Academic literature on the topic 'Inductive energy storage system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Inductive energy storage system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Inductive energy storage system"
K, Senthil, S. Mitra, Amitava Roy, Archana Sharma, and D. P. Chakravarthy. "Compact inductive energy storage pulse power system." Review of Scientific Instruments 83, no. 5 (May 2012): 054703. http://dx.doi.org/10.1063/1.4721278.
Full textJin, Jian Xun, Wei Xu, Xin Zhou, and Xiao Yuan Chen. "Digitalization Control and Characteristic Analysis of a Superconducting Inductive Energy Management System." Applied Mechanics and Materials 416-417 (September 2013): 474–79. http://dx.doi.org/10.4028/www.scientific.net/amm.416-417.474.
Full textDruzhinin, A. S., V. G. Kuchinsky, B. A. Larionov, A. G. Roshal, V. P. Silin, and V. F. Soikin. "Pulse power systems using inductive energy storage." IEEE Transactions on Magnetics 28, no. 1 (1992): 410–13. http://dx.doi.org/10.1109/20.119898.
Full textБазанов, А. А., А. Н. Ерофеев, А. В. Ивановский, В. И. Мамышев, and Е. В. Шаповалов. "Электровзрывной размыкатель тока для быстрого вывода энергии из индуктивного накопителя в нагрузку." Журнал технической физики 93, no. 8 (2023): 1204. http://dx.doi.org/10.21883/jtf.2023.08.55984.76-23.
Full textVera-Ruiz, Sneider Eduardo, Aaron Alejandro Coll-Bravo, Héctor Jesús Macías-Loor, Kevin Patricio Paz-Mendoza, and Ronald Ismael Véliz-Menéndez. "Contributions and benefits of accumulation systems to the electrical system." International journal of physical sciences and engineering 8, no. 2 (August 12, 2024): 9–16. http://dx.doi.org/10.53730/ijpse.v8n2.15053.
Full textWang, Dao Jing, Hong Guang Zhang, Xiao Na Sun, and Dao Jing Wang. "Energy Storage and Deposition Characteristics of Spark Ignition System." Advanced Materials Research 383-390 (November 2011): 1647–52. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1647.
Full textGenin, V. S., and M. V. Popova. "Features of using diesel power stations and systems with energy storage and current limiters." Traktory i sel hozmashiny 79, no. 3 (March 15, 2012): 39–40. http://dx.doi.org/10.17816/0321-4443-69396.
Full textGo, Tomio, Kyousuke Kanesawa, Nobuyuki Yamazaki, Seiji Mukaigawa, Koichi Takaki, and Tamiya Fujiwara. "Energy Efficiency of Inductive Energy Storage System Pulsed Power Generator Using Fast Recovery Diode." IEEJ Transactions on Fundamentals and Materials 129, no. 1 (2009): 23–29. http://dx.doi.org/10.1541/ieejfms.129.23.
Full textKamiński, Bartłomiej, Marcin Nikoniuk, and Łukasz Drązikowski. "A concept of propulsion and power supply systems for PRT vehicles." Archives of Transport 27-28, no. 3-4 (December 31, 2013): 81–93. http://dx.doi.org/10.5604/01.3001.0004.0110.
Full textWang, Xinyi. "Wireless Charging and Endurance Platform of Patrol UAV Based on Inductive Power Collection of Transmission Line." Journal of Physics: Conference Series 2137, no. 1 (December 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/2137/1/012013.
Full textDissertations / Theses on the topic "Inductive energy storage system"
Abbey, Chad. "A doubly-fed induction generator and energy storage system for wind power applications /." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81522.
Full textThis work presents the addition of an energy storage system to a wind turbine design.
Various advantages are exhibited for the wind turbine with energy storage. Firstly, the generator is capable of accurately controlling the output power of the generator and inevitably of the wind park. Reactive power requirements are also reduced as a result of a more stable voltage at the point of interconnection. In addition, improved transient performance is exhibited for various local disturbances.
Radebe, Thandwefika. "Are solar home systems a more financially viable method of electrifying Ghana households?" Master's thesis, Faculty of Commerce, 2021. http://hdl.handle.net/11427/33001.
Full textPimperton, M. G. "The meatgrinder : an efficient current-multiplying inductive energy storage and transfer circuit." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/10828.
Full textNavas, Michael Andrés Hernández. "Sistema de armazenamento aplicado a sistemas eólicos empregando conversores de fonte z conectados à rede elétrica." reponame:Repositório Institucional da UFABC, 2015.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2015.
Neste trabalho apresenta-se uma configuração do sistema de armazenamento de energia com baterias aplicado a sistemas de geração de energia eólica empregando conversores de fonte Z conectados à rede elétrica. Os geradores de indução gaiola de esquilo, são frequentemente utilizados nos sistemas de geração de energia eólica, por sua robustez, simplicidade, peso menor e custo baixo. Este é conectado diretamente ao conversor de potência bidirecional back to back, pode fornecer potências ativa e reativa à rede elétrica. Além disso, é estudado o conversor de fonte Z aplicado nesta topologia. No entanto, a implantação de sistemas de armazenamento de energia com baterias nos sistemas de geração de energia eólica na atualidade é muito importante, devido à possibilidade de oscilações da tensão e corrente na rede elétrica, portanto, estes podem ajudar à estabilização das tensões, correntes e a frequência na rede elétrica. Este sistema é conectado ao conversor back to back por meio de um conversor elevador-abaixador de corrente contínua. Para controlar a velocidade no eixo do rotor no gerador de indução, a estratégia é baseada no controle direto de torque. Enquanto, para o conversor do lado da rede é empregada a técnica de controle orientado pela tensão. Para o banco de baterias é utilizado o controle da tensão no barramento de corrente contínua e do fluxo na corrente da bateria, utilizando controladores do tipo PI. Com os novos desenvolvimentos tecnológicos nas chaves de potência, são apresentadas topologias de conversores CC-CA como o conversor de fonte Z, este tipo de conversor corrige algumas limitações do conversor back to back, com as características de elevador/abaixador de tensão, sem o uso de dispositivos de comutação, são permitidos os curto-circuitos na chaves, empregando novas técnicas de modulação, e reduz a quantidade harmônica injetada na rede elétrica. Os estudos foram realizados por meio de técnicas de simulação computacional usando modelos matemáticos do sistema estudado para a validação das estratégias de controle empregadas em diferentes condições de operação. Para as simulações empregou-se a ferramenta computacional SimPowerSystems R do Matlab/Simulink R .
This paper presents a battery energy storage system applied to wind power generation based on Z-source inverter connected to the power grid. The squirrel cage induction generators, often used in wind power generation systems, for its robustness, simplicity, lower weight and low cost. This is connected directly to the bidirectional power converter back to back, therefore, and provides active and reactive powers to grid. In addition, it is studied the Z-source inverter applied in this topology. However, the implementation of battery energy storage systems in wind power generation systems, currently is very important, due to possibility of the voltage and current fluctuations in the power grid, so these may to stabilisation of current, voltage and frequency on the grid. This system is connected to back to back converter through a DC-DC converter (buck-boost). For the rotor speed control on induction generator, the strategy is based on direct torque control. While, for the grid side converter is employed the technique of voltage oriented control. For the battery bank voltage control is used on DC-link voltage and battery current flow, through PI type controllers. With the new technological developments in the keys of power, DC converters topologies are presented as the Z-source inverter, this type converter fixes some limitations of the converter back to back, with the characteristics of buck-boost voltage, without the use of switching devices, allowed short-circuits on converter, using new modulation techniques, and reduces the amount injected harmonic to power grid. The studies were performed by means of computer simulation techniques using mathematical models of studied system to validate the control strategies employed in different operating conditions. For the simulations was used the computational tool SimPowerSystems R do Matlab/Simulink R .
Tahat, M. A. "Thermo-chemical energy storage system." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260146.
Full textChang, Xiao. "Supercapacitor based energy storage system." Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25509.
Full textRanjith, Adam. "Thermal Energy Storage System Construction." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264530.
Full textInom ramverket för 2020 PUPM HEAT projektet kommer tre olika typer av värmeenergilagrings enheter tillverkas och analyseras vid energikraftverket IREN i Moncalieri, Italien. KTH kommer att assistera detta projekt genom att sätta upp en anläggning med tre liknande värmeenergilagrings enheter i mindre dimensioner som kommer konstrueras och analyseras. Dess data kommer sedan användas som riktlinje för att tillverka de större värmeenergilagringsenheterna i IREN. Den första enheten som tillverkas är en värmeväxlare som bygger på en ny version av latent energilagring. Den kommer att bestå av parallella lager av spiral formade koppar rör som fyller en tank. Tomrummet som blir över kommer att fyllas upp av fasändrings material (PCM). Genom att injicera varmt vatten i systemet kommer PCM:et att byta fas, vilket resulterar i att värmeenergin lagras i systemet. När sedan kallt vatten injiceras kan den sparade energin bli utvunnen. Den här rapporten kommer att presentera designen till tank kåpan såväl som den inre strukturen med kopparrör som behövs till värmeväxlaren. Resultatet ska möjliggöra beställning av alla delar som behövs för att konstruera värmeväxlaren.
Degnon, Mawuena. "Étude des commutateurs semi-conducteurs à ouverture destinés à des applications de puissance pulsée avec des tensions de sortie allant jusqu'à 500 kV." Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04685830.
Full textIn pulsed power systems, inductive energy storage has an advantage over capacitive storage because of its higher energy density. Exploiting this advantage requires the use of an opening switch to generate the voltage pulse. Moreover, the growing need for reliable pulsed power generators, particularly for industrial applications, strongly supports the adoption of solid-state solutions. The Semiconductor Opening Switch (SOS) diode developed in the 1990s at the Institute of Electrophysics in Russia is an ideal candidate for solid-state opening switching because of its ability to reliably generate high-power pulses at high repetition rates while offering long lifetime and maintenance-free operation. However, the lack of SOS diode manufacturers prevents their widespread use. This thesis is therefore devoted to the study of off-the-shelf (OTS) diodes capable of rapidly switching high currents and generating nanosecond voltages of up to 500 kV. The research includes the investigation of various diode types including rectifier, avalanche, fast recovery, and transient voltage suppression (TVS) diodes as opening switches in comparison with state-of-the-art SOS diodes. Low, medium, and high-energy (25 mJ, 10 J, and 40 J respectively) test benches are developed for the experiments. Their circuits use a single magnetic element – a saturable pulse transformer – resulting in high energy efficiency. Several nanocrystalline cores are examined for optimum transformer performance at an energy of 10 J. Among the diodes investigated at 25 mJ and 10 J energy, the TVS and rectifying diodes stand out particularly promising with nanosecond switching time and generated voltages in the kilovolt range. Finally, a 40 J pulsed power generator prototype (GO-SSOS) based on an OTS opening switch consisting of rectifier diodes is developed. The GO-SSOS achieves a peak power of more than 300 MW with an energy efficiency ranging from 35% to 70% depending on the load value. Across a 1 kΩ load, the voltage pulse generated reaches 500 kV amplitude with a rise time of 36 ns and a pulse width of 80 ns. The system shows high reproducibility at a repetition rate of 60 Hz and is used to demonstrate a corona discharge application. The work proves the reliability of the OTS diodes in SOS mode, revealing no degradation after thousands of pulses. It also offers the prospect of using this technology in industrial applications such as electron-beam sterilization
Thaicham, Pruitipong. "Fluidised-MCPCM glazed energy storage system." Thesis, University of Nottingham, 2004. http://eprints.nottingham.ac.uk/11057/.
Full textAbbey, Chad Michel. "Energy storage system optimization and control with wind energy." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66694.
Full textCette thèse propose une méthodologie pour la planification, l'utilisation et la commande d'un système de stockage d'énergie permettant l'intégration de l'énergie éolienne. Utilisant comme étude de cas un réseau autonome alimenté par un système éolien-diesel, les différentes étapes de la conception et la mise en oeuvre sont détaillées. Premièrement, une étude de planification à long terme pour le dimensionnement de la puissance nominale et de la capacité énergétique du stockage est présentée, basée sur les méthodes d'optimisation stochastique. La formulation est ensuite adaptée à une commande sur une base horaire et les résultats sont comparés, au niveau de l'énergie et de la quantité d'énergie utilisée, aux résultats obtenus dans l'étude de planification. Les résultats obtenus par optimisation du système sont utilisés dans l'entrainement d'un réseau de neurones artificiels, afin de produire une commande qui capte les règles inhérentes au système, utilisant l'intelligence artificielle. Le stockage d'énergie est réalisé par un système de stockage à deux niveaux et une structure de commande appropriée à plusieurs niveaux est proposée et adaptée pour un système éolien-diesel, comme premier niveau d'une commande hiérarchique. La performance du système est évaluée par simulation et certains résultats ont été validés avec un banc d'essai. Celui-ci consiste à des convertisseurs électroniques intégrés avec une représentation par simulation temps réel du système. Les résultats obtenus concordent avec les résultats de simulation et confirment que la commande proposée est réalisable.
Books on the topic "Inductive energy storage system"
K, Sood Pradeep, and Lewis Research Center, eds. Study of the generator/motor operation of induction machines in a high frequency link space power system. Madison, Wis: University of Wisconsin, [Dept. of Electrical and Computer Engineering, 1987.
Find full textRaza, Stephen Tsvangirayi. Compressed-air energy storage system analysis. Sudbury, Ont: Laurentian University, School of Engineering, 1993.
Find full textC, Willhoite Bryon, Ommering Gert van, and Lewis Research Center, eds. Energy storage and thermal control system design status. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.
Find full textSohn, C. W. Chilled water storage cooling system at Fort Jackson, SC. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1998.
Find full textInstitution of Engineering and Technology and Knovel (Firm), eds. Energy storage for power systems. 2nd ed. Stevenage, U.K: Institution of Engineering and Technology, 2011.
Find full textE, Kascak Peter, and NASA Glenn Research Center, eds. DC bus regulation with a flywheel energy storage system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textE, Kascak Peter, and NASA Glenn Research Center, eds. DC bus regulation with a flywheel energy storage system. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textSimpson, Andrew. Energy storage system considerations for grid-charged hybrid electric vehicles. Washington, D.C.]: U.S. Dept. of Energy, National Renewable Energy Laboratory, Office of Energy Efficiency & Renewable Energy, 2005.
Find full textE, Coles-Hamilton Carolyn, Lacy Dovie E, and United States. National Aeronautics and Space Administration., eds. Impact of thermal energy storage properties on solar dynamic space power conversion system mass. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Find full textGevorgian, V. Ramping performance analysis of the Kahuku wind-energy battery storage system. Golden, CO: National Renewable Energy Laboratory, 2013.
Find full textBook chapters on the topic "Inductive energy storage system"
Abu-Siada, Ahmed, Mohammad A. S. Masoum, Yasser Alharbi, Farhad Shahnia, and A. M. Shiddiq Yunus. "Superconducting Magnetic Energy Storage, a Promising FACTS Device for Wind Energy Conversion Systems." In Recent Advances in Renewable Energy, 49–86. UAE: Bentham Science Publishers Ltd., 2017. http://dx.doi.org/10.2174/9781681085425117020004.
Full textJunker, M., and W. Pfeiffer. "Instabilities of Discharges and Their Application for Opening Switches in Inductive Energy Storage Systems." In Gaseous Dielectrics VII, 387–92. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1295-4_73.
Full textDerkouche, Djamel, and K. Kouzi. "Intelligent Flywheel Energy Storage System Speed Integrated to the Wind Energy Conversion System Based on Multiphase Induction Machine." In Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities, 688–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92038-8_69.
Full textDjamel, Derkouche, and Kouzi Katia. "Robust Control of Multiphase Induction Generator Equipped with Fuzzy Flywheel Energy Storage System." In Lecture Notes in Networks and Systems, 501–10. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21216-1_52.
Full textSingh, Pradeep, Krishan Arora, and Umesh C. Rathore. "Energy Storage Systems with Artificial Intelligence Techniques in Doubly Fed Induction Generator Based Wind Energy Conversion System — An Overview." In Intelligent Circuits and Systems for SDG 3 – Good Health and well-being, 403–18. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003521716-44.
Full textBouras, Meriem, and Katia Kouzi. "Analysis of Novel Flywheel Energy Storage System Based on Dual Stator Induction Machine Incorporated in Wind Energy Systems Using Intelligent Approach." In Artificial Intelligence in Renewable Energetic Systems, 357–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73192-6_37.
Full textDaoud, Mohamed, and Atif Iqbal. "Vector Control of Dual 3-ϕ Induction Machine-Based Flywheel Energy Storage System Using Fuzzy Logic Controllers." In Studies in Big Data, 339–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4412-9_20.
Full textHissel, Daniel, Denis Candusso, and Marie-Cécile Pera. "Fuel Cells: System Operation." In Energy Storage, 153–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557808.ch7.
Full textHonig, Emanuel M. "Inductive Energy Storage Circuits and Switches." In Opening Switches, 1–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1929-0_1.
Full textPrice, A. C. R. "The RegenesysTMEnergy Storage System." In Renewable Energy Storage, 11–24. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118903070.ch2.
Full textConference papers on the topic "Inductive energy storage system"
Akiyama, Hidenori, Tsuyoshi Sueda, Ulf Katschinski, Sunao Katsuki, and Sadao Maeda. "Pulsed power generators using an inductive energy storage system." In Laser interaction and related plasma phenomena: 12th international conference. AIP, 1996. http://dx.doi.org/10.1063/1.50388.
Full textJianxun Jin and Xiaoyuan Chen. "HTS inductive magnetic energy storage with power control technology." In APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2008. http://dx.doi.org/10.1109/apccas.2008.4746414.
Full textTakaki, Koichi, Hidekazu Kirihara, Chiharu Noda, Seiji Mukaigawa, and Tamiya Fujiwara. "Production of Atmospheric-Pressure Glow Using Inductive Energy Storage System Pulsed Power Generator." In 2006 Twenty-Seventh International Power Modulator Symposium. IEEE, 2006. http://dx.doi.org/10.1109/modsym.2006.365251.
Full textKamatani, Masaki, Satoshi Ihara, Saburoh Satoh, and Chobei Yamabe. "Application of an inductive energy storage pulsed-power generation with POS for a laser system." In Advanced High-Power Lasers and Applications, edited by Marek Osinski, Howard T. Powell, and Koichi Toyoda. SPIE, 2000. http://dx.doi.org/10.1117/12.380862.
Full textSenthil, K., S. Mitra, Archana Sharma, K. V. Nagesh, and D. P. Chakravarthy. "Experimental results of inductive energy storage pulsed power system using exploding wire as an opening switch." In 2011 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2011. http://dx.doi.org/10.1109/ivec.2011.5747084.
Full textIdjdarene, K., D. Rekioua, T. Rekioua, and A. Tounzi. "Vector Control of Autonomous Induction Generator with Battery Storage System." In 2017 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2017. http://dx.doi.org/10.1109/irsec.2017.8477323.
Full textIbrahima, Kone, and Chengyong Zhao. "Modeling of wind energy conversion system using doubly fed induction generator equipped batteries energy storage system." In 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE, 2011. http://dx.doi.org/10.1109/drpt.2011.5994187.
Full textMinnaert, Ben, Bart Thoen, David Plets, Wout Joseph, and Nobby Stevens. "Optimal energy storage solution for an inductively powered system for dairy cows." In 2017 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2017. http://dx.doi.org/10.1109/wpt.2017.7953805.
Full textKruglov, Sergey A., Nikolai M. Vereschagin, Sergey M. Karabanov, Andrei A. Serezhin, Dmitriy V. Suvorov, Sergei G. Shatilov, and Kirill D. Agaltsov. "Issues of Application of High-Voltage Pulse Generators with Inductive Energy Storage and Gas-Discharge Current Interrupters." In 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2021. http://dx.doi.org/10.1109/eeeic/icpseurope51590.2021.9584703.
Full textL. Forero, Fabi´an, Ricardo Alzate, Mar´ıa A. Mantilla, and Rodolpho V. Neves. "Off-Grid Renewable Generation Control without Energy Storage." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1309.
Full textReports on the topic "Inductive energy storage system"
Gonder, J., J. Cosgrove, Y. Shi, A. Saxon, and A. Pesaran. Lower-Energy Energy Storage System (LEESS) Component Evaluation. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159783.
Full textThomas, Janice, and Frank Ervin. Modular Energy Storage System for Alternative Energy Vehicles. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1064406.
Full textBalducci, Patrick J., Md Jan E. Alam, Thomas E. McDermott, Vanshika Fotedar, Xu Ma, Di Wu, Bilal Ahmad Bhatti, et al. Nantucket Island Energy Storage System Assessment. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1564262.
Full textWalker, Andy, and Jal Desai. Battery Energy Storage System Evaluation Method. Office of Scientific and Technical Information (OSTI), January 2024. http://dx.doi.org/10.2172/2279165.
Full textMeth, M. SYSTEM ANALYSIS OF ELECTRICAL ENERGY STORAGE SYSTEMS. Office of Scientific and Technical Information (OSTI), August 1988. http://dx.doi.org/10.2172/1150507.
Full textLu, Ning, Mark R. Weimar, Yuri V. Makarov, Jian Ma, and Vilayanur V. Viswanathan. The Wide-Area Energy Storage and Management System ? Battery Storage Evaluation. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/969906.
Full textSaeed, Rami, and Terry Morton. Advanced Reactors Integrated Energy System - Thermal Energy Storage Island Design. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2293481.
Full textWu, Di, Chunlian Jin, Patrick J. Balducci, and Michael CW Kintner-Meyer. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1114904.
Full textRose, David Martin, Benjamin L. Schenkman, and Daniel R. Borneo. Test report : Raytheon / KTech RK30 Energy Storage System. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1115335.
Full textSingh, D., W. Yu, W. Zhao, T. Kim, D. M. France, and R. K. Smith. High Efficiency Thermal Energy Storage System for CSP. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1500002.
Full text