Academic literature on the topic 'Indium selenid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Indium selenid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Indium selenid"

1

Ivanauskas, Algimantas, Remigijus Ivanauskas, and Ingrida Ancutiene. "Effect of In-Incorporation and Annealing on CuxSe Thin Films." Materials 14, no. 14 (July 8, 2021): 3810. http://dx.doi.org/10.3390/ma14143810.

Full text
Abstract:
A study of indium-incorporated copper selenide thin-film deposition on a glass substrate using the successive ionic adsorption and reaction method (SILAR) and the resulting properties is presented. The films were formed using these steps: selenization in the solution of diseleniumtetrathionate acid, treatment with copper(II/I) ions, incorporation of indium(III), and annealing in an inert nitrogen atmosphere. The elemental and phasal composition, as well as the morphological and optical properties of obtained films were determined. X-ray diffraction data showed a mixture of various compounds: Se, Cu0.87Se, In2Se3, and CuInSe2. The obtained films had a dendritic structure, agglomerated and not well-defined grains, and a film thickness of ~90 μm. The band gap values of copper selenide were 1.28–1.30 eV and increased after indium-incorporation and annealing. The optical properties of the formed films correspond to the optical properties of copper selenide and indium selenide semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Nahong, Hong Ling, Yusheng Wang, Liying Zhang, Yuye Yang, and Yu Jia. "Intriguing electronic properties of germanene/ indium selenide and antimonene/ indium selenide heterostructures." Journal of Solid State Chemistry 269 (January 2019): 513–20. http://dx.doi.org/10.1016/j.jssc.2018.10.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kabanov V. F., Mikhailov A. I., and Gavrikov M. V. "Investigation of the features of electronic spectrum of quantum dots in narrow-gap semiconductors." Technical Physics Letters 48, no. 8 (2022): 47. http://dx.doi.org/10.21883/tpl.2022.08.55061.19220.

Full text
Abstract:
Samples with quantum dots (QDs) of narrow-gap semiconductors of the A3B5 group (indium antimonide) and the A2B6 group (mercury selenide) have been studied. The absorption spectra of the investigated QDs are analyzed and the correspondence of the maxima in the spectral characteristics to the model representations of the calculated electronic energy spectrum for this materials is assessed. It is concluded that used model representations requires refinement, primarily due to the fact that studied objects are nanocrystals with complex geometry. Keywords: quantum dots, indium antimonide, mercury selenide, electronic energy spectrum.
APA, Harvard, Vancouver, ISO, and other styles
4

Katerynchuk, V. M. "Photoemission spectra of indium selenide." Semiconductor physics, quantum electronics and optoelectronics 9, no. 4 (December 15, 2006): 36–39. http://dx.doi.org/10.15407/spqeo9.04.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Massaccesi, Sylvie, Sylvie Sanchez, and Jacques Vedel. "Electrodeposition of indium selenide in2se3." Journal of Electroanalytical Chemistry 412, no. 1-2 (August 1996): 95–101. http://dx.doi.org/10.1016/0022-0728(96)04604-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Katee, Narjes Sadeq, Oday Ibraheem Abdullah, and Emad Talib Hashim. "Extracting Four Solar Model Electrical Parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) Solar Modules using Different Methods." Journal of Engineering 27, no. 4 (March 29, 2021): 16–32. http://dx.doi.org/10.31026/j.eng.2021.04.02.

Full text
Abstract:
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure gives extremely significant data to the plan, establishment, and upkeep of PV frameworks. Three methods, simplified explicit, slope, and iterative, are used to compute two solar models' parameters using MATLAB code. The percentage maximum power errors at (600 and 1000) W/m2 for both current-voltage and power-voltage values with the corresponding measured ones using the slope method are 0.5% and 3% for monocrystalline silicon copper indium gallium di-selenide, respectively. The iterative method is 5 % and 10% for monocrystalline silicon and copper indium gallium di-selenide. Finally, for the simplified explicit 8% and 9%, for monocrystalline silicon and copper indium gallium di-selenide, respectively. The slope method gives more close results with the corresponding measured values than the other two methods for the two PV solar modules used. Consequently, the slope method is less influenced by the meteorological condition.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramanujam, Jeyakumar, and Udai P. Singh. "Copper indium gallium selenide based solar cells – a review." Energy & Environmental Science 10, no. 6 (2017): 1306–19. http://dx.doi.org/10.1039/c7ee00826k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niu, Xianghong, Yunhai Li, Yehui Zhang, Qijing Zheng, Jin Zhao, and Jinlan Wang. "Highly efficient photogenerated electron transfer at a black phosphorus/indium selenide heterostructure interface from ultrafast dynamics." Journal of Materials Chemistry C 7, no. 7 (2019): 1864–70. http://dx.doi.org/10.1039/c8tc06208k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Maojun, Wei Wang, Qinghua Zhao, Xuetao Gan, Yuanhui Sun, Wanqi Jie, and Tao Wang. "ε-InSe single crystals grown by a horizontal gradient freeze method." CrystEngComm 22, no. 45 (2020): 7864–69. http://dx.doi.org/10.1039/d0ce01271h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rahman, Md Ferdous, Mithun Chowdhury, Latha Marasamy, Mustafa K. A. Mohammed, Md Dulal Haque, Sheikh Rashel Al Ahmed, Ahmad Irfan, Aijaz Rasool Chaudhry, and Souraya Goumri-Said. "Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: a numerical simulation approach by SCAPS-1D." RSC Advances 14, no. 3 (2024): 1924–38. http://dx.doi.org/10.1039/d3ra07893k.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Indium selenid"

1

Wu, Wenyi. "Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS449.

Full text
Abstract:
Ce travail allie les propriétés singulières des matériaux 2D à une technique innovante utilisée pour modifier les propriétés électroniques des films ultra-minces pour proposer une nouvelle technologie permettant de réaliser le dispositif électronique le plus simple, la diode. Tout d'abord, nous identifions les matériaux semi-conducteurs pouvant être fabriqué en couches ultra-minces. Deuxièmement, nous utilisons une technique appelée dopage par charge d'espace développée dans notre groupe pour le dopage n ou p des matériaux. Enfin, nous obtenons les caractéristiques de diode des dispositifs. Le manuscrit commence par une revue des matériaux. Dans la famille des matériaux 2D, notre choix s'est porté sur un semi-conducteur en couches III-VI avec une bande interdite directe : InSe. Nous avons aussi choisi un type de matériau très différent, le CdO polycristallin qui n'est pas lamellaire et n'a pas une bande interdite directe, mais qui est facile à fabriquer sous forme de film ultra-mince avec une grande mobilité de porteurs. Après des expériences préliminaires, nous avons choisi InSe et fabriqué des dispositifs de films ultra minces de InSe. Nous avons développé en parallèle deux géométries pour la diode p-n. Nous avons pu obtenir un redressement pour chaque géométrie, ce qui implique que notre approche de dopage par charge d'espace a réussi à produire un dopage différencié spatialement dans chaque dispositif. Nous discutons des caractéristiques I-V obtenues et les limitations inhérentes aux dispositifs (chauffage local, hystérèses) et suggérons des améliorations afin d'obtenir un fonctionnement plus efficace et stable dans le cadre des perspectives de cette thèse
This work combines the singular properties of 2D materials with an innovative technique used for changing the electronic properties of ultra-thin films to propose a new technology for making the simplest bipolar electronic device, the diode. Firstly we identify semiconducting materials which can be fabricated in ultra-thin layers. Secondly, we use a proprietary technique called Space Charge Doping developed in our group for doping the material, either n or p. Finally, we obtain diode characteristics from the device. The manuscript begins with a review of different materials and properties. In the family of 2D materials, our choice was a III-VI layered semiconductor with a direct bandgap: InSe. We also chose a completely different kind of material, polycrystalline CdO, which is neither layered nor has a direct bandgap but is easy to fabricate in the ultra-thin film form and has high carrier mobility. After preliminary experiments, we chose InSe and fabricated devices of ultra-thin, few atomic layer InSe thin films. We chose to develop in parallel two different geometries for the p-n junction diode. We were able to obtain rectifying behavior for each geometry implying that our space charge doping approach was successful in producing microscopically, spatially differentiated doping in each device. We discuss the obtained I-V characteristics and the inherent limitations of the devices (local heating, hysteresis) and suggest improvements for future experiments and ways of obtaining more efficient and stable functioning and geometry as part of the perspectives of this thesis
APA, Harvard, Vancouver, ISO, and other styles
2

Kamada, Rui. "Copper(indium,gallium)selenide film formation from selenization of mixed metal/metal-selenide precursors." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 226 p, 2009. http://proquest.umi.com/pqdweb?did=1654501631&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heath, Jennifer Theresa. "Electronic transitions in the bandgap of copper indium gallium diselenide polycrystalline thin films /." view abstract or download file of text, 2002. http://wwwlib.umi.com/cr/uoregon/fullcit?p3072587.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2002.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 143-148). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
4

Jehl, Zacharie. "Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112058/document.

Full text
Abstract:
Nous étudions la possibilité de réaliser des cellules à base de diséléniure de cuivre, indium et gallium (CIGSe) à absorbeur ultra-mince, en réduisant l’épaisseur de la couche de CIGSe de 2500 nm jusqu’à 100 nm, tout en conservant un haut rendement de conversion.Grâce à l’utilisation d’outils de simulation numérique, nous étudions l’influence de la réduction d’épaisseur de l’absorbeur sur les paramètres photovoltaïques de la cellule. Une importante dégradation du rendement est observée, principalement attribuée à une réduction de la fraction de lumière absorbée par le CIGSe ainsi qu’à une collecte des porteurs de charge réduite dans les dispositifs ultraminces. Des solutions permettant de surmonter ces problèmes sont proposées et leur influence potentielle est numériquement simulée ; nous démontrons qu’une ingénierie de face avant (couche tampon alternative, couche anti-réfléchissante…) et de face arrière (contact arrière réfléchissant, diffusion de la lumière) sur une cellule CIGSe à absorbeur ultramince permet de potentiellement améliorer le rendement de la cellule solaire au niveau de celui d’une cellule à absorbeur référence (2.5 μm).Grâce à l’utilisation de techniques de gravure chimique sur des échantillons standards de CIGSe épais, nous réalisons des cellules solaires avec différentes épaisseurs d’absorbeurs, et nous étudions l’influence de l’épaisseur du CIGSe sur les paramètres photovoltaïques des cellules. Le comportement similaire aux simulations numériques.Une ingénierie du contact avant sur des cellules CIGSe à différentes épaisseurs est réalisée pour spécifiquement améliorer l’absorption dans la couche de CIGSe. Nous étudions l’influence d’une couche tampon alternative de ZnS, de la texturation de la fenêtre avant de ZnO:Al, et d’une couche anti-reflet sur la cellule solaire. D’importantes améliorations sont observées quelque soit l’épaisseur de la couche de CIGSe, ce qui permet d’obtenir des rendements de conversions supérieurs à ceux obtenus dans la configuration standard des dispositifs.Une ingénierie du contact arrière à basse température est également réalisée avec l’utilisation d’un procédé novateur combinant la gravure chimique du CIGSe avec un « lift-off » mécanique de la couche de CIGSe afin de la séparer du substrat de Molybdène. De nouveaux matériaux fortement réflecteur de lumière et précédemment incompatible avec le procédé de croissance du CIGSe sont utilisés comme contact arrière pour des cellules CIGSe ultra-minces. Une étude comparative en fonction de l’épaisseur de CIGSe entre des cellules avec contact arrière réfléchissant en Or (Au) et cellules solaires avec contact arrière standard Mo est effectuée. Le contact Au permet d’augmenter significativement le rendement de conversion des cellules solaires à absorbeur sub-microniques comparé au contact standard Mo avec un rendement de conversion supérieur à 10% obtenu sur une cellule CIGSe de 400 nm (comparé à 7.9% avec Mo).Afin de réduire encore plus l’épaisseur de la couche de CIGSe, jusque 100-200 nm, les modèles numériques montrent qu’il est nécessaire d’utiliser un réflecteur lambertien sur la face arrière de la cellule afin de maximiser l’absorption de la lumière. Un dispositif preuve de concept expérimental est réalisé avec une épaisseur de CIGSe de 200 nm et un réflecteur arrière lambertien, et ce dispositif est caractérisé par spectroscopie de transmission/réflexion. La réponse spectrale est déterminée en combinant des valeurs issues de simulation numérique et la mesure expérimental de l’absorption du dispositif. Nous calculons un courant de court circuit de 26 mA.cm-2 pour ce dispositif avec réflecteur lambertien, bien supérieur à ce qui est calculé pour la même structure sans réflecteur (15 mA.cm-2), et comparable au courant mesuré sur une cellule de référence de 2500 nm (28 mA.cm-2). L’utilisation de réflecteur lambertien pour des cellules CIGSe ultraminces est donc particulièrement adaptée pour maintenir de hauts rendements
In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collection for thin and ultrathin CIGSe solar cells. Solutions to overcome these problems are proposed and the potential improvements are modeled; we show that front side (buffer layer, antireflection coating) and back side (reflective back contact, light scattering) engineering of an ultrathin device can potentially increase the conversion efficiency up to the level of a standard thick CIGSe solar cell.By using chemical bromine etching on a standard thick CIGSe layer, we realize solar cells with different absorber thicknesses and experimentally study the influence of the absorber thickness on the photovoltaic parameters of the devices. Experiments show a similar trends to that observed in numerical modeling.Front contact engineering on thin CIGSe solar cell is realized to increase the specific absorption in CIGSe, including alternative ZnS buffer, front ZnO:Al window texturation and anti-reflection coating. Substantial improvements are observed whatever the CIGSe thickness, with efficiencies higher that the default configuration.A back contact engineering at low temperature is realized by using an innovative approach combining chemical etching of the CIGSe and mechanical lift-off of the CIGSe from the original Molybdenum (Mo) substrate. New highly reflective materials previously incompatible with the standard solar cell process are used as back contact for thin and ultrathin CIGSe solar cells, and a comparative study between standard Mo back contact and alternative reflective Au back contact solar cells is performed. The Au back reflector significantly enhance the efficiency of solar cell with sub-micrometer absorbers compared to the standard Mo back reflector; an efficiency higher than 10 % on a 400 nm CIGSe is obtained with Au back contact (7.9% with standard Mo back contact). For further reduction of the absorber thickness down to 100-200 nm, numerical modeling show that a lambertian back reflector is needed to fully absorb the incident light in the CIGSe. An experimental proof of concept device with a CIGSe thickness of 200 nm and a lambertian back reflector is realized and characterized by reflection/transmission spectroscopy, and the experimental spectral response is determined by combining simulation and experimentally measured absorption. A short circuit current of 26 mA.cm-2 is determined with the lambertian back reflector, which is much higher than what is obtained for the same device with no reflector (15 mA.cm-2), and comparable to the short circuit current measured on a reference 2500 nm thick CIGSe solar cell (28 mA.cm-2). Lambertian back reflectors are therefore found to be the most effective way to enhance the efficiency of an ultrathin CIGSe solar cell up to the level of a reference thick CIGSe solar cell
APA, Harvard, Vancouver, ISO, and other styles
5

Thompson, John O. "The importance of elemental stacking order and layer thickness in controlling the formation kinetics of copper indium diselenide /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2007. http://hdl.handle.net/1794/6197.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2007.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 81-84). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
6

Wasala, Milinda. "ELECTRONIC AND OPTO-ELECTRONIC TRANSPORT PROPERTIES OF FEW LAYER INDIUM SELENIDE FETS." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/dissertations/1704.

Full text
Abstract:
Layered Van der Waals solids, due to their highly anisotropic structure as well as their availability in mono, few and multi-layer form constitute a perfect playground, where a variety of possibility in structural variation as well as functionalities are expected. This potentially gives rise to a library of unique and fascinating 2D materials systems. These systems appear to demonstrate some spectacular variety of fundamental physics as well as indicate that some of these systems can be beneficial for several niche applications directly or indirectly resulting from their electrical and optical properties.
APA, Harvard, Vancouver, ISO, and other styles
7

Myers, Hadley Franklin. "Studies on the effect of sodium in Bridgman-grown CuInSe₂." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116020.

Full text
Abstract:
Ingots containing single crystals were grown from melts of Cu, In and Se in either stoichiometric proportions (CuInSe2) or with an excess of Se (CuInSe2.2). In addition, either sodium selenide (Na 2Se) or elemental sodium (Na0) was introduced to both sets of compositions in concentrations ranging from 0 to 3 at. %. The starting constituents were placed in quartz ampoules, which were evacuated and sealed before undergoing a vertical-Bridgman growth procedure. Analysis of deposits seen on the ampoule walls and on the ingot surface after growth revealed the presence of Na, as well as various forms of the other starting elements; however, no Na was found within the crystals. Electrical measurements revealed trends in the thermoelectric power of the ingots to correspond with additions of Na, as well as the presence of excess Se. A sign conversion from p- to n-type was confirmed with addition of sodium to stoichiometric CuInSe2. A suggested mechanism used to explain the effects of Na on the material, based on these experimental observations, is presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Fralaide, Michael Orcino. "Electrical Transport and Photoconduction of Ambipolar Tungsten Diselenide and n-type Indium Selenide." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1824.

Full text
Abstract:
In today's "silicon age" in which we live, field-effect transistors (FET) are the workhorse of virtually all modern-day electronic gadgets. Although silicon currently dominates most of these electronics, layered 2D transition metal dichalcogenides (TMDCs) have great potential in low power optoelectronic applications due to their indirect-to-direct band gap transition from bulk to few-layer and high on/off switching ratios. TMDC WSe2 is studied here, mechanically exfoliated from CVT-grown bulk WSe2 crystals, to create a few-layered ambipolar FET, which transitions from dominant p-type behavior to n-type behavior dominating as temperature decreases. A high electron mobility μ>150 cm2V-1s-1 was found in the low temperature region near 50 K. Temperature-dependent photoconduction measurements were also taken, revealing that both the application of negative gate bias and decreasing the temperature resulted in an increase of the responsivity of the WSe2 sample. Besides TMDCs, Group III-VI van der Waals structures also show promising anisotropic optical, electronic, and mechanical properties. In particular, mechanically exfoliated few-layered InSe is studied here for its indirect band gap of 1.4 eV, which should offer a broad spectral response. It was found that the steady state photoconduction slightly decreased with the application of positive gate bias, likely due to the desorption of adsorbates on the surface of the sample. A room temperature responsivity near 5 AW-1 and external quantum efficiency of 207% was found for the InSe FET. Both TMDC’s and group III-VI chalcogenides continue to be studied for their remarkably diverse properties that depend on their thickness and composition for their applications as transistors, sensors, and composite materials in photovoltaics and optoelectronics.
APA, Harvard, Vancouver, ISO, and other styles
9

Stephens, Scott H. "Modeling optical properties of thin film copper(indium,gallium)selenide solar cells using spectroscopic ellipsometry." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.69 Mb., 88 p, 2006. http://wwwlib.umi.com/dissertations/fullcit/1432297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Djebbar, El-hocine. "A DLTS study of copper indium diselenide." Thesis, University of Salford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391312.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Indium selenid"

1

J, Coutts T., Kazmerski Lawrence L, and Wagner S, eds. Copper indium diselenide for photovoltaic applications. Amsterdam: Elsevier, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. Thin film, concentrator and multijunction space solar cells: Status and potential. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magorrian, Samuel J. Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maria, Faur, and United States. National Aeronautics and Space Administration., eds. Theoretical and experimental research in space photovoltaics: Final report research grant no. NAG3-658 for the period January 1986 - March 1995. Cleveland, Ohio: Cleveland State University, Electrical Engineering Dept., Space Photovoltaic Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Theoretical and experimental research in space photovoltaics: Electrodeposition of CuInxGa₁-xSe₂ (CIGS) thin layers for CdS/CIGS solar cell applications : final report, NASA research grant no. NAG3-1692 for the period January 23, 1995 to April 22, 1995. [Cleveland, Ohio?]: The Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maria, Faur, and United States. National Aeronautics and Space Administration., eds. Theoretical and experimental research in space photovoltaics: Final report research grant no. NAG3-658 for the period January 1986 - March 1995. Cleveland, Ohio: Cleveland State University, Electrical Engineering Dept., Space Photovoltaic Research Center, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration., ed. Theoretical and experimental research in space photovoltaics: Electrodeposition of CuInxGa₁-xSe₂ (CIGS) thin layers for CdS/CIGS solar cell applications : final report, NASA research grant no. NAG3-1692 for the period January 23, 1995 to April 22, 1995. [Cleveland, Ohio?]: The Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Indium selenid"

1

Farmer, Thomas. "Indium Selenide." In Structural Studies of Liquids and Glasses Using Aerodynamic Levitation, 99–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06575-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Predel, B. "In - Se (Indium - Selenium)." In Dy - Er … Ir - Y, 233–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-24778-1_149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Julien, C., and M. Jouanne. "Optical studies of lithium intercalated indium selenide." In Chemical Physics of Intercalation, 433–36. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9649-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herrero Rueda, J., and J. Ortega. "Electrochemically Grown Indium Selenide Thin Films For Pec’s Solar Cells." In Seventh E.C. Photovoltaic Solar Energy Conference, 1217–19. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rhyee, Jong-Soo. "The Peierls Distortion and Quasi-One-Dimensional Crystalline Materials of Indium Selenides." In Thermoelectric Nanomaterials, 95–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37537-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bhalerao, A. B., S. B. Jambure, R. N. Bulakhe, S. S. Kahandal, S. D. Jagtap, A. G. Banpurkar, A. W. M. H. Ansari, Insik In, and C. D. Lokhande. "Substrate-Assisted Electrosynthesis of Patterned Lamellar Type Indium Selenide (InSe) Layer for Photovoltaic Application." In Proceedings of the 7th International Conference on Advances in Energy Research, 837–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhalerao, A. B., S. B. Jambure, R. N. Bulakhe, S. S. Kahandal, S. D. Jagtap, A. W. M. H. Ansari, Insik In, and C. D. Lokhande. "Correction to: Substrate-Assisted Electrosynthesis of Patterned Lamellar Type Indium Selenide (InSe) Layer for Photovoltaic Application." In Proceedings of the 7th International Conference on Advances in Energy Research, C1. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5955-6_161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Magorrian, Samuel J. "Introduction." In Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 1–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Magorrian, Samuel J. "Tight-Binding Model." In Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 13–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Magorrian, Samuel J. "Hybrid $$\mathbf {k\cdot p}$$ Tight-Binding Theory." In Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 35–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Indium selenid"

1

Vittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal, and Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.

Full text
Abstract:
This paper presents fabrication of copper indium gallium di-selenide (CIGS) solar cells using all solution-based deposition processes. CIGS nanoparticles were synthesized through multi-step chemical process using copper chloride, indium chloride, gallium chloride, and selenium in oleyamine. CIGS thin films were constructed through layer-by-layer (LbL) self-assembly and spray-coating techniques. Chemical-bath-deposition and spray-coating methods were used for cadmium sulfide and zinc oxide film depositions, respectively. Initial thin film solar cell devices exhibited promising 0.3 mA short circuit current and 200 mV open circuit voltage. The solar cells fabricated through the all solution-based processes are cost-effective, thus, have potentials of providing a viable, renewable and sustainable energy source. The proposed processes can further be realized on flexible substrates, which may broaden the applications range for the solar cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Heon, and Dae-hwan Kang. "Indium selenide based phase change memory." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.p10-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dong, Chaobo, Chandraman Patil, Hao Wang, Sergiy Krylyuk, Albert Davydov, Hamed Dalir, and Volker J. Sorger. "Ultralow Energy van der Waals InSe PN junction heterostructure photodetector for NIR applications." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3b.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oh, Thomas I., and Paul Hanke. "IR transparent conductive coatings by rf and dc magnetrons." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wp4.

Full text
Abstract:
Thin films of indium-tin-oxide (ITO) and indium oxide (IO) were deposited on sapphire, zinc selenide, and germanium substrates to study transparent conductive coatings for the 3.5–5.0µm and 8.0–12.0µm IR region. ITO films were prepared by rf planar magnetron sputtering of an indium-tin-oxide (10% tin) target in ultrapure argon gas (99.999% purity) at a pressure of about 9 mTorr and at a substrate temperature of about 300 K. Similarly, 10 films were prepared by reactive dc planar magnetron sputtering of a pure indium (99.99% purity) target in ultrapure argon and oxygen gases at a pressure of about 9 mTorr and at a substrate temperature of about 300 K. The use of planar magnetrons to deposit thin films offers a number of advantages over other deposition systems, including high deposition rates and the ability to scale to the larger sources and substrate areas necessary for industrial applications. Both techniques of deposition of transparent conductive films show extreme hardness, chemical inertness, high electrical resistivity, and optical transparency in the 3.5–5.0µm and 8.0–12.0µm IR region. For ITO coatings, typical values obtained for coated sapphire substrate in the 3.5–5.0µm region and zinc selenide substrate in the 8.0–12.0µm region were average transmittances of 75% and 62%, and sheet resistivities of 120 ohms/square and 150 ohms/square, respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Malik, S. N., H. Ahmed, M. Shahid, N. Haider, M. A. Malik, and P. O'Brien. "Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach." In 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST 2013). IEEE, 2013. http://dx.doi.org/10.1109/ibcast.2013.6512127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Menezes, Shalini, and Yan Li. "Large area deposition of widegap copper indium selenide absorbers." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Shina, and RuiXin Ma. "Studies of copper indium Di-selenide powder fabrication technologies." In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6058222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Urmila, K. S., T. Namitha Asokan, B. Pradeep, Rajani Jacob, and Rachel Reena Philip. "Photoconductivity in reactively evaporated copper indium selenide thin films." In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rashid Ullah, Muhammad, Aimal Daud Khan, and Javed Iqbal. "Optimization of Efficient Copper-Indium-Gallium Di-Selenide Solar Cell." In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hibberd, C. J., M. Ganchev, M. Kaelin, K. Ernits, and A. N. Tiwari. "Incorporation of copper into indium gallium selenide layers from solution." In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922885.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Indium selenid"

1

Rasmussen, Anya Marie. Pressure-induced phase transitions of indium selenide. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1469335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Katzman, Daniel B. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1009063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. US Geological Survey, 1996. http://dx.doi.org/10.3133/wri964159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography