Journal articles on the topic 'Indoor photovoltaics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Indoor photovoltaics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ryu, Hwa Sook, Song Yi Park, Tack Ho Lee, Jin Young Kim, and Han Young Woo. "Recent progress in indoor organic photovoltaics." Nanoscale 12, no. 10 (2020): 5792–804. http://dx.doi.org/10.1039/d0nr00816h.
Full textChen, Chun-Hao, Zhao-Kui Wang, and Liang-Sheng Liao. "Perspective on perovskite indoor photovoltaics." Applied Physics Letters 122, no. 13 (March 27, 2023): 130501. http://dx.doi.org/10.1063/5.0147747.
Full textZhang, Yue, Chunhui Duan, and Liming Ding. "Indoor organic photovoltaics." Science Bulletin 65, no. 24 (December 2020): 2040–42. http://dx.doi.org/10.1016/j.scib.2020.08.030.
Full textAoki, Yoichi. "Photovoltaic performance of Organic Photovoltaics for indoor energy harvester." Organic Electronics 48 (September 2017): 194–97. http://dx.doi.org/10.1016/j.orgel.2017.05.023.
Full textWang, Peng, Wei Wang, Ling Jia, Chenglong Wang, Wendi Zhang, and Lei Huang. "APPLICATION ANALYSIS OF PHOTOVOLTAIC INTEGRATED SHADING DEVICES CONSIDERING INDOOR ENVIRONMENT AND ENERGY CHANGE IN GREEN BUILDINGS." Journal of Green Building 19, no. 3 (August 1, 2024): 71–90. http://dx.doi.org/10.3992/jgb.19.3.71.
Full textPeng, Yueheng, Tahmida N. Huq, Jianjun Mei, Luis Portilla, Robert A. Jagt, Luigi G. Occhipinti, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye, and Vincenzo Pecunia. "Indoor Photovoltaics: Lead‐Free Perovskite‐Inspired Absorbers for Indoor Photovoltaics (Adv. Energy Mater. 1/2021)." Advanced Energy Materials 11, no. 1 (January 2021): 2170005. http://dx.doi.org/10.1002/aenm.202170005.
Full textKim, Soyeon, Muhammad Jahandar, Jae Hoon Jeong, and Dong Chan Lim. "Recent Progress in Solar Cell Technology for Low-Light Indoor Applications." Current Alternative Energy 3, no. 1 (November 28, 2019): 3–17. http://dx.doi.org/10.2174/1570180816666190112141857.
Full textAlkhalayfeh, Muheeb Ahmad, Azlan Abdul Aziz, Mohd Zamir Pakhuruddin, Khadijah Mohammedsaleh M. Katubi, and Neda Ahmadi. "Recent Development of Indoor Organic Photovoltaics." physica status solidi (a) 219, no. 5 (December 26, 2021): 2100639. http://dx.doi.org/10.1002/pssa.202100639.
Full textFeng, Mingjie, Chuantian Zuo, Ding-Jiang Xue, Xianhu Liu, and Liming Ding. "Wide-bandgap perovskites for indoor photovoltaics." Science Bulletin 66, no. 20 (October 2021): 2047–49. http://dx.doi.org/10.1016/j.scib.2021.07.012.
Full textZiuku, Sosten, and Edson L. Meyer. "Electrical performance results of an energy efficient building with an integrated photovoltaic system." Journal of Energy in Southern Africa 21, no. 3 (August 1, 2010): 2–8. http://dx.doi.org/10.17159/2413-3051/2010/v21i3a3254.
Full textMasoudinejad, Mojtaba. "Data-Sets for Indoor Photovoltaic Behavior in Low Lighting Conditions." Data 5, no. 2 (March 28, 2020): 32. http://dx.doi.org/10.3390/data5020032.
Full textVincent, Premkumar, Jae Won Shim, Jaewon Jang, In Man Kang, Philippe Lang, Jin-Hyuk Bae, and Hyeok Kim. "The Crucial Role of Quaternary Mixtures of Active Layer in Organic Indoor Solar Cells." Energies 12, no. 10 (May 15, 2019): 1838. http://dx.doi.org/10.3390/en12101838.
Full textBiswas, Swarup, Yongju Lee, Hyojeong Choi, Hyeong Won Lee, and Hyeok Kim. "Progress in organic photovoltaics for indoor application." RSC Advances 13, no. 45 (2023): 32000–32022. http://dx.doi.org/10.1039/d3ra02599c.
Full textLee, Harrison K. H., Zhe Li, James R. Durrant, and Wing C. Tsoi. "Is organic photovoltaics promising for indoor applications?" Applied Physics Letters 108, no. 25 (June 20, 2016): 253301. http://dx.doi.org/10.1063/1.4954268.
Full textLi, Meng, Femi Igbari, Zhao‐Kui Wang, and Liang‐Sheng Liao. "Indoor Thin‐Film Photovoltaics: Progress and Challenges." Advanced Energy Materials 10, no. 28 (June 9, 2020): 2000641. http://dx.doi.org/10.1002/aenm.202000641.
Full textMularso, Kelvian T., Ji-Young Jeong, Gill Sang Han, and Hyun Suk Jung. "Recent Strategies for High-Performing Indoor Perovskite Photovoltaics." Nanomaterials 13, no. 2 (January 7, 2023): 259. http://dx.doi.org/10.3390/nano13020259.
Full textHo, Johnny Ka Wai, Hang Yin, and Shu Kong So. "From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics." Journal of Materials Chemistry A 8, no. 4 (2020): 1717–23. http://dx.doi.org/10.1039/c9ta11894b.
Full textCutting, Christie L., Monojit Bag, and D. Venkataraman. "Indoor light recycling: a new home for organic photovoltaics." Journal of Materials Chemistry C 4, no. 43 (2016): 10367–70. http://dx.doi.org/10.1039/c6tc03344j.
Full textWajidh, Mohamed Nafeer, Nour Attallah Issa, Kam Sheng Lau, Sin Tee Tan, Chin Hua Chia, Muslizainun Mustapha, Mohammad Hafizuddin Hj Jumali, and Chi Chin Yap. "Enhancing Indoor Photovoltaic Performance of Inverted Type Organic Solar Cell by Controlling Photoactive Layer Solution Concentration." Sains Malaysiana 53, no. 10 (October 31, 2024): 3511–20. http://dx.doi.org/10.17576/jsm-2024-5310-23.
Full textTorimtubun, Alfonsina Abat Amelenan, José G. Sánchez, Josep Pallarès, and Lluis F. Marsal. "A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics." Sustainable Energy & Fuels 4, no. 7 (2020): 3378–87. http://dx.doi.org/10.1039/d0se00353k.
Full textXu, Xiang, Wei Liu, Xiaoyan Luo, Hongbo Chen, Qingya Wei, Jun Yuan, and Yingping Zou. "An Overview of High‐Performance Indoor Organic Photovoltaics." ChemSusChem 14, no. 17 (June 26, 2021): 3428–48. http://dx.doi.org/10.1002/cssc.202100386.
Full textPark, Song Yi, Chiara Labanti, Joel Luke, Yi‐Chun Chin, and Ji‐Seon Kim. "Organic Bilayer Photovoltaics for Efficient Indoor Light Harvesting." Advanced Energy Materials 12, no. 3 (December 15, 2021): 2103237. http://dx.doi.org/10.1002/aenm.202103237.
Full textGhosh, Paheli, Jochen Bruckbauer, Carol Trager-Cowan, and Lethy Krishnan Jagadamma. "Crystalline grain engineered CsPbIBr2 films for indoor photovoltaics." Applied Surface Science 592 (August 2022): 152865. http://dx.doi.org/10.1016/j.apsusc.2022.152865.
Full textSrivishnu, K. S., Manne Naga Rajesh, Seelam Prasanthkumar, and Lingamallu Giribabu. "Photovoltaics for indoor applications: Progress, challenges and perspectives." Solar Energy 264 (November 2023): 112057. http://dx.doi.org/10.1016/j.solener.2023.112057.
Full textOtsuka, Munechika, Yuki Kurokawa, Yi Ding, Firman Bagja Juangsa, Shogo Shibata, Takehito Kato, and Tomohiro Nozaki. "Silicon nanocrystal hybrid photovoltaic devices for indoor light energy harvesting." RSC Advances 10, no. 21 (2020): 12611–18. http://dx.doi.org/10.1039/d0ra00804d.
Full textLiu, I. Ping, Yu-Syuan Cho, Hsisheng Teng, and Yuh-Lang Lee. "Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%." Journal of Materials Chemistry A 8, no. 42 (2020): 22423–33. http://dx.doi.org/10.1039/d0ta07603a.
Full textArai, Ryota, Seiichi Furukawa, Narumi Sato, and Takuma Yasuda. "Organic energy-harvesting devices achieving power conversion efficiencies over 20% under ambient indoor lighting." Journal of Materials Chemistry A 7, no. 35 (2019): 20187–92. http://dx.doi.org/10.1039/c9ta06694b.
Full textHou, Xueyan, Yiwen Wang, Harrison Ka Hin Lee, Ram Datt, Nicolas Uslar Miano, Dong Yan, Meng Li, et al. "Indoor application of emerging photovoltaics—progress, challenges and perspectives." Journal of Materials Chemistry A 8, no. 41 (2020): 21503–25. http://dx.doi.org/10.1039/d0ta06950g.
Full textLiu, Xinlu, Ruiyu Tian, Zedong Xiong, Yang Liu, and Yinhua Zhou. "Theoretical efficiency limit and realistic losses of indoor organic and perovskite photovoltaics [Invited]." Chinese Optics Letters 21, no. 12 (2023): 120031. http://dx.doi.org/10.3788/col202321.120031.
Full textOpoku, Henry, Yun Hoo Kim, Ji Hyeon Lee, Hyungju Ahn, Jae-Joon Lee, Se-Woong Baek, and Jea Woong Jo. "A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics." Journal of Materials Chemistry A 9, no. 27 (2021): 15294–300. http://dx.doi.org/10.1039/d1ta03577k.
Full textGoo, Ji Soo, Jung-Hoon Lee, Sang-Chul Shin, Jin-Seong Park, and Jae Won Shim. "Undoped ZnO electrodes for low-cost indoor organic photovoltaics." Journal of Materials Chemistry A 6, no. 46 (2018): 23464–72. http://dx.doi.org/10.1039/c8ta08432g.
Full textLiu, I.-Ping, Yu-Syuan Cho, Hsisheng Teng, and Yuh-Lang Lee. "Correction: Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%." Journal of Materials Chemistry A 8, no. 45 (2020): 24214. http://dx.doi.org/10.1039/d0ta90261f.
Full textDing, Zicheng, Ruyan Zhao, Yingjian Yu, and Jun Liu. "All-polymer indoor photovoltaics with high open-circuit voltage." Journal of Materials Chemistry A 7, no. 46 (2019): 26533–39. http://dx.doi.org/10.1039/c9ta10040g.
Full textXie, Lin, Wei Song, Jinfeng Ge, Bencan Tang, Xiaoli Zhang, Tao Wu, and Ziyi Ge. "Recent progress of organic photovoltaics for indoor energy harvesting." Nano Energy 82 (April 2021): 105770. http://dx.doi.org/10.1016/j.nanoen.2021.105770.
Full textMuhammad, Bening Tirta, Shaoni Kar, Meera Stephen, and Wei Lin Leong. "Halide perovskite-based indoor photovoltaics: recent development and challenges." Materials Today Energy 23 (January 2022): 100907. http://dx.doi.org/10.1016/j.mtener.2021.100907.
Full textChen, Chia-Yuan, Zih-Hong Jian, Shih-Han Huang, Kun-Mu Lee, Ming-Hsuan Kao, Chang-Hong Shen, Jia-Min Shieh, et al. "Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting." Journal of Physical Chemistry Letters 8, no. 8 (April 10, 2017): 1824–30. http://dx.doi.org/10.1021/acs.jpclett.7b00515.
Full textCorazza, Michael, Frederik C. Krebs, and Suren A. Gevorgyan. "Lifetime of organic photovoltaics: Linking outdoor and indoor tests." Solar Energy Materials and Solar Cells 143 (December 2015): 467–72. http://dx.doi.org/10.1016/j.solmat.2015.07.037.
Full textShin, Sang-Chul, Young-Jun You, Ji Soo Goo, and Jae Won Shim. "In-depth interfacial engineering for efficient indoor organic photovoltaics." Applied Surface Science 495 (November 2019): 143556. http://dx.doi.org/10.1016/j.apsusc.2019.143556.
Full textYan, Nanfu, Chaowei Zhao, Shengyong You, Yuefeng Zhang, and Weiwei Li. "Recent progress of thin-film photovoltaics for indoor application." Chinese Chemical Letters 31, no. 3 (March 2020): 643–53. http://dx.doi.org/10.1016/j.cclet.2019.08.022.
Full textLIM, Dong Chan. "Artificial Light Driven Power Generation and IoT Device Convergence." Physics and High Technology 30, no. 10 (October 29, 2021): 2–12. http://dx.doi.org/10.3938/phit.30.030.
Full textYou, Young-Jun, Chang Eun Song, Quoc Viet Hoang, Yoonmook Kang, Ji Soo Goo, Doo-Hyun Ko, Jae-Joon Lee, Won Suk Shin, and Jae Won Shim. "Indoor Organic Photovoltaics: Highly Efficient Indoor Organic Photovoltaics with Spectrally Matched Fluorinated Phenylene-Alkoxybenzothiadiazole-Based Wide Bandgap Polymers (Adv. Funct. Mater. 27/2019)." Advanced Functional Materials 29, no. 27 (July 2019): 1970183. http://dx.doi.org/10.1002/adfm.201970183.
Full textJagadamma, Lethy Krishnan, and Shaoyang Wang. "Wide-Bandgap Halide Perovskites for Indoor Photovoltaics." Frontiers in Chemistry 9 (March 26, 2021). http://dx.doi.org/10.3389/fchem.2021.632021.
Full textYan, Bin, Xinsheng Liu, Wenbo Lu, Mingjie Feng, Hui-Juan Yan, Zongbao Li, Shunchang Liu, Cong Wang, Jin-Song Hu, and Ding-Jiang Xue. "Indoor photovoltaics awaken the world’s first solar cells." Science Advances 8, no. 49 (December 9, 2022). http://dx.doi.org/10.1126/sciadv.adc9923.
Full textWei, Zhouqing, Wenbo Lu, Zongbao Li, Mingjie Feng, Bin Yan, Jin-Song Hu, and Ding-Jiang Xue. "Low-cost and high-performance selenium indoor photovoltaics." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta04530g.
Full textJiang, Xueshi, Bernhard Siegmund, and Koen Vandewal. "Organic indoor PV: Vanishing surface recombination allows for robust device architecture." Materials Horizons, 2024. http://dx.doi.org/10.1039/d4mh00340c.
Full textLi, Chen, Haoxuan Sun, Da Dou, Shan Gan, and Liang Li. "Bipolar Pseudohalide Ammonium Salts Bridged Perovskite Buried Interface toward Efficient Indoor Photovoltaics." Advanced Energy Materials, June 4, 2024. http://dx.doi.org/10.1002/aenm.202401883.
Full textDatt, Ram, Pietro Caprioglio, Saqlain Choudhary, Weixia Lan, Henry J. Snaith, and Wing Chung Tsoi. "Engineered charge transport layers for improving indoor perovskite photovoltaic performance." Journal of Physics: Energy, March 8, 2024. http://dx.doi.org/10.1088/2515-7655/ad31bb.
Full textWang, Shaoyang, Byeong-Cheol Kang, Sang-Joon Park, Tae-Jun Ha, and Lethy Krishnan Jagadamma. "P3HT vs Spiro-OMeTAD as a hole transport layer for halide perovskite indoor photovoltaics and self-powering of motion sensors." Journal of Physics: Materials, April 5, 2023. http://dx.doi.org/10.1088/2515-7639/accaaa.
Full textBulloch, Alasdair, Shaoyang Wang, Paheli Ghosh, and Lethy Krishnan Jagadamma. "Hysteresis in hybrid perovskite indoor photovoltaics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380, no. 2221 (February 28, 2022). http://dx.doi.org/10.1098/rsta.2021.0144.
Full textChakraborty, Abhisek, Giulia Lucarelli, Jie Xu, Zeynab Skafi, Sergio Castro-Hermosa, A. B. Kaveramma, R. Geetha Balakrishna, and Thomas M. Brown. "Photovoltaics for Indoor Energy Harvesting." Nano Energy, June 2024, 109932. http://dx.doi.org/10.1016/j.nanoen.2024.109932.
Full text