Academic literature on the topic 'Inductive plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inductive plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Inductive plasma"

1

Keller, John H. "Inductive plasmas for plasma processing." Plasma Sources Science and Technology 5, no. 2 (May 1, 1996): 166–72. http://dx.doi.org/10.1088/0963-0252/5/2/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vinogradov, Georgy K., and Shimao Yoneyama. "Balanced Inductive Plasma Sources." Japanese Journal of Applied Physics 35, Part 2, No. 9A (September 1, 1996): L1130—L1133. http://dx.doi.org/10.1143/jjap.35.l1130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Isupov, M. V. "Distributed ferromagnetic enhanced inductive plasma source for plasma processing." Journal of Physics: Conference Series 2119, no. 1 (December 1, 2021): 012115. http://dx.doi.org/10.1088/1742-6596/2119/1/012115.

Full text
Abstract:
Abstract New experimental data on the plasma density profiles have been obtained for a low-frequency (100 kHz) distributed ferromagnetic enhanced inductive plasma source at different locations of inductive discharges. An ability to control the plasma density profiles in a large gas discharge chamber in order to achieve a uniform treatment of a substrate is demonstrated. The differences between the obtained results and literature data for a distributed ferromagnetic enhanced inductive plasma source combined with a radio-frequency inductive discharge are discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

BURM, K. T. A. L. "The electronic identity of inductive and capacitive plasmas." Journal of Plasma Physics 74, no. 2 (April 2008): 155–61. http://dx.doi.org/10.1017/s0022377807006654.

Full text
Abstract:
AbstractAn electronic identity relation, relating capacitively coupled plasma sources to corresponding inductively coupled plasma sources, has been derived, starting from the Maxwell relations for matter and the characteristics of a capacitor and of an inductor. Furthermore, the breakdown conditions for both capacitively coupled plasmas and for inductively coupled plasmas as well as their optimal operation frequency ranges are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Godyak, Valery. "Plasma phenomena in inductive discharges." Plasma Physics and Controlled Fusion 45, no. 12A (November 17, 2003): A399—A424. http://dx.doi.org/10.1088/0741-3335/45/12a/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Godyak, Valery. "Ferromagnetic enhanced inductive plasma sources." Journal of Physics D: Applied Physics 46, no. 28 (June 25, 2013): 283001. http://dx.doi.org/10.1088/0022-3727/46/28/283001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tuszewski, M., I. Henins, M. Nastasi, W. K. Scarborough, K. C. Walter, and D. H. Lee. "Inductive plasma sources for plasma implantation and deposition." IEEE Transactions on Plasma Science 26, no. 6 (1998): 1653–60. http://dx.doi.org/10.1109/27.747883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gudmundsson, J. T., and M. A. Lieberman. "Magnetic induction and plasma impedance in a cylindrical inductive discharge." Plasma Sources Science and Technology 6, no. 4 (November 1, 1997): 540–50. http://dx.doi.org/10.1088/0963-0252/6/4/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gudmundsson, J. T., and M. A. Lieberman. "Magnetic induction and plasma impedance in a planar inductive discharge." Plasma Sources Science and Technology 7, no. 2 (May 1, 1998): 83–95. http://dx.doi.org/10.1088/0963-0252/7/2/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lho, T., N. Hershkowitz, G. H. Kim, W. Steer, and J. Miller. "Asymmetric plasma potential fluctuation in an inductive plasma source." Plasma Sources Science and Technology 9, no. 1 (January 7, 2000): 5–11. http://dx.doi.org/10.1088/0963-0252/9/1/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Inductive plasma"

1

Magin, Thierry. "A model for inductive plasma wind tunnels." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211179.

Full text
Abstract:
A numerical model for inductive plasma wind tunnels is developed. This model provides the flow conditions at the edge of a boundary layer in front of a thermal protection material placed in the plasma jet stream at the outlet of an inductive torch. The governing equations for the hydrodynamic field are derided from the kinetic theory. The electromagnetic field is deduced from the Maxwell equations. The transport properties of partially ionized and unmagnetized plasma in weak thermal nonequilibrium are derived from the Boltzmann equation. A kinetic data base of transport collision integrals is given for the Martian atmosphere. Multicomponent transport algorithms based upon Krylov subspaces are compared to mixture rules in terms of accuracy and computational cost. The composition and thermodynamic properties in local thermodynamic

equilibrium are computed from the semi-classical statistical mechanics.

The electromagnetic and hydrodynamic fields of an inductive wind tunnel is presented. A total pressure measurement technique is thoroughly investigated by means of numerical simulations.


Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
2

Rax, Jean-Marcel. "Études sur la génération non inductive de courant dans un plasma." Paris 11, 1987. http://www.theses.fr/1987PA112032.

Full text
Abstract:
Étude détaillée de la génération de courant continu dans un plasma de fusion à l'aide d'ondes radiofréquence. Calcul des réponses du plasma à l'aide de la fonction de green de l'opérateur de collisions. Pour résoudre la partie électromagnétique, on explicite la fonction de green eikonal des équations de maxwell. Muni de ces deux outils cinétiques et électromagnétiques, on calcule les réponses principales du plasma et on compare les résultats à l'expérience petula.
APA, Harvard, Vancouver, ISO, and other styles
3

Popelier, Lara. "Développement du propulseur PEGASES : source inductive à haute performance et accélération successive de faisceaux d'ions positifs et d'ions négatifs." Phd thesis, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00793098.

Full text
Abstract:
PEGASES est un nouveau propulseur conçu et développé au LPP. Un propulseur électrique classique éjecte de la matière positive à grande vitesse depuis un plasma électropositif pour générer la poussée. La nouveauté introduite par PEGASES est le fait que la poussée est générée par l'accélération successive d'ions positifs et d'ions négatifs issus d'un plasma ion-ion continu. Le propulseur PEGASES est composé de trois étages: (i) un étage d'ionisation constitué d'une source radiofréquence (rf) pour le couplage inductif d'un plasma électronégatif à partir d'un gaz contenant des halogènes, (ii) un étage de filtrage magnétique des électrons pour obtenir un plasma ion-ion, et (iii) l'étage d'accélération des ions utilisant des grilles polarisées alternativement pour créer un champ électrique dont le sens varie dans le temps. Durant ma thèse, j'ai travaillé essentiellement sur les premier et troisième étages sur deux prototypes de PEGASES. Un plasma ion-ion a été obtenu dans le premier prototype à partir de SF6 grâce à un filtrage magnétique important. Mais des limitations inhérentes et significatives rendent les performances insuffisantes pour le processus d'accélération voulu. Afin d'obtenir une source d'ions électriquement performante, le second prototype utilise une source inductive plane avec une bobine à noyau de ferrite et une boîte d'accord d'impédance comportant un transformateur à faibles pertes. Le couplage capacitif parasite a été réduit en optimisant la boîte d'accord et les progrès sont évalués grâce à la mesure du spectre du potentiel plasma par sonde capacitive. Le plasma est étudié à l'aide de sondes de Langmuir et d'un analyseur de l'énergie des ions (RFEA) dans les deux prototypes. Le potentiel d'un plasma ion-ion peut être contrôlé par une électrode polarisée en contact avec le plasma. L'accélération des ions issus du plasma ion-ion est étudiée dans le cas continu où la polarisation des grilles est fixée puis en imposant une tension créneau d'amplitude comprise entre 0 et ± 350 V avec une fréquence de 1 kHz. Dans le cas alternatif, les ions positifs et les ions négatifs sont accélérés durant les demi-périodes de polarisation positive et négative respectivement. L'énergie respective des deux populations d'ions peut être contrôlée indépendamment, en continu et en alternatif. Avec ces résultats est démontrée la faisabilité du concept PEGASES et l'étude du propulseur peut passer à l'étape de développement et réalisation.
APA, Harvard, Vancouver, ISO, and other styles
4

Marx, Jean-Marcel. "Etudes sur la génération non inductive de courant dans un plasma." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37609211r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Canturk, Mehmet. "Modeling Of Helically Applied Current To The Inductively Coupled Radio Frequency Plasma Torch In Two Dimensions." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604691/index.pdf.

Full text
Abstract:
The electrodeless plasma discharge is typically driven by radio frequency (RF) power supply within the range (0.2 ¡
40 MHz). The applied power is coupled into the plasma inductively called inductively coupled plasma (ICP). RF ICP technique has achieved significance importance in a diversity of research and industrial applications for over the last threes decades. It is still required to undertake both theoretical and experimental research. In this work, RF ICP technique is applied on the torch modeling in 2D. Based on extended electromagnetic vector potential representation, an axisymmetric model in 2D is proposed for the calculations of the electromagnetic fields in an RF ICP torch. The influence of axial vector potential is included to the vector potential formulations. This is achieved by imposing a helical current carrying wire configuration. The corresponding governing equations are solved numerically by applying finite element method (FEM) using commercial partial differential equation solver (Flex PDE3). Based on this model, the plasma behavior and properties are examined in terms of plasma parameters. Besides, a comparative iii analysis is made between proposed model called helical configuration and the one currently available in the literature called circular configuration. This study shows relatively little difference between temperature fields predicted by two models. However, significant difference is observed between corresponding flows and electromagnetic fields. Especially, tangential flow which is observed in helical configuration vanishes in circular configuration. The proposed model offers an effective means of accounting for the variations of the helical coil geometry on the flow and temperature fields and achieving a better representation of the electromagnetic fields in the discharge. Finally, it is concluded that minimum number of turns (n = 2) yields significant difference between two models whereas, maximum allowable number of turns yield no distinctions on the results of two models in terms of azimuthally applied current. However, axial effect of current still exists but very small with respect to the result obtained with minimum number of turns.
APA, Harvard, Vancouver, ISO, and other styles
6

Ndzogha, Cyrille. "Etudes des phénomènes d’échange dans la purification du silicium par plasma et induction." Grenoble INPG, 2005. https://theses.hal.science/tel-01340596.

Full text
Abstract:
Ce travail de thèse porte sur un procédé plasma de purification de silicium pour usages photovoltaïque. Il est appliqué à deux types de matériaux : du silicium d’origine métallurgique et des produits de recyclage des boues de sciage des lingots et des plaquettes de la filière photovoltaïque. Les boues de sciage des plaquettes sont essentiellement constituées de liquide de coupe, de particules de SiC (abrasif), de microparticules de silicium et de microparticules de fer provenant du fil de découpe. Le silicium de ces boues est un silicium de haute pureté, qui est déjà de qualité photovoltaïque. Il peut représenter jusqu’`a 60 % du poids initial du lingot. Le procédé objet du projet comporte une phase de séparation du SiC par centrifugation, suivi d’une phase d’élimination chimique du fer, puis d’un traitement par plasma réactif pour l’élimination du SiC résiduel. Ce travail porte sur cette dernière phase. Un traitement plus complexe que celui initialement prévu a été rendu nécessaire par l’existence dans les boues de sciage de particules de SiC provenant du bris des grains de l’abrasif initial. La séparation du SiC étant incomplète, le traitement par plasma a dû éliminer des quantités beaucoup plus importantes qu’initialement prévu. Cela a nécessité une modification importante du procédé initial, et la mise au point de phase de pré-traitement destiné à rendre exploitable par le plasma le produit issu de la séparation. Ce travail combine études théoriques, modélisations numériques et expérimentation. La modélisation thermodynamique permet de déterminer les meilleures conditions d’élimination des polluants (gaz réactifs adaptés, débits, températures, pressions) tandis que la modélisation du brassage électromagnétique mesure l’efficacité du renouvellement de la surface du bain liquide au cours du traitement
This thesis focuses on a plasma process of purification of silicon for photovoltaic applications. It is applied to two types of materials: metallurgical silicon and recycling products from sawing sludge ingots and from wafers of photovoltaic industry. Platelet sawing sludge consist mainly of cutting fluid, SiC particles (abrasive), silicon microparticles and iron micro-particles from the cutting wire. Silicon sludge is a high-purity silicon, which is already of photovoltaic quality. It can represent 60% of the original weight of the ingot. The present process comprises a SiC phase separation by centrifugation, followed by chemical elimination phase of the iron, then a reactive plasma treatment for removing residual SiC. This work deals with this last phase. A more complex treatment than originally planned was made necessary by the existence in the SiC particles of sawing sludge from the initial breaking of the abrasive grains. Separation of SiC is incomplete, the plasma treatment had to remove much larger quantities than originally planned. This required a significant modification of the original process, and the setting of a pre-treatment phase point intended to make it usable by the product of the plasma separation. This work combines theoretical studies, numerical modeling and experimentation. Thermodynamic modeling to determine the best conditions for the removal of pollutants (adapted reactive gases, flow rates, temperatures, pressures) whereas modeling the electromagnetic measurement brewing efficiency renewing the surface of the liquid bath during treatment
APA, Harvard, Vancouver, ISO, and other styles
7

Guglielmi, Alexandre. "Propulseur à courant de Hall double étage à source RF inductive : étude expérimentale du fonctionnement et des instabilités basses fréquences." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30243.

Full text
Abstract:
Contrairement aux propulseurs chimiques servant à la mise à poste, les propulseurs électriques à courant de Hall sont des moteurs de petite taille utilisés pour le maintien à poste des satellites, le changement d'orbite et les missions interplanétaires. Souvent caractérisés par de faibles poussées, ils ont l'avantage d'avoir une vitesse d'éjection et une impulsion spécifique très importantes. Le principe de fonctionnement est basé sur l'ionisation d'un gaz rare (Xe, Kr) par une différence de potentiel appliquée au travers d'une barrière magnétique. La conductivité électronique localement plus faible dans la barrière conduit à créer un champ électrique dans cette région. Les ions sont alors soumis à ce champ et sont donc accélérés à des vitesses pouvant dépasser plusieurs dizaines de km/s. Le champ électrique au niveau de cette barrière est alors responsable de l'accélération des ions et donc, simultanément, de la poussée et de l'impulsion spécifique. Afin de pouvoir agir indépendamment sur ces deux derniers paramètres, un propulseur à courant de Hall double étage (ID-Hall, Inductive Double stage HALL thruster)) a été développé. Le premier étage est l'étage d'ionisation, constitué d'une source plasma indépendante à couplage inductif, et le second étage est l'étage d'accélération constitué de la barrière. À partir de différents outils de mesures (sonde de flux ionique, analyseur à champ retardateur, caméra haute vitesse, sondes courant-tension, anode segmentée, ...) et d'un modèle numérique (HALLIS), nous avons pu caractériser le plasma, ses instabilités, et les performances du propulseur. Malgré la cartographie magnétique singulière de ce propulseur, les caractéristiques en fonctionnement simple étage sont comparables à celles des propulseurs à courant de Hall classiques. En fonctionnement double étage, la source RF affecte de manière significative le transport des électrons dans le propulseur. De plus, d'autres résultats en double étage montrent qu'à basses tensions de décharge, le courant de décharge est inférieur à celui en simple étage. L'énergie des ions extraits est plus élevée en double étage et le courant d'ion présente une diminution avec l'augmentation de la puissance RF mais reste proche de celui en simple étage. Cette étude a été réalisée en Xénon et en Argon. Des oscillations basses fréquences de grandes amplitudes (Breathing Mode) ont été observées expérimentalement, analysées par sonde résolue en temps et comparées à des résultats obtenus par le modèle. D'autres instabilités azimutales (Rotating Spokes) ont aussi été mises en évidence, ainsi qu'étudiées électriquement et par imagerie.[...]
Unlike chemical thrusters, electric Hall current thrusters are small motors used for station keeping, orbiting, and interplanetary missions. Often characterized by low thrusts, they have the advantage of having a very high ejection speed and specific impulse. The principle is based on the ionization of a rare gas (Xe, Kr) by a potential difference applied through a magnetic barrier. The locally weaker electronic conductivity in the barrier leads to the creation of an electric field in this region. The ions are then subjected to this field and are therefore accelerated to speeds which may exceed several tens of km/s. The electric field at this barrier is then responsible for the acceleration of the ions and therefore, simultaneously, for the thrust and the specific impulse. In order to modify independently these two parameters, a double stage Hall thruster (ID-Hall, Inductive Double stage HALL thruster)) has been developed. The first stage is the ionization stage, consisting of an independent plasma source (ICP source), and the second stage is the acceleration region with the magnetic barrier. Using different diagnostics (ionic flux probe, retarding potential analyzer, high speed camera, current-voltage probes, segmented anode, etc.) and a numerical model (HALLIS), we were able to characterize the plasma, its instabilities, and thruster performance. Despite the singular magnetic mapping of this thruster, the characteristics in single stage operation are comparable to those of conventional Hall current thrusters. In dual-stage operation, the RF source significantly affects the transport of electrons in the thruster. In addition, other double-stage results show that at low discharge voltages, the discharge current is lower than at single stage. The energy of the extracted ions is higher in double stage and the ion current decreases with increasing RF power but remains close to the ion current in single stage. This study was carried out in Xenon and Argon. Low-frequency oscillations of large amplitudes (Breathing Mode) were observed experimentally, analyzed by time-resolved probe and compared to results obtained by the model. Other azimuthal instabilities (Rotating Spokes) have also been identified as well as studied electrically and by imaging. As soon as the source is active, at low RF power, these previous instabilities are strongly attenuated, while at higher power, other azimuthal instabilities appear (Striations). These azimutals instabilities were also studied around the source alone, by imaging in different gases and using a PIC-MCC model
APA, Harvard, Vancouver, ISO, and other styles
8

Besseler, Edmilson. "Construção e caracterização de um reator indutivo : ICP para corrosão de materiais." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259745.

Full text
Abstract:
Orientadores: Peter Jurgen Tatsch, Stanislav A. Moshkalyov
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-11T19:17:46Z (GMT). No. of bitstreams: 1 Besseler_Edmilson_M.pdf: 3143419 bytes, checksum: 2715af82a31f1728537a14b1764455a6 (MD5) Previous issue date: 2008
Resumo: Esta dissertação apresenta as etapas do trabalho de construção de um Reator ICP destinado a processos de micro fabricação, mais precisamente, destinado a corrosões profundas de Silício a taxas de corrosões elevadas. O modelamento e as caracterizações do reator ICP foram feitas através de um protótipo e depois aplicadas a um equipamento da LAM Research que funcionava em modo RIE. Este foi adaptado para trabalhar em modo ICP, de acordo com os parâmetros obtidos no protótipo. Para isso, foi necessário a instalação do Equipamento e fornecer toda a infra-estrutura que este necessitava para seu funcionamento. Foram desenvolvidos casadores de impedância para ligação dos geradores de RF à bobina do ICP e do eletrodo de polarização da amostra, controladores de fluxo de gases, chaveadores manuais para válvulas pneumáticas, sistemas de refrigeração e tubulação de vácuo. O plasma foi caracterizado e alguns processos foram realizados com o intuído de mostrar o comportamento com relação à variação de parâmetros como pressão, potência, polarização da amostra, fluxo de gases, tempo de processo, área da lâmina exposta ao plasma e também o comportamento de diferentes tipos de máscaras. O Equipamento também foi preparado para que seja possível a comutação de gases, que futuramente será automática, de modo que se possa realizar corrosões e polimerizações consecutivas, como ocorre em processos Bosch.
Abstract: This dissertation shows the steps to building an ICP Reactor dedicated to micro fabrication process, further to deep etching of Silicon on high rates. The modeling and characterization of ICP Reactor has been done in a prototype and after applied on an RIE equipment from LAM Research, that was adapted to work in ICP mode like the prototype. To do it was necessary equipment installation and give it the infra structure needed to it works. A network matching was developed to connect the RF generator to ICP coil and to the electrode of wafer polarization, such as gas flow controllers, manual switches for pneumatic valves, cooling systems and vacuum pipes. The plasma was characterized and some processes has been realized in order to show the trends against some parameters variation as pressure, power, sample polarization (bias), gas flow, process time, wafer area exposed to the plasma and also the behavior of different kind of masks. The equipment is ready to switch some gases, which will be automatic in the future, to corrosion and polymerization consecutive process as at a Bosch process.
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
9

Plihon, Nicolas. "Stabilité et structure électrique d'une décharge inductive en gaz électronégatif." Phd thesis, Ecole Polytechnique X, 2006. http://tel.archives-ouvertes.fr/tel-00083948.

Full text
Abstract:
Les plasmas inductifs radiofréquence basse pression sont utilisés pour la gravure de motifs nanométriques. Ces plasmas contiennent des ions négatifs et peuvent être soumis à deux types d'instabilités. La première est décrite par des oscillations de relaxation entre les modes de couplage de l'énergie capacitif (E) et inductif (H). Les mesures temporelles au cours de ces oscillations sont conformes aux résultats publiés. L'autre instabilité, liée au transport des espèces chargées, n'existe que lorsque le plasma peut diffuser. Des mesures spatio-temporelles montrent que les fluctuations des paramètres plasma sont liées à la formation et à la propagation périodique d'une double couche d'amplitude moyenne. Cette double couche est une gaine interne séparant un plasma haute densité, forte température électroniques et sans ions négatifs dans la source d'un plasma faible densité, faible température électronique et de forte fraction d'ions négatifs dans la chambre de diffusion. Cette double couche propagative apparaît lorsque la fraction d'ions négatifs dépasse un seuil. Sous ce seuil, la double couche est statique et disparaît pour des fractions d'ions négatifs très faibles. Les transitions entre ces trois états sont soumises à une forte activité acoustique ionique. L'ajout d'un champ magnétique modifie le chauffage des électrons par absorption de l'onde hélicon (mode W). Des oscillations de relaxation H/W ont été observées dans une fenêtre restreinte de paramètres. D'autre part, le confinement des espèces chargées est modifié: au centre, le plasma ne contient pas d'ions négatifs; au bord, le plasma ne contient plus d'électrons, un plasma ions - ions a été créé.
APA, Harvard, Vancouver, ISO, and other styles
10

Dehbi, Leila. "Study of a radio-frequency inductive plasma discharge used to deposit an amorphous hydrogenated carbon thin film." Doctoral thesis, Universite Libre de Bruxelles, 1998. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212056.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Inductive plasma"

1

Practical inductively coupled plasma spectroscopy. Hoboken, NJ: Wiley, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dean, John R. Practical Inductively Coupled Plasma Spectroscopy. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/047009351x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Okpalugo, Osmund A. Characteristics of argon-chlorine inductively coupled plasmas for plasma surface modification and etching. [S.l: The author], 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Hsin-Yi. Inductively coupled plasma etching of InP. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nelms, Simon M. Inductively coupled plasma mass spectrometry handbook. Oxford: Blackwell Pub., 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nelms, Simon M., ed. Inductively Coupled Plasma Mass Spectrometry Handbook. Oxford, UK: Blackwell Publishing Ltd., 2005. http://dx.doi.org/10.1002/9781444305463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, Michael, and J. Nicholas Walsh. Handbook of Inductively Coupled Plasma Spectrometry. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0697-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Michael, Thompson. Handbook of inductively coupled plasma spectrometry. 2nd ed. Glasgow: Blackie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Michael, Thompson. Handbook of inductively coupled plasma spectrometry. 2nd ed. Glasgow: Blackie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

L, Gray A., and Houk R. S, eds. Handbook of inductively coupled plasma mass spectrometry. London: Blackie Academic & Professional, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Inductive plasma"

1

Miyamoto, Kenro. "Wave Heatings and Non-Inductive Current Drives." In Plasma Physics for Controlled Fusion, 225–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49781-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boswell, R. W., A. Ellingboe, A. Degeling, M. Lieberman, and J. Derouard. "The Transition from Capacitive to Inductive to Wave Sustained Discharges." In Plasma Processing of Semiconductors, 181–86. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5884-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hewett, Dennis W. "Elimination of Electromagnetic Radiation in Plasma Simulation: The Darwin or Magneto Inductive Approximation." In Space Plasma Simulations, 29–40. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5454-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fouladgar, Javad, and Jean-Pierre Ploteau. "Simplified Model of a Radiofrequency Inductive Thermal Plasma Installation." In Electrothermics, 39–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562673.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suzuki, T., S. Sato, M. Kusunoki, M. Mukaida, and S. Ohshima. "Microwave Surface Resistance of YBa2Cu3Oy Thin Films Prepared by Inductive Coupled Plasma Sputtering." In Advances in Superconductivity XII, 1048–50. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66877-0_311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quesnel, François, Gervais Soucy, Jocelyn Veilleux, Pierre Hovington, Wen Zhu, and Karim Zaghib. "Characterization of the Phase Composition of Nanosized Lithium Titanates Synthesized by Inductive Thermal Plasma." In Characterization of Minerals, Metals, and Materials 2015, 393–400. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093404.ch48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quesnel, François, Gervais Soucy, Jocelyn Veilleux, Pierre Hovington, Wen Zhu, and Karim Zaghib. "Characterization of the Phase Composition of Nanosized Lithium Titanates Synthesized by Inductive Thermal Plasma." In Characterization of Minerals, Metals, and Materials 2015, 393–400. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48191-3_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lim, Jong Hyeuk, Kyong Nam Kim, and Geun Young Yeom. "Characteristics of Inductive Coupled Plasma with Internal Linear Antenna Using Multi-Polar Magnetic Field for FPD Processing." In Solid State Phenomena, 271–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knecht, J. "Inductively coupled plasma." In Springer Reference Medizin, 1244–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_1570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knecht, J. "Inductively coupled plasma." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49054-9_1570-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Inductive plasma"

1

Wessel, F. J., N. Bolte, V. Kiyashko, M. Morehouse, T. Roche, and M. Slepchenkov. "Pulsed-inductive-plasma thruster." In 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6633290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wessel, F. J., N. Bolte, V. Kiyashko, M. Morehouse, T. Roche, and M. Slepchenkov. "Pulsed-inductive thruster." In 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013). IEEE, 2013. http://dx.doi.org/10.1109/ppc.2013.6627441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turner, Matthew, Clark Hawk, and Ron Litchford. "Inductive measurement of plasma jet electrical conductivity." In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-3369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cavenago, Marco. "Notes on Radiofrequency and Plasma Coupling in Inductive Plasma Ion Sources." In 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2020. http://dx.doi.org/10.23919/ursigass49373.2020.9232182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hallock, A. K., and K. A. Polzin. "Effect of inductive coil geometry on the operating characteristics of an inductive pulsed plasma thruster." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6384011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Freund, H. P., W. Miner, J. Verboncoeur, and J. Pasour. "Time-Domain Simulation of Inductive Output Tubes." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vande, David, and Gerard Degrez. "An efficient computational model for inductive plasma flows." In 29th AIAA, Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Magin, Thierry, David Vanden Abeele, and Gerard Degrez. "An implicit multiblock solver for inductive plasma flows." In Fluids 2000 Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsui, Makoto, Kimiya Komurasaki, Georg Herdrich, and Monika Auweter-Kurtz. "Laser Absorption Spectroscopy in Inductive Plasma Generator Flows." In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Polzin, Kurt, and Edgar Choueiri. "Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration." In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3694.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Inductive plasma"

1

Kinsey, J., and D. A. Ehst. Inductive currents in an rf driven plasma. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5218308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raman, R., T. Jarboe, B. Nelson, M. Bell, M. Ono, T. Bigelow, R. Kaita, et al. Non-inductive Solenoid-less Plasma Current Start-up in NSTX Using Transient CHI. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/963549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wonho Choe, Jayhyun Kim, and Masayuki Ono. Optimization of Outer Poloidal Field (PF) Coil Configurations for Inductive PF Coil-only Plasma Start-up on Spherical Tori. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/827828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, G., C. E. Kessel, B. P. LeBlanc, D. Mueller, D. K. Phillips, E. J. Valeo, J. R. Wilson, P. M. Ryan, P. T. Bonoli, and J. C. Wright. Generation Of High Non-inductive Plasma Current Fraction H-mode Discharges By High-harmonic Last Wave Heating In The National Spherical Torus Experiment. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1037992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mishra, Umesh K. Inductively Coupled Plasma System (ICP). Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada420671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hickman, D. P., S. Maclean, D. Shepley, and R. K. Shaw. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/15006257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Author, Not Given. Energetic material conversion using an inductively coupled plasma. Office of Scientific and Technical Information (OSTI), January 1996. http://dx.doi.org/10.2172/10129847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Xiaoshan. Matrix effects in inductively coupled plasma mass spectrometry. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/108087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Furuta, Naoki, Curtis A. Monnig, Pengyuan Yang, and Gary M. Hieftje. Noise Characteristics of an Inductively Coupled Plasma-Mass Spectrometer. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada205686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deborah Figg, Alex Martinez, Lawrence Drake, and Chris Brink. Inductively Coupled Plasma--Mass Spectrometry Analysis of Plutonium Samples. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/766949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography