Academic literature on the topic 'Indoor robotics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Indoor robotics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Indoor robotics"
Cooper, Martin. "Paw-Sitive Reception for Robot Guide Dog." ITNOW 66, no. 2 (May 20, 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048a.
Full textCooper, Martin. "Paw-Sitive Reception for Robot Guide Dog." ITNOW 66, no. 2 (May 1, 2024): 30–31. http://dx.doi.org/10.1093/itnow/bwae048.
Full textWang, Jianguo, Shiwei Lin, and Ang Liu. "Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review." Biomimetics 8, no. 4 (August 7, 2023): 350. http://dx.doi.org/10.3390/biomimetics8040350.
Full textDahri, Fida Hussain, Ghulam E. Mustafa Abro, Nisar Ahmed Dahri, Asif Ali Laghari, and Zain Anwar Ali. "Advancing Robotic Automation with Custom Sequential Deep CNN-Based Indoor Scene Recognition." IECE Transactions on Intelligent Systematics 2, no. 1 (December 27, 2024): 14–26. https://doi.org/10.62762/tis.2025.613103.
Full textCaro, Luis, Javier Correa, Pablo Espinace, Daniel Langdon, Daniel Maturana, Ruben Mitnik, Sebastian Montabone, et al. "Indoor Mobile Robotics at Grima, PUC." Journal of Intelligent & Robotic Systems 66, no. 1-2 (July 20, 2011): 151–65. http://dx.doi.org/10.1007/s10846-011-9604-2.
Full textFrías, E., J. Balado, L. Díaz-Vilariño, and H. Lorenzo. "POINT CLOUD ROOM SEGMENTATION BASED ON INDOOR SPACES AND 3D MATHEMATICAL MORPHOLOGY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-2020 (September 3, 2020): 49–55. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w1-2020-49-2020.
Full textJimenez Builes, Jovani Alberto, Gustavo Acosta Amaya, and Julián López Velásquez. "Autonomous navigation and indoor mapping for a service robot." Investigación e Innovación en Ingenierías 11, no. 2 (September 22, 2023): 28–38. http://dx.doi.org/10.17081/invinno.11.2.6459.
Full textTajti, Ferenc, Géza Szayer, Bence Kovács, and Mauricio A. P. Burdelis. "Mobile Robot Performance Analysis for Indoor Robotics." Periodica Polytechnica Civil Engineering 59, no. 2 (2015): 123–31. http://dx.doi.org/10.3311/ppci.7759.
Full textVekhter, Joshua, and Joydeep Biswas. "Responsible Robotics: A Socio-Ethical Addition to Robotics Courses." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (June 26, 2023): 15877–85. http://dx.doi.org/10.1609/aaai.v37i13.26885.
Full textMANO, Marsel, and Genci CAPI. "1A2-D03 Adaptive navigation of a brain controlled robotic wheelchair in an indoor environment(Rehabilitation Robotics and Mechatronics (2))." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2013 (2013): _1A2—D03_1—_1A2—D03_4. http://dx.doi.org/10.1299/jsmermd.2013._1a2-d03_1.
Full textDissertations / Theses on the topic "Indoor robotics"
Vojta, Jakub. "Bezpečnost provozu mobilních robotů v indoor prostředí." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-232641.
Full textPettersson, Rasmus. "Continuous localization in indoor shifting environment." Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-326270.
Full textPerko, Eric Michael. "Precision Navigation for Indoor Mobile Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1345513785.
Full textYang, Yin. "Nonlinear control and state estimation of holonomic indoor airship." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106573.
Full textTrois méthodes optimales de commande à retour d'état complet sont proposées ici afin d'accomplir les exigences du vol intérieur d'un ballon dirigeable holonomique, et ceci, en temps réel. Les manoeuvres exigées incluent le maintien d'une position stationnaire, le mouvement vers un point et suivant une trajectoire continue. Pour la régularisation, un modèle quasi-stationnaire du ballon est assumé et un régulateur quadratique-linéaire (LQR) à horizon infini est utilisé dans un mode d'échelonnage des gains. De plus, les mouvements vers un point sont accomplis en se basant sur le retour d'état pour résoudre l'équation de Riccati qui en dépend et pour compenser la dynamique non-linéaire. Finalement, les perturbations autour d'une trajectoire continue sont rejetées par une méthode dédiée afin de suivre cette trajectoire. Preuves expérimentales et simulées à l'appui, ces méthodes de commande démontrent des avantages significatifs par rapport aux méthodes classiques de commande porportionelle-dérivée (PD), et ceci, avec des exigences modérées sur le système informatique. Ce travail de thèse démontre aussi l'utilisation d'un filtre de Kalman non-parfumé (UKF) pour estimer l'état du système. Cette estimation produit le retour d'ètat complet nècessaire aux mèthodes de commande et à d'autres tâches de navigation en combinant les mesures de différents systèmes enbarqués (système inertiel et télédétecteur par laser) et non-embarqués (système de capture du mouvement à l'infra-rouge). Une méthode de fusion sensorielle à séparation partielle est utilisée et validée expérimentalement.
Gandhi, Anall Vijaykumar. "An Accuracy Improvement Method for Cricket Indoor Location System." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1369316496.
Full textValdmanis, Mikelis. "Localization and navigation of a holonomic indoor airship using on-board sensors." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97204.
Full textDeux approches de navigation et localisation d'un drone intérieur équipé de capteurs et capable de six degrés de liberté seront présentées. Premièrement, des vols ayant comme simple but d'éviter des obstacles et de naviguer le drone ont été exécutés à l'aide d'une caméra vidéo. Deux algorithmes de flux optique ont été étudiés. Le flux optique estime le déplacement de l'environnement relatif à la caméra en calculant les variations dans la clarté de l'image. Les traits caractéristiques de l'environnement, comme les obstacles, sont alors déterminés en se basant sur le champ de flux optique. Les résultats démontrent que ni l'un ni l'autre des algorithmes sont adéquats pour naviguer le drone.La localisation du drone dans une représentation d'état, caractérisée par trois degrés de liberté en translation et par la vitesse de lacet, ainsi que dans un environnement connu a été accomplie en utilisant l'algorithme avancé de Localisation Monte Carlo (MCL) et un télémètre laser. MCL est un algorithme probabiliste qui génère aléatoirement plusieurs estimés, nommés particules, d'états potentiels du drone. À chaque incrément de temps, la position de chaque particule est ajustée selon les déplacements estimés du drone et ces particules sont pondérées en comparant les valeurs estimées du capteur avec les valeurs actuelles. Ensuite, un nouvel ensemble de particules est créé à partir du précédent en considérant la pondération des particules. Après plusieurs incréments de temps, l'ensemble converge vers la position réelle du drone. L'algorithme MCL accompli alors une localisation globale, un suivi de position et une résolution du problème du robot « kidnappé ». L'analyse hors-ligne des résultats avec l'algorithme MCL est présentée et les possibilités d'implémenter cette méthode en ligne sont discutées.
Szenher, Matthew D. "Visual homing in dynamic indoor environments." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3193.
Full textFernandez, labrador Clara. "Indoor Scene Understanding using Non-Conventional Cameras." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK037.
Full textHumans understand environments effortlessly, under a wide variety of conditions, by the virtue of visual perception. Computer vision for similar visual understanding is highly desirable, so that machines can perform complex tasks by interacting with the real world, to assist or entertain humans. In this regard, we are particularly interested in indoor environments, where humans spend nearly all their lifetime.This thesis specifically addresses the problems that arise during the quest of the hierarchical visual understanding of indoor scenes.On the side of sensing the wide 3D world, we propose to use non-conventional cameras, namely 360º imaging and 3D sensors. On the side of understanding, we aim at three key aspects: room layout estimation; object detection, localization and segmentation; and object category shape modeling, for which novel and efficient solutions are provided.The focus of this thesis is on the following underlying challenges. First, the estimation of the 3D room layout from a single 360º image is investigated, which is used for the highest level of scene modelling and understanding. We exploit the assumption of Manhattan World and deep learning techniques to propose models that handle invisible parts of the room on the image, generalizing to more complex layouts. At the same time, new methods to work with 360º images are proposed, highlighting a special convolution that compensates the equirectangular image distortions.Second, considering the importance of context for scene understanding, we study the problem of object localization and segmentation, adapting the problem to leverage 360º images. We also exploit layout-objects interaction to lift detected 2D objects into the 3D room model.The final line of work of this thesis focuses on 3D object shape analysis. We use an explicit modelling of non-rigidity and a high-level notion of object symmetry to learn, in an unsupervised manner, 3D keypoints that are order-wise correspondent as well as geometrically and semantically consistent across objects in a category.Our models advance state-of-the-art on the aforementioned tasks, when each evaluated on respective reference benchmarks
Xiao, Zhuoling. "Robust indoor positioning with lifelong learning." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:218283f1-e28a-4ad0-9637-e2acd67ec394.
Full textSelin, Magnus. "Efficient Autonomous Exploration Planning of Large-Scale 3D-Environments : A tool for autonomous 3D exploration indoor." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163329.
Full textBooks on the topic "Indoor robotics"
M, Evans J., and National Institute of Standards and Technology (U.S.), eds. Three dimensional data capture in indoor environments for autonomous navigation. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Find full text1942-, Evans John M., and National Institute of Standards and Technology (U.S.), eds. Three dimensional data capture in indoor environments for autonomous navigation. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Find full textFlorczyk, Stefan. Robot Vision: Video-Based Indoor Exploration with Autonomous and Mobile Robots. Wiley & Sons, Incorporated, John, 2006.
Find full textFLORCZYK, STEFAN. Robot Vision: Video-Based Indoor Exploration with Autonomous and Mobile Robots. Not Avail, 2005.
Find full textSanfeliu, Alberto, and Juan Andrade Cetto. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building. Springer, 2010.
Find full textAndrade-Cetto, Juan, and Alberto Sanfeliu. Environment Learning for Indoor Mobile Robots: A Stochastic State Estimation Approach to Simultaneous Localization and Map Building (Springer Tracts in Advanced Robotics). Springer, 2006.
Find full textZufferey, Jean-Christophe. Bio-Inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers. Taylor & Francis Group, 2008.
Find full textEnvironment Learning for Indoor Mobile Robots. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/11418382.
Full textAndrade-Cetto, Alberto Sanfeliu Juan. Environment Learning for Indoor Mobile Robots. Springer, 2009.
Find full textZufferey, Jean-Christophe. Bio-Inspired Flying Robots: Experimental Synthesis of Autonomous Indoor Flyers. Taylor & Francis Group, 2008.
Find full textBook chapters on the topic "Indoor robotics"
Zhang, Rui, Wanyue Jiang, Zhonghao Zhang, Yuhan Zheng, and Shuzhi Sam Ge. "Indoor Mobile Robot Socially Concomitant Navigation System." In Social Robotics, 485–95. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24667-8_43.
Full textAh Sen, Nick, Pamela Carreno-Medrano, and Dana Kulić. "Human-Aware Subgoal Generation in Crowded Indoor Environments." In Social Robotics, 50–60. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24667-8_5.
Full textSprunk, Christoph, Jörg Röwekämper, Gershon Parent, Luciano Spinello, Gian Diego Tipaldi, Wolfram Burgard, and Mihai Jalobeanu. "An Experimental Protocol for Benchmarking Robotic Indoor Navigation." In Experimental Robotics, 487–504. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23778-7_32.
Full textLiu, Zhongzheng, Zhigang Liu, and Bingheng Lu. "Error Compensation of Indoor GPS Measurement." In Intelligent Robotics and Applications, 612–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88518-4_66.
Full textZhu, Huishen, Brenton Leighton, Yongbo Chen, Xijun Ke, Songtao Liu, and Liang Zhao. "Indoor Navigation System Using the Fetch Robot." In Intelligent Robotics and Applications, 686–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27538-9_59.
Full textShen, Shaojie, and Nathan Michael. "State Estimation for Indoor and Outdoor Operation with a Micro-Aerial Vehicle." In Experimental Robotics, 273–88. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00065-7_20.
Full textYang, Dongjun, and Younggoo Kwon. "The Integrated Indoor Positioning by Considering Spatial Characteristics." In Intelligent Robotics and Applications, 246–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65298-6_23.
Full textHenry, Peter, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. "RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments." In Experimental Robotics, 477–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-28572-1_33.
Full textUrcola, P., M. T. Lorente, J. L. Villarroel, and L. Montano. "Seamless Indoor-Outdoor Robust Localization for Robots." In ROBOT2013: First Iberian Robotics Conference, 275–87. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03653-3_21.
Full textBrooks, Alex, Alexei Makarenko, Tobias Kaupp, Stefan Williams, and Hugh Durrant-Whyte. "Implementation of an Indoor Active Sensor Network." In Springer Tracts in Advanced Robotics, 397–406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11552246_38.
Full textConference papers on the topic "Indoor robotics"
Dias, André, João J. Martins, José Antunes, André Moura, and José Almeida. "MANTIS: UAV for Indoor Logistic Operations." In 2024 7th Iberian Robotics Conference (ROBOT), 1–7. IEEE, 2024. https://doi.org/10.1109/robot61475.2024.10796935.
Full textSheng, Diwei, Anbang Yang, John-Ross Rizzo, and Chen Feng. "NYC-Indoor-VPR: A Long-Term Indoor Visual Place Recognition Dataset with Semi-Automatic Annotation." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 14853–59. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610564.
Full textMartins, João J., Alexandre Amaral, and André Dias. "Deep Reinforcement Learning Framework for UAV Indoor Navigation." In 2024 7th Iberian Robotics Conference (ROBOT), 1–8. IEEE, 2024. https://doi.org/10.1109/robot61475.2024.10796906.
Full textYi, Zhaoguang, Xiangyu Wen, Qiyue Xia, Peize Li, Francisco Zampella, Firas Alsehly, and Chris Xiaoxuan Lu. "Multimodal Indoor Localization Using Crowdsourced Radio Maps." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 13666–72. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610683.
Full textJiang, Fan, David Caruso, Ashutosh Dhekne, Qi Qu, Jakob Julian Engel, and Jing Dong. "Robust Indoor Localization with Ranging-IMU Fusion." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 11963–69. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611274.
Full textQi, Josiah Yang, Lai Chean Hung, Hudyjaya Siswoyo Jo, Justin Sia Wei Kiat, Evon Lim Wan Ting, and Michelle Dunn. "A Review of Sustainable Farming with Robotics in Indoor Greenhouse Environments." In 2024 IEEE 12th Region 10 Humanitarian Technology Conference (R10-HTC), 1–6. IEEE, 2024. https://doi.org/10.1109/r10-htc59322.2024.10778747.
Full textShu, Manli, Le Xue, Ning Yu, Roberto Martín-Martín, Caiming Xiong, Tom Goldstein, Juan Carlos Niebles, and Ran Xu. "Hierarchical Point Attention for Indoor 3D Object Detection." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 4245–51. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610108.
Full textKwon, Obin, Dongki Jung, Youngji Kim, Soohyun Ryu, Suyong Yeon, Songhwai Oh, and Donghwan Lee. "WayIL: Image-based Indoor Localization with Wayfinding Maps." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 6274–81. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610480.
Full textZeng, Jing, Yanxu Li, Jiahao Sun, Qi Ye, Yunlong Ran, and Jiming Chen. "Autonomous Implicit Indoor Scene Reconstruction with Frontier Exploration." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 18041–47. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611382.
Full textTai, Beijia, Yangjie Wei, Guangyu Zhang, Yuqing He, and Siyao Cui. "Indoor Multi-Anchor Collaborative Localization for Unmanned Systems." In 2024 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1036–41. IEEE, 2024. https://doi.org/10.1109/robio64047.2024.10907434.
Full textReports on the topic "Indoor robotics"
Mekonnen, Bisrat, Benjamin Christie, Michael Paquette, and Garry Glaspell. 3D mapping and navigation using MOVEit. Engineer Research and Development Center (U.S.), June 2023. http://dx.doi.org/10.21079/11681/47179.
Full text