological growth analyser was developed. The sources of errors such as from cleaning, operation and handling procedures were assessed prior to experimental runs. The strength of biofilm formation by different isolates of E. sakazakii on plastic surfaces was scrutinised using a microtiter plate assay. The results from the microtitre plate assay were based on the absorbance at 550 nm of crystal violet stained films and showed that all the clinical isolates were able to attach and form strong biofilms on the plate. Some environmental isolates formed strong or weak biofilms and some did not produce biofilm at all. However, dairy isolates formed both strong and weak biofilms in the microtitre plate when incubated in 10% reconstituted infant formula milk. The further studies were to quantify biofilm formation by three isolates of different origin on three different materials of infant feeding tubes using a batch system. Tubing pieces were incubated with infant formula milk inoculated with E. sakazakii cells at approximately 8 log CFU mL-1 and the biofilm formation was assessed at three time intervals: 4, 12 and 24 hours. Biofilm formation on the tubing by clinical isolates was also observed using epifluorescence microscopy and the scanning electron microscope. E. sakazakii from clinical, dairy and environmental isolates were able to form biofilm on three different materials of infant feeding tubes. The results showed that the initial attachment at 4 h on silicone tubing was low compared with the other two tubes. The scanning electron micrographs showed the surface characteristics of each tubing and the biofilm formation by E. sakazakii clinical isolates after 4, 12 and 24 hours. Silicone tubing appeared to be the best choice for premature babies that need feeding using feeding tubes, as it was slow to become colonised compared with the PVC and polyurethane tubing.
APA, Harvard, Vancouver, ISO, and other styles
6

Ries, Daniel. "Studies on the antioxidant activity of milk proteins in model oil-in-water emulsions : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology, Riddet Institute, Massey University, Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1084.

Full text
Abstract:
The present study was aimed at extending our knowledge of the antioxidative properties of the milk protein products, whey protein isolate (WPI) and sodium caseinate (NaCas), in oil-in-water (O/W) emulsions rich in polyunsaturated fatty acids (PUFAs). In particular, the objective was to contribute to our understanding of the compositional and processing factors that influence the oxidative stability of protein-stabilised O/W emulsions. Linoleic acid (approximately 60 %) was used as the lipid for the oil phase (10.6 %). The emulsion samples were usually incubated at 50 °C to accelerate lipid oxidation. Lipid oxidation indicators were lipid hydroperoxides and headspace hexanal, determined by solid phase microextraction (SPME) combined with gas chromatography (GC). WPI- or NaCas-stabilised emulsions were prepared using a wide range of protein concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 7.0 or 10.0 %) at two droplet sizes (d32 = 0.31 and 0.65 µm). In general, higher lipid oxidation levels were found for the larger droplet size. Increasing protein concentration led to a decrease in the lipid oxidation rate. The greatest decrease in lipid hydroperoxide levels (values after 4 h) occurred at up to 4.0 % protein concentration. The greatest decrease in hexanal levels (values after 24 h) occurred at up to 4.0 % protein concentration in WPI emulsions (0.31 µm). The hexanal levels were more independent of the protein concentration in the other emulsion types. The hexanal level decreased at protein concentrations > 4.0 % in NaCas emulsions (0.31 and 0.65 µm) and at protein concentrations > 7.0 % in WPI emulsions (0.65 µm). The difference between lipid hydroperoxide generation in emulsions with small and large droplet sizes decreased with increasing protein concentration. This effect was more pronounced in NaCas emulsions. In general, NaCas was a better inhibitor of lipid oxidation than WPI, but WPI appeared to be the better antioxidant at some droplet size/protein concentration combinations. The protein in the continuous phase, i.e. the unadsorbed protein, played an important role in lipid oxidation. In principal, the lipid hydroperoxide and hexanal levels showed the same development over the continuous phase protein concentration as over the protein concentration in WPI and NaCas emulsions (d32 = 0.31 µm). A low NaCas level in the continuous phase already led to a relatively low hexanal level, whereas a higher WPI level was required. When NaCas solution was added to a WPI emulsion or WPI solution was added to a NaCas emulsion, a synergistic antioxidative effect was observed. The high molecular weight fractions (molecular weight = 12000-14000) of WPI and NaCas contained pro-oxidative metal ions that contributed to lipid oxidation in the emulsions. An enrichment of NaCas emulsions with the low molecular weight fraction of NaCas (with a molecular weight = 12000-14000) notably inhibited lipid oxidation. An enrichment of WPI emulsions with the low molecular weight fraction of WPI (with a molecular weight = 12000-14000) also seemed to inhibit lipid oxidation, but the effect was not significant. The protein solutions were enriched with these fractions before emulsion preparation. Pure WPI solution or mixed WPI/NaCas (1:1, weight/weight) solution with 1.12 or 2.24 % protein concentration was heated at 84 °C for up to 40 min, cooled and then used to prepare emulsions. Lipid oxidation was generally not affected by the heat treatment or the degree of whey protein denaturation. However, at the lower WPI concentration, more hexanal was produced for the longer heating times (20, 30 and 40 min) and this appeared to be connected with the physical instability of the emulsions. Greater oxidative stability was found at the higher protein concentration and when the proteins were mixed, pointing to a possible synergistic antioxidative effect of WPI and NaCas. The addition of the free radical source 2,2’-azobis(2-amidinopropane) dihydrochloride (AAPH) greatly increased the oxygen uptake and the generation of lipid hydroperoxides in the emulsions. The oxidative stability increased with increasing protein concentration (1.0, 4.0 and 7.0 %). NaCas had a greater antioxidative effect than WPI. The inhibition of oxygen uptake appeared to be largely influenced by the free-radical-scavenging activity of the system, determined by the protein type and the protein concentration, as the radicals were produced linearly over time and oxygen was consumed linearly over time. It can therefore be concluded that free-radical-scavenging activity represents a major antioxidative mechanism of the milk proteins. Oxygen was consumed much faster in emulsions than in protein solutions when the same level of AAPH was incorporated. In a WPI (1.0 % protein) emulsion, much lower levels of protein hydroperoxides than of lipid hydroperoxides developed. This pointed to a much greater reactivity of linoleic acid than of the milk proteins with oxygen. In contrast, the exposure of WPI to oxidising linoleic acid in an emulsion (1.0 % protein) or to AAPH in aqueous solution led to oxidative damage of the whey proteins, indicated by the loss of amino acids. The loss of specific amino acids was different for proteins in the continuous phase or cream phase of an emulsion or in WPI solution. The present study confirms the antioxidative potential of WPI and NaCas and gives new insights into their functionality as oxidative stabilisers in O/W emulsions.
APA, Harvard, Vancouver, ISO, and other styles
7

Srichantra, Arunee. "Studies of UHT-plant fouling by fresh, recombined and reconstituted whole milk : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Engineering." Massey University, 2008. http://hdl.handle.net/10179/961.

Full text
Abstract:
The objective of this study was to investigate the effects of preheat treatments on fouling by fresh whole milk (FWM), recombined whole milk (RCB) and reconstituted whole milk (Recon) in the high-temperature heater of indirect UHT plants. Various preheat treatments prior to evaporation during milk powder manufacture were applied to skim milk powder (SMP, 75 °C 2 s, 85 °C, 155 s and 95 °C, 155 s) and whole milk powder (WMP, 95 °C, 33 s). These preheat treatments were so-called “evaporator preheat treatments”. Skim milk powder (SMP) and whole milk powder (WMP) were derived from the same original batch of pasteurised FWM to remove the effects of the variation in milk composition between different milk batches. These SMPs were recombined with anhydrous milk fat and water to prepare RCB, and WMPs were reconstituted with water to prepare Recon. Then, (homogenized) FWM, RCB and Recon were subjected to various preheat treatments (75 °C, 11 s, 85 °C, 147 s and 95 °C, 147 s) prior to UHT processing. These preheat treatments were so-called “UHT preheat treatments”. Temperature difference (hot water inlet temperature – milk outlet temperature) was taken as a measure of the extent of fouling in the high-temperature heater. The slope of the linear regression of temperature difference versus time (for two hours of UHT processing) was taken as fouling rate (°C/h). Increasing both evaporator and UHT preheat treatments resulted in increasing fouling rate and total deposit weight for all three whole milk types for several milk batches. In the case of FWM, there was no reduction in fouling rate with increasing UHT preheat treatment whether FWM was homogenized then preheated, preheated then homogenized or not homogenized at all. These findings, which are wholly consistent and well replicated, are in apparent conflict with the results of most previous comparable studies. Possible reasons for this are explained. Further investigations of the effects of homogenization relating to the role of whey protein on the surface of the fat globules showed that whey protein associated with the membrane covering the surface of fat globules for homogenized then preheated FWM, RCB and Recon and that association increased with increasing heating process stage. The increasing association of whey protein with the milk fat globules membrane with increasing severity of heating process stage became faster when preheat treatment was more severe: the association of whey protein plateaued on intermediate temperature heating when the milks were preheated at 75°C, 11 s and on preheating when the milks were preheated at 95°C, 147 s. In the case of FWM, the thickness of the membrane covering the surface of fat globules for homogenized then preheated FWM, which increased with the severity of heating process stage, was greater than the thickness of the membrane in preheated then homogenized FWM. Preheating then homogenization resulted in the greater interfacial spreading of small molecules on the surface of fat globules, i.e. whey protein or small molecules from the disintegration of casein micelles during preheating. Possible basic mechanisms for UHT fouling in the high-temperature heater include: the reduction in the solubility of calcium phosphate and the deposition of protein as fat-bound protein and non-fat-bound protein. When non-fat-bound protein in milk plasma deposited, it could be a carrier for the deposition of mineral, such as, the precipitate of calcium phosphate in the casein micelles or the deposition of complexes between whey protein and casein micelles.
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, Lu. "Characterizations of oil-in-water (O/W) emulsions containing different types of milk fats prepared using rhamnolipids as emulsifiers : [a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Auckland, New Zealand] EMBARGOED UNTIL 1 MARCH 2011." Massey University, 2009. http://hdl.handle.net/10179/1323.

Full text
Abstract:
Emulsions containing three different types of milk fat fractions (MF13, MF27 and MF42) and anhydrous milk fat (AMF) were prepared at oil to water (O/W) ratios of 1:9, 3:7, 5:5 and 7:3 using rhamnolipids as emulsifiers. The prepared emulsions were analyzed for their storage stability and properties (colour, particle size, zeta potential and rheology). The effects of various factors (freezing/thawing, heating, pH, salts and ionic strength) on the stability of emulsions were also investigated. All emulsions prepared with an O/W ratio of 7:3, regardless of the type of milk fat, rendered a highly condensed, semi solid and cream-like substance whereas other emulsions containing less oil were in a liquid form. Among the four different O/W ratios tested, the highest emulsion stability during the storage of 12 weeks was observed from the emulsions containing 1:9 O/W ratios, due to a combine effect of smaller emulsion particle size and lower collision frequency between droplets. Interestingly, the emulsions with 7:3 O/W ratios were found to be more stable than the ones with 5:5 O/W ratios. This might be due to the limited movements of closely-packed emulsion droplets induced by the high oil concentration of 7:3 O/W ratios. The emulsion stability was significantly affected by low pH, especially at lower than pH 4, due to the loss of electrostatic repulsions between droplets leading to droplet coalescence and also possibly due to hydrolysis of rhamnolipid molecules. The presence of salts (NaCl, KCl and CaCl2) also rendered the emulsion unstable. The degree of instability was gradually increased with increasing salt concentrations. CaCl2 had the most significant effect even at a very low concentration. The viscosity of emulsions increased with increasing oil concentration but was not affected by the types of milk fats. Emulsions with 3:7, 5:5 and 7:3 O/W ratios exhibited non-Newtonian and shear thinning flow behaviour. At 7:3 O/W ratios, MF13 exhibited gel-like properties whereas both MF42 and AMF emulsions became more solid-like at higher frequency.
APA, Harvard, Vancouver, ISO, and other styles
9

Noisuwan, Angkana. "Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/905.

Full text
Abstract:
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
APA, Harvard, Vancouver, ISO, and other styles
10

Jettanapornsumran, Monchanok. "Copigmentation reactions of boysenberry juice : a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Technology at Massey University, Albany, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/918.

Full text
Abstract:
Colour is one of the main sensory characteristics of berry juice and fruit products and this parameter also powerfully impacts on consumer behaviour. However, the colour of berry juices is unstable and degradation occurs during storage. The main objectives of the project were: to determine the mechanism by which boysenberry juice enhances the colour of other berry juices and to determine if its addition to berry juices will also stabilise the anthocyanin pigments and enhance copigmentation. In this study, total anthocyanin, total phenolic acids, hyperchromic and bathochromic shift and the rate of colour degradation was measured by spectrophotometric techniques. Individual anthocyanin and phenolic acid content were measured in each juice by high performance liquid chromatography (HPLC) were evaluated during storage at 5, 20 and 35?C. Boysenberry juice improved the colour of blackcurrant, cranberry and pomegranate juices immediately after addition; however, only blackcurrant juice colour was stable during storage at 5?C. There was no influence on the stability of total anthocyanins in pomegranate or cranberry juices when boysenberry juice was added. Of the three juices, pomegranate had the highest rate of degradation. The total anthocyanin of blackcurrant enhanced with boysenberry juice was more stable than for cranberry and pomegranate juices. The impact of phenolic acids found in boysenberry juice (kaemferol, quercetin and ellagic acid) on blackcurrant juice colour stability was also investigated. The colour stability of blackcurrant juice was improved by the addition of ellagic acid at 5?C; however, the colour intensity of blackcurrant enhanced with kaemferol and quercetin decreased with storage. The copigmentations between anthocyanins themselves were not found to be a significant effect on colour stability of blackcurrant juice. Ellagic acid had the strongest colour improvement in blackcurrant juice compared to boysenberry juice. In conclusion, ellagic acid as found in boysenberry juice formed intermolecular copigmentation with blackcurrant juice anthocyanins, so this resulted in stabilised juice colour during storage; however, the effect was found when the juice was stored at 5?C only.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Industrial Biotechnology and Food Sciences"

1

International Symposium on Food Biotechnology (1999 Zakopane, Poland). Food biotechnology: Proceedings of an international symposium organized by the Institute of Technical Biochemistry, Technical University of Lodz,... Zakopane, Poland, May 9-12, 1999. Amsterdam: Elsevier, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lappé, Marc. Against the grain: Biotechnology and the corporate takeover of your food. Monroe, Me: Common Courage Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Handbook of olive oil: Analysis and properties. New York: Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1940-, Labuza Theodore Peter, ed. Essentials of functional foods. Gaithersburg, Md: Aspen, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vance, Civille Gail, and Carr B. Thomas, eds. Sensory evaluation techniques. Boca Raton, Fla: CRC Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meilgaard, Morten. Sensory evaluation techniques. 2nd ed. Boca Raton: CRC Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vance, Civille Gail, and Carr B. Thomas, eds. Sensory evaluation techniques. 3rd ed. Boca Raton, Fla: CRC Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vance, Civille Gail, and Carr B. Thomas, eds. Sensory evaluation techniques. 4th ed. Boca Raton: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Congress, Eucarpia. Genetics and breeding for crop quality and resistance: Proceedings of the XV EUCARPIA Congress, Viterbo, Italy, September 20-25, 1998. Boston, Mass: Kluwer Academic Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Food and industrial bioproducts and bioprocessing. Chichester, West Sussex, UK: Wiley-Blackwell, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Industrial Biotechnology and Food Sciences"

1

Monsan, Pierre, and Michael J. O'Donohue. "Industrial Biotechnology in the Food and Feed Sector." In Industrial Biotechnology, 351–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630233.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kusch, Sigrid, Chibuike C. Udenigwe, Cristina Cavinato, Marco Gottardo, and Federico Micolucci. "Value-Added Utilization of Agro-Industrial Residues." In Advances in Food Biotechnology, 415–26. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118864463.ch25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rahman, Mahbuba. "Application of Metabolic Engineering in Industrial Fermentative Process." In Advances in Food Biotechnology, 221–42. Chichester, UK: John Wiley & Sons Ltd, 2015. http://dx.doi.org/10.1002/9781118864463.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roy, Amit H. "Fertilizers and Food Production." In Handbook of Industrial Chemistry and Biotechnology, 959–95. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-4259-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Amit H. "Fertilizers and Food Production." In Handbook of Industrial Chemistry and Biotechnology, 757–804. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52287-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, P. H., A. L. Huang, W. Lo, H. Chua, and G. Q. Chen. "Conversion of Food Industrial Wastes into Bioplastics." In Biotechnology for Fuels and Chemicals, 603–14. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-4612-1814-2_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mika, Nicole, Holger Zorn, and Martin Rühl. "Insect-Derived Enzymes: A Treasure for Industrial Biotechnology and Food Biotechnology." In Yellow Biotechnology II, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/10_2013_204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roy, Amit H. "Fertilizers and Food Production." In Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology, 1111–56. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-27843-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, Anand S., Piyush Kumar, Soumya Pandit, and Ram Prasad. "Adsorptive Chromatography: A Sustainable Strategy for Treatment of Food and Pharmaceutical Industrial Effluents." In Environmental and Microbial Biotechnology, 295–314. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5499-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Peter H., Hong Chua, Ai-Ling Huang, and Kwok-Ping Ho. "Conversion of Industrial Food Wastes by Alcaligenes Latus into Polyhydroxyalkanoates." In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 445–54. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Industrial Biotechnology and Food Sciences"

1

Torti, Ruggero. "FOOD: NEW DEVELOPMENTS IN INDUSTRIAL DESIGN AND APPLIED GRAPHICS." In 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018h/51/s17.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Investigation of Heavy Metal Removal by Sargassum spp from Industrial Wastewater." In 5th International Conference on Food, Agricultural and Biological Sciences. Universal Researchers (UAE), 2016. http://dx.doi.org/10.17758/uruae.ae1216216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruzakova, Olga. "DIGITALIZATION OF AGRICULTURE AND AGRO-INDUSTRIAL COMPLEX AS A FACTOR IN ENSURING FOOD SECURITY IN RUSSIAN FEDERATION." In 5th International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018. STEF92 Technology, 2018. http://dx.doi.org/10.5593/sgemsocial2018/1.4/s04.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Safuan, Hamizah Mohd, and Suhaili Binti Musa. "Food chain model with competition interaction in an environment of a biotic resource." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anupong Wongchai, Chien-Feng Tai, and Ke-Chung Peng. "Notice of Retraction An application of super-efficiency and tobit method for financial efficiency analysis of food industrial companies in Taiwan." In 2011 2nd IEEE International Conference on Emergency Management and Management Sciences (ICEMMS). IEEE, 2011. http://dx.doi.org/10.1109/icemms.2011.6015809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sumitomo, Takashi, Junichiro Fukutomi, Toru Shigemitsu, Naoki Ishida, and Yoshio Yoshimura. "Study of Internal Flow and Emulsification Process in a Homogenizer." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78335.

Full text
Abstract:
The pressure homogenizer is extensively used to emulsify, disperse the products in various industrial fields including: food, chemical, pharmaceutical and biotechnology. The homogenizer basically consists of a high-pressure plunger pump usually with triple plungers to minimize pressure fluctuations and a homogenizing valve with a narrow gap. The homogenizing valve consists of a valve, valve seat and impact ring. The homogenizer exerts effects, such as a shear, an impingement, and a cavitation to fluid momentarily. The relatively large polydisperse oil globules of a coarse oil-in-water emulsion are subdivided into a large number of smaller globules in a narrow size range by a homogenizer. However, the flow within the homogenizing valve is not clarified theoretically. Therefore the action of a high-pressure, radial-flow homogenizer in breaking up the internal phase of oil drops in a coarse emulsion was investigated theoretically and experimentally. If the flow pattern within the homogenizing valve could be solved, a more efficient and stabilized emulsification could be carried out. In this paper, the influence of shape modification of the homogenizing valve was investigated in the emulsification action. The experiments using a small homogenizer are conducted and the experimental results were compared with the numerical simulation results. In short, we compared the calculated flow pattern (velocity distributions, pressure distributions, shear stress) with the drop size distribution result obtained in the experiment, and investigated the relation between the flow and the emulsification action in the homogenizing valve. In this experiment, two valve types (Sharp type and Flat type) were applied. In the experiment, the pressure drop in the valve, the distance from a valve outlet to an impact ring and the parallel gap part length were changed. The flow patterns were investigated using a Computational Fluid Dynamic model of the flow in the homogenizing valve. Here, a k-ε turbulent model was used for the modeling of the flow in the homogenizing valve. The flow in the homogenizing valve was calculated as a two-dimensional axisymmetric flow. The purpose of this paper is to clarify the effects of differences in the shapes of valves on the results of emulsification through the above experiments and numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
7

Bemova, V. D., Т. V. Yakusheva, and М. Sh Asfandiyarova. "ECOLOGICAL AND GEOGRAPHICAL STUDYING OF PEANUT SAMPLES BY ECONOMICALLY VALUABLE TRAITS." In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-24-28.

Full text
Abstract:
Peanut seeds are valuable nut-bearing raw materials widely used in food and confectionary industries. Unfortunately, industrial sowings of peanut in Russia are absent. Thereat it is necessary to look for new material for breeding. Conduction of ecological and geographical trials allowed finding the most productive and large-seeded samples from the VIR’s collection. The trial results also showed the significant impact of reproduction place on economically valuable traits. Thus, ripening rate is higher in Cis-caspian Agrarian Federal Scientific Center of the Russian Academy of Sciences (PAFNTs RAN) compared to the Kuban experimental station – a branch of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (KOS VIR).
APA, Harvard, Vancouver, ISO, and other styles
8

Janse van Rensburg, Nickey, Z. Simpson, and N. Malan. "Understanding the Impact of Engineering Through Appropriate Technology Development." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-68084.

Full text
Abstract:
This research describes a pilot project which aimed to introduce CDIO-type (Conceive-Design-Implement-Operate), project-based learning through a community-based project in a third year Material Science module. The project formed part of an agriculture research initiative, and relied on interdisciplinary research collaboration between engineering, social sciences, management, entrepreneurship, and industrial arts. The initiative seeks to develop an agribusiness solution that will create an open-market, growth-oriented food economy. As part of the initiative, engineering students, participating in teams, worked alongside a community of urban farmers, most of whom are working poor, so as to develop appropriate, intermediate technology/ies that could support the farmers. This was informed by the need to have students demonstrate high level understanding of disciplinary content, but also to engage in human-centered design thinking and practice.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography