Academic literature on the topic 'Industrial applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Industrial applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Industrial applications"
Kirk, Ole, Torben Vedel Borchert, and Claus Crone Fuglsang. "Industrial enzyme applications." Current Opinion in Biotechnology 13, no. 4 (August 2002): 345–51. http://dx.doi.org/10.1016/s0958-1669(02)00328-2.
Full textHutchings, M. T., and C. G. Windsor. "39113 Industrial applications." NDT International 22, no. 4 (August 1989): 242. http://dx.doi.org/10.1016/0308-9126(89)91029-8.
Full textBachmann, Friedrich G. "Industrial laser applications." Applied Surface Science 46, no. 1-4 (December 1990): 254–63. http://dx.doi.org/10.1016/0169-4332(90)90153-q.
Full textRamdani, A., S. Grouni, and M. Traïche. "Advanced Control Algorithm: Applications to Industrial Processes." International Journal of Information and Electronics Engineering 5, no. 6 (2015): 398–405. http://dx.doi.org/10.7763/ijiee.2015.v5.567.
Full text柏尾, 知明. "Industrial Applications Forum Report." IEEJ Transactions on Industry Applications 142, no. 7 (July 1, 2022): NL7_7. http://dx.doi.org/10.1541/ieejias.142.nl7_7.
Full text関末, 崇行. "Industrial Applications Forum Report." IEEJ Transactions on Industry Applications 142, no. 9 (September 1, 2022): NL9_3. http://dx.doi.org/10.1541/ieejias.142.nl9_3.
Full textGarg, Lalita, and Kamal Kumar. "Industrial applications of whey." Pharma Innovation 10, no. 2 (February 1, 2021): 387–90. http://dx.doi.org/10.22271/tpi.2021.v10.i2e.5695.
Full text前川, 佐理. "Industrial Applications Forum Report." IEEJ Transactions on Industry Applications 141, no. 7 (July 1, 2021): NL7_2. http://dx.doi.org/10.1541/ieejias.141.nl7_2.
Full text鳥羽, 章夫. "Industrial Applications Forum Report." IEEJ Transactions on Industry Applications 142, no. 2 (February 1, 2022): NL2_8. http://dx.doi.org/10.1541/ieejias.142.nl2_8.
Full textArshad, Hammad, SamrahTahir Khan, Ayesha Kanwal, and Imran Afzal. "Industrial Applications of Pectinases." Lahore Garrison University Journal of Life Sciences 1, no. 2 (May 5, 2020): 121–35. http://dx.doi.org/10.54692/lgujls.2017.010288.
Full textDissertations / Theses on the topic "Industrial applications"
An, Wei. "Industrial applications of speckle techniques." Doctoral thesis, KTH, Production Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3342.
Full textReverdy, Charlène. "Industrial applications of functional nanocelluloses." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI080.
Full textThe aim of this work is to implement new properties to a paper based material via the use of functional nanocelluloses. Nanocelluloses are nanoparticles extracted from wood and distinguished in two categories: Cellulose Nanofibrils (CNFs) and Cellulose Nanocrystals (CNCs). This work has only been carried out with CNFs. The chemical reactivity of CNFs was used to functionalize them with organotrialkoxysilanes. The entangled network and highly viscous suspension of CNFs was also used to synthesize silsesquioxane particles with limited size to impart (super)hydrophobic and antimicrobial properties. Knowledge obtained through the study of model CNFs films was then applied to paper based material coating. The functional CNFs were evaluated for its use in an antimicrobial, anti-adherent, greaseproof or superhydrophobic paper surface
Maheshwari, Gunjan. "Carbon Nanocomposites for Industrial Applications." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1226522545.
Full textANGELONI, Fabio. "Collision Detection for Industrial Applications." Doctoral thesis, Università degli studi di Bergamo, 2017. http://hdl.handle.net/10446/77107.
Full textBottazzo, Jlenia. "Rubber compounds for industrial applications." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422484.
Full textDopo la scoperta del processo di vulcanizzazione, le gomme hanno invaso la nostra vita e attualmente occupano un posto significativo nel mondo industriale tanto che per molte applicazioni non ci sono materiali alternativi ad esse. A differenza di quanto si potrebbe pensare, un oggetto di gomma è una sistema piuttosto complesso. Infatti, esso è in genere costituito da uno o più elastomeri e da molti altri additivi, quali ad esempio cariche rinforzanti, plastificanti, antidegradanti, agenti vulcanizzanti, etc. La realizzazione di un prodotto finito in gomma prevede una serie di operazioni. La prima di queste prevede la miscelazione dell’elastomero/i con diversi additivi ad una specifica temperatura per un tempo prefissato. Tale operazione è significativa nel determinare il grado di dispersione degli additivi nella matrice, influenzando quindi le proprietà del prodotto finale. Successivamente si verifica l’operazione di formatura durante la quale viene data una forma definita alla mescola. Infine con il processo di vulcanizzazione l’oggetto acquisisce la caratteristica proprietà di ritorno elastico, tipica delle gomma. Le proprietà finali di un prodotto di gomma dipendono innanzitutto dall’elastomero di partenza, tuttavia possono essere ampiamente manipolate variando la tipologia e la concentrazione degli additivi aggiunti e le fasi di lavorazione. Il fatto di essere un sistema multicomponente e la complessità delle fasi di produzione sono i motivi principali che hanno ritardato lo studio e lo sviluppo dei nanocompositi a base elastomera rispetto a quelli polimerici. Tuttavia, negli ultimi dieci anni il numero dei lavori scientifici sui nanocompositi elastomerici è ampiamente aumentato. Il continuo interesse deriva dal notevole miglioramento delle proprietà fisico-meccaniche che si osserva quando additivi nanodimensionali sono introdotti in una matrice elastomerica. Il miglioramento ottenuto dipende dalla dispersione a livello nanometrico che tali riempitivi possono raggiungere, contrariamente ai più comuni silice e nero fumo che si disperdono su scala micrometrica. Ad oggi, le nanocariche maggiormente studiate per la loro disponibilità in natura e il basso costo sono le nanoargille. Numerosi studi hanno dimostrato che l’aggiunta di piccole quantità di silicati a strati (< 10 wt.%) migliora le proprietà meccaniche, riduce la permeabilità ai gas e il rigonfiamento in solventi, aumenta la stabilità termica e la resistenza alla fiamma. La borsa di studio di questo dottorato è stata finanziata dalla ditta “IVG Colbachini” di Cervarese Santa Croce, Padova. L’azienda, da più di 40 anni, realizza tubi industriali in gomma per la conduzione di polveri, granuli, gas, liquidi. I prodotti di “IVG Colbachini” trovano applicazione nei settori più diversi, tra i quali l’industria chimica e agro-alimentare, l’edilizia, la cantieristica navale e da diporto, le apparecchiature ferroviarie, le lavorazioni dei metalli. Il lavoro di tesi svolto è stato dedicato allo studio e all’ottimizzazione di mescole elastomeriche prodotte in “IVG Colbachini”. Questa tesi consta di 6 capitoli e di seguito saranno riassunti brevemente gli argomenti principali trattati in ciascun capitolo. Il Capitolo 1 evidenzia le differenze sostanziali tra composito convenzionale e nanocomposito, fornendo anche una classificazione di quest’ultima categoria di materiali. Inoltre spiega quali caratteristiche di un filler sono di fondamentale importanza per la realizzazione di un nanocomposito e come ciascuna di esse influenzi le proprietà del materiale finale. Nel Capitolo 2 è contenuta una presentazione delle nanoargille e dei nanocompositi elastomerica additivati con filler a strati. In particolare si descrivono la struttura chimica di quest’ultimi e l’importanza del modificante organico. A questo si aggiunge un quadro dei metodi di sintesi di questi nanocompositi e delle loro proprietà tipiche riportate in letteratura, quali le prestazioni meccaniche, l’effetto barriera ai gas e la resistenza alla fiamma. Il Capitolo 3 illustra passo passo l’arte della lavorazione della gomma. In particolare si introduce il concetto di “ricetta elastomerica” e come viene in genere espressa. Vengono specificate le tipologie, le caratteristiche e le funzioni dei diversi componenti di una “ricetta”. Inoltre si descrivono le varie fasi di produzione di un oggetto in gomma, partendo dalla miscelazione degli ingredienti, passando per la formatura, arrivando fino al processo di vulcanizzazione. In questo capitolo vengono infine riportate alcune possibili applicazioni di prodotti in gomma. Nel Capitolo 4 si introducono i materiali impiegati per la produzione delle formulazioni, oggetto di questo lavoro di tesi, le procedure sperimentali e le tecniche di caratterizzazione utilizzate. Il Capitolo 5 illustra le prove condotte su una mescola elastomerica a base di etilene vinil acetato, con lo scopo di migliorarne le proprietà di resistenza alla fiamma. Vengono quindi riportati i risultati ottenuti e proposte alcune interpretazioni di essi. Nel Capitolo 6 ci si è concentrati sullo studio delle proprietà meccaniche di un blend costituito da gomma naturale e polibutadiene. In particolare, i dati sperimentali ottenuti da mescole contenenti riempitivi tradizionali, come silice e nero fumo, sono stati confrontati con quelli ricavati da compound con filler innovativi, quali le nanoargille.
Mariani, Tommaso. "Deep reinforcement learning for industrial applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20548/.
Full textKoskimäki, H. (Heli). "Utilizing similarity information in industrial applications." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514290398.
Full textPuñal, Pereira Pablo. "Efficient IoT Framework for Industrial Applications." Doctoral thesis, Luleå tekniska universitet, EISLAB, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-95.
Full textLöfvendahl, Björn. "Augmented Reality Applications for Industrial Robots." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-87146.
Full textChichester, David Lee 1971. "Industrial applications of photonuclear resonance excitation." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/29298.
Full textIncludes bibliographical references (p. 187-198).
Photonuclear resonance excitation refers to a variety of photonuclear interaction processes that lead to the excitation of a nucleus from some initial state to a higher energy nuclear state. Typical excited nuclear state lifetimes are short, ranging from nanoseconds to femtoseconds or less; however, some isotopes have unusually long-lived excited nuclear energy states, or isomers. This dissertation examines the feasibility of using bremsstrahlung irradiation sources to produce isomers for industrial applications. In contrast with charged particle based isomer production, the use of high energy photons allows for the irradiation and production of isomers in bulk materials. The commercial availability of reliable, high power industrial electron accelerators means that isomer activities sufficient for industrial applications may be achieved using bremsstrahlung, in contrast with neutron based approaches where suitable neutron sources of sufficient intensity for these applications are lacking. In order to design a system for creating nuclear isomers using photons, the resonant photon absorption isomeric excitation cross section must be known. Unlike neutron absorption and scattering cross sections, comparatively little information exists for photon isomeric excitation. To address this, a theoretical model based upon statistical probability distributions of nuclear energy levels has been developed for calculating photon excitation cross sections at energies below neutron and proton binding energies; the ideal region of operation for most applications in order to minimize long term activation of materials. Isomeric excitation cross sections calculated using this technique have been compared with experimentally measured values and are found to agree to within a factor of two or better.
(cont.) sing this, a general transition equation suitable for both nuclear resonance fluorescence and isomer excitation has been developed for calculating nuclear level distribution probabilities for materials undergoing photon irradiation. Experiments have been carried out using an industrial 6 MeV electron accelerator to identify obstacles related to nuclear resonance fluorescence measurements as well as measurements of the decay of short-lived isomers using scintillators in the vicinity of high intensity bremsstrahlung sources. Use of a fast switching gating circuit in combination with a pulsed accelerator was found to be a satisfactory solution for dealing with problems related to the performance of a detectors photomultiplier tube as a result of exposure to scattered radiation during the beam pulse. Calculations have been carried out to assess the performance characteristics which could be expected from industrial photonuclear resonance excitation systems, based upon a 10 MeV electron accelerator. For simple isomer production, specific activities on the order of 1 mCi/g/mA can be expected for irradiation periods sufficiently long for equilibrium to be reached. For the analysis of arsenic concentrations in environmental samples, sensitivities of 1 +/- 0.1 ppm could be achieved using accelerator currents of 50 - 100 [mu]A with irradiations times of a few minutes or less. A system designed to analyze ore traveling along a conveyor belt could be used to sort gold ore based upon a lower grade cutoff of 5 ppm using an accelerator of 10 mA ...
by David Lee Chichester.
Sc.D.
Books on the topic "Industrial applications"
Osiewacz, Heinz D., ed. Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-10378-4.
Full textHofrichter, Martin, ed. Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11458-8.
Full textVogel, Andreas, and Oliver May, eds. Industrial Enzyme Applications. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.
Full textAppleton, E., and D. J. Williams. Industrial Robot Applications. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3125-1.
Full textLimaye, Dilip R. Industrial cogeneration applications. Lilburn, GA: Fairmont Press, 1987.
Find full textJ, Williams D., ed. Industrial Robot Applications. Dordrecht: Springer Netherlands, 1987.
Find full textAppleton, E. Industrial robot applications. New York, N.Y: Halsted Press, 1987.
Find full textEggers, Rudolf, ed. Industrial High Pressure Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652655.
Full textSilva, Lucas F. M. da, Robert D. Adams, Chiaki Sato, and Klaus Dilger, eds. Industrial Applications of Adhesives. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6767-4.
Full textRiedling, Karl. Ellipsometry for Industrial Applications. Vienna: Springer Vienna, 1988. http://dx.doi.org/10.1007/978-3-7091-8961-0.
Full textBook chapters on the topic "Industrial applications"
Zhou, Jianyang. "Industrial Applications." In The NCL Natural Constraint Language, 213–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23845-1_7.
Full textKaltenbacher, Manfred. "Industrial Applications." In Numerical Simulation of Mechatronic Sensors and Actuators, 453–535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40170-1_14.
Full textFuruichi, Noriyuki, Beat Birkhofer, Yuichi Murai, A. K. Jeelani Shaik, Johan Wiklund, and Erich J. Windhab. "Industrial Applications." In Ultrasonic Doppler Velocity Profiler for Fluid Flow, 201–25. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54026-7_6.
Full textKaltenbacher, Manfred. "Industrial Applications." In Numerical Simulation of Mechatronic Sensors and Actuators, 221–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05358-4_11.
Full textWaugh, Rachael C. "Industrial Applications." In Development of Infrared Techniques for Practical Defect Identification in Bonded Joints, 115–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22982-9_9.
Full textGhalyan, Ibrahim Fahad Jasim. "Industrial Applications." In Force-Controlled Robotic Assembly Processes of Rigid and Flexible Objects, 117–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39185-4_6.
Full textLewiński, Tomasz, Tomasz Sokół, and Cezary Graczykowski. "Industrial Applications." In Michell Structures, 495–569. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95180-5_8.
Full textBare, Simon R., and Jeffrey Cutler. "Industrial Applications." In X-Ray Absorption and X-Ray Emission Spectroscopy, 695–743. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118844243.ch24.
Full textNoll, Reinhard. "Industrial Applications." In Laser-Induced Breakdown Spectroscopy, 467–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20668-9_18.
Full textZevin, Lev S., Giora Kimmel, and Inez Mureinik. "Industrial applications." In Quantitative X-Ray Diffractometry, 337–54. New York, NY: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-9535-5_6.
Full textConference papers on the topic "Industrial applications"
"Industrial Applications." In 2006 IEEE International Conference on Automation, Quality and Testing, Robotics. IEEE, 2006. http://dx.doi.org/10.1109/aqtr.2006.254520.
Full text"Industrial informatics applications." In 2008 6th IEEE International Conference on Industrial Informatics. IEEE, 2008. http://dx.doi.org/10.1109/indin.2008.4618342.
Full text"Industrial informatics applications." In 2010 8th IEEE International Conference on Industrial Informatics (INDIN). IEEE, 2010. http://dx.doi.org/10.1109/indin.2010.5549404.
Full text"Industrial informatics applications." In 2011 9th IEEE International Conference on Industrial Informatics (INDIN). IEEE, 2011. http://dx.doi.org/10.1109/indin.2011.6034890.
Full textChen, Heping, Hongtai Cheng, Biao Zhang, Jianjun Wang, Tom Fuhlbrigge, and Jian Liu. "Semiautonomous industrial mobile manipulation for industrial applications." In 2013 IEEE 3rd Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2013. http://dx.doi.org/10.1109/cyber.2013.6705472.
Full textTakeda, Shuzaburo, Kenzo Nanri, and Tomoo Fujioka. "Industrial and reverse-industrial applications of COIL." In Photonics West '96, edited by Robert C. Sze. SPIE, 1996. http://dx.doi.org/10.1117/12.236871.
Full textKumagai, Tatsuya. "Industrial applications of FOG." In 13th International Conference on Optical Fiber Sensors. SPIE, 1999. http://dx.doi.org/10.1117/12.2302105.
Full textSokolowski, Robert, and Carl Rosner. "Industrial applications of superconductivity." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4216.
Full textCarroll, D., D. King, L. Fockler, D. Stromberg, T. Madden, W. Solomon, L. Sentman, and C. Fisher. "COIL for industrial applications." In 29th AIAA, Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2992.
Full textZhang, Wenwu, Judson Marte, David Mika, Michael Graham, Brian Farrell, and Marshall Jones. "Laser forming: Industrial applications." In ICALEO® 2004: 23rd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5060274.
Full textReports on the topic "Industrial applications"
Gottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494121.
Full textManges, WW. OIT Wireless Telemetry for Industrial Applications. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/885726.
Full textNunn, S. D., and J. Ghinazzi. Development of gelcasting for industrial applications. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548875.
Full textGottesfeld, S. Conducting polymers: Synthesis and industrial applications. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105129.
Full textShih, C. K., and R. J. Colton. Industrial applications of scanned probe microscopy. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5550.
Full textStamatiou, Anastasia, Rebecca( Ravotti, Andreas König-Haagen, Christoph Rathgeber, Maike Johnson, and Annelies Vandersickel. Definition of boundary conditions for industrial applications and industrial Peak Shaving. IEA SHC Task 58, December 2018. http://dx.doi.org/10.18777/ieashc-task58-2024-0002.
Full textNone, None. Assessment of replicable innovative industrial cogeneration applications. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/1216240.
Full textHunter, James F. NonDestructive Evaluation for Industrial & Development Applications. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329845.
Full textThangaraj, Jayakar Tobin. Compact, High Power SRF Accelerators for Industrial Applications. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1460785.
Full textAuthor, Not Given. New industrial heat pump applications to textile production. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/5630118.
Full text