To see the other types of publications on this topic, follow the link: Indium Phosphide.

Journal articles on the topic 'Indium Phosphide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Indium Phosphide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Olschner, F., J. C. Lund, M. R. Squillante, and D. L. Kelly. "Indium phosphide particle detectors." IEEE Transactions on Nuclear Science 36, no. 1 (1989): 210–12. http://dx.doi.org/10.1109/23.34436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ito, Kentaro, Tatsuo Nakazawa, and Kazutoshi Takamizawa. "Indium oxide/indium phosphide heterojunction solar cells." IEEJ Transactions on Industry Applications 108, no. 2 (1988): 117–22. http://dx.doi.org/10.1541/ieejias.108.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Monteiro, Othon R., and James W. Evans. "Thermal Oxidation of Indium Phosphide." Journal of The Electrochemical Society 135, no. 9 (September 1, 1988): 2366–69. http://dx.doi.org/10.1149/1.2096272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adamski, Joseph A., and Brian S. Ahern. "Rapid synthesis of indium phosphide." Review of Scientific Instruments 56, no. 5 (May 1985): 716–18. http://dx.doi.org/10.1063/1.1138212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SCAVENNEC, A. "TRENDS IN INDIUM PHOSPHIDE MICROELECTRONICS." Le Journal de Physique Colloques 49, no. C4 (September 1988): C4–115—C4–123. http://dx.doi.org/10.1051/jphyscol:1988424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yonenaga, Ichiro, and Koji Sumino. "Dislocation velocity in indium phosphide." Applied Physics Letters 58, no. 1 (January 7, 1991): 48–50. http://dx.doi.org/10.1063/1.104439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sandhu, Adarsh. "Monitoring eyes on Indium Phosphide." III-Vs Review 17, no. 5 (June 2004): 31–33. http://dx.doi.org/10.1016/s0961-1290(04)00559-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marsan, Didier. "InPact — the indium phosphide specialists." III-Vs Review 10, no. 5 (August 1997): 16–18. http://dx.doi.org/10.1016/s0961-1290(97)81281-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doughty, GF, S. Thoms, V. Law, and CDW Wilkinson. "Dry etching of indium phosphide." Vacuum 36, no. 11-12 (November 1986): 803–6. http://dx.doi.org/10.1016/0042-207x(86)90115-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Braun, Ivo, Přemysl Klíma, Josef Stejskal, Čestmír Černý, Petr Voňka, and Robert Holub. "Equilibria in the transport epitaxial formation of indium phosphide and arsenide." Collection of Czechoslovak Chemical Communications 51, no. 6 (1986): 1213–21. http://dx.doi.org/10.1135/cccc19861213.

Full text
Abstract:
From the data available in literature, equilibria were calculated of the reactions which come into consideration in the preparation of indium phosphide and indium arsenide. In the first case it was supposed that indium phosphide was formed as a pure solid substance, that indium might exist either as a pure liquid, or as a gas and that the remaining 16 components in the equilibrium mixture were in the ideal gaseous state. In the second case, the formation of pure solid indium arsenide and the existence of 18 other substances in the equilibrium mixture, also in the ideal gaseous state, were supposed. The results of these theoretical calculations for indium phosphide were compared with the experimental deposition temperatures and reasonable agreement has been found.
APA, Harvard, Vancouver, ISO, and other styles
11

Coutts, T. J., and S. Naseem. "High efficiency indium tin oxide/indium phosphide solar cells." Applied Physics Letters 46, no. 2 (January 15, 1985): 164–66. http://dx.doi.org/10.1063/1.95723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, X., M. W. Wanlass, T. A. Gessert, K. A. Emery, and T. J. Coutts. "High‐efficiency indium tin oxide/indium phosphide solar cells." Applied Physics Letters 54, no. 26 (June 26, 1989): 2674–76. http://dx.doi.org/10.1063/1.101363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Suchikova, Y. O., I. T. Bogdanov, and S. S. Kovachov. "Oxide crystals on the surface of porous indium phosphide." Archives of Materials Science and Engineering 2, no. 98 (August 1, 2019): 49–56. http://dx.doi.org/10.5604/01.3001.0013.4606.

Full text
Abstract:
Purpose: f this paper is to is to establish the patterns of oxide formation on the surface of indium phosphide during electrochemical etching of mono-InP. Design/methodology/approach: A porous surface was formed with the anode electrolytic etching. Morphology of the surface was studied with the help of scanning electron microscope JSM-6490. The analysis of chemical composition of porous surface of samples was also performed. Findings: It was shown that during the electrochemical etching of indium phosphide, oxide films and crystallites form on the surface. It has been established that crystalline oxides are formed mainly on the surface of n-type indium phosphide. Continuous oxide films are predominantly formed on the surface of p-InP. Research limitations/implications: The research was carried out for indium phosphide samples synthesized in the solution of hydrofluoric acid, though, carrying out of similar experiments for crystalline oxides on the surface of porous indium phosphide obtained in other conditions, is necessary. Practical implications: The study of oxide crystals on the surface of porous indium phosphide has great practical importance since it is the reproducibility of experimental results that is the main problem of modern materials science, the more nanoengineering. Oxides can significantly affect the properties of materials. On the one hand, oxides significantly affect the recombination properties of materials, this can impair the operation of semiconductor devices. On the other hand, oxide films can serve as a passivating coating for the surface of a porous semiconductor. Such an oxide property will be useful for the practical application of nanostructured indium phosphide. Therefore, questions of the conditions for the formation of semiconductor intrinsic oxides, their structure, and chemical composition, and also the effect of oxides on the physical and technical characteristics of materials are important. Originality/value: The patterns of oxide formation on the surface of indium phosphide during electrochemical etching are investigated in this work. It is shown for the first time that the structure of an oxide depends on the orientation of the surface of the semiconductor. It was shown that continuous oxide films are formed on the surface of p-InP, and oxide crystalline clusters are formed on the surface of n-InP.
APA, Harvard, Vancouver, ISO, and other styles
14

van Gurp, G. J., P. R. Boudewijn, M. N. C. Kempeners, and D. L. A. Tjaden. "Zinc diffusion inn‐type indium phosphide." Journal of Applied Physics 61, no. 5 (March 1987): 1846–55. http://dx.doi.org/10.1063/1.338028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Siwak, N. P., X. Z. Fan, and R. Ghodssi. "Fabrication challenges for indium phosphide microsystems." Journal of Micromechanics and Microengineering 25, no. 4 (March 17, 2015): 043001. http://dx.doi.org/10.1088/0960-1317/25/4/043001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Algra, Rienk E., Marcel A. Verheijen, Magnus T. Borgström, Lou-Fé Feiner, George Immink, Willem J. P. van Enckevort, Elias Vlieg, and Erik P. A. M. Bakkers. "Twinning superlattices in indium phosphide nanowires." Nature 456, no. 7220 (November 2008): 369–72. http://dx.doi.org/10.1038/nature07570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bland, Stephen W. "Reading light: optoelectronics on indium phosphide." IEE Review 38, no. 1 (1992): 35. http://dx.doi.org/10.1049/ir:19920019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gorbenko, Vitaliy Ivanovich. "Study of Graphene-like Indium Phosphide." ECS Meeting Abstracts MA2020-01, no. 23 (May 1, 2020): 1361. http://dx.doi.org/10.1149/ma2020-01231361mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Houzay, F. "Aluminum growth on (100) indium phosphide." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 3, no. 2 (March 1985): 756. http://dx.doi.org/10.1116/1.583136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kitauchi, Yusuke, Yasunori Kobayashi, Katsuhiro Tomioka, Shinjiro Hara, Kenji Hiruma, Takashi Fukui, and Junichi Motohisa. "Structural Transition in Indium Phosphide Nanowires." Nano Letters 10, no. 5 (May 12, 2010): 1699–703. http://dx.doi.org/10.1021/nl1000407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

He, L., and W. A. Anderson. "Characteristics of oxygen implanted indium phosphide." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 4 (July 1993): 1474–79. http://dx.doi.org/10.1116/1.578687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zeisse, Carl R., Robert G. Wilson, and Craig G. Hopkins. "Implantation of dopants into indium phosphide." Journal of Applied Physics 57, no. 5 (March 1985): 1656–60. http://dx.doi.org/10.1063/1.334432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Güllü, Ömer, Murat Çankaya, Özlem Barış, and Abdulmecit Türüt. "DNA-modified indium phosphide Schottky device." Applied Physics Letters 92, no. 21 (May 26, 2008): 212106. http://dx.doi.org/10.1063/1.2936086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chandvankar, S. S., T. K. Sharma, A. P. Shah, K. S. Chandrasekaran, B. M. Arora, A. K. Kapoor, Devendra Verma, and B. B. Sharma. "Indium thallium phosphide: experiments versus predictions." Journal of Crystal Growth 213, no. 3-4 (June 2000): 250–58. http://dx.doi.org/10.1016/s0022-0248(00)00383-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

van der Tol, Jos J. G. M., Yuqing Jiao, Longfei Shen, Alonso Millan-Mejia, Vadim Pogoretskii, Jorn P. van Engelen, and Meint K. Smit. "Indium Phosphide Integrated Photonics in Membranes." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 1 (January 2018): 1–9. http://dx.doi.org/10.1109/jstqe.2017.2772786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pluchery, Olivier, Joseph Eng, Robert L. Opila, and Yves J. Chabal. "Vibrational study of indium phosphide oxides." Surface Science 502-503 (April 2002): 75–80. http://dx.doi.org/10.1016/s0039-6028(01)01901-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lorenzo, Joe. "A few thoughts on indium phosphide." III-Vs Review 5, no. 2 (April 1992): 41–42. http://dx.doi.org/10.1016/0961-1290(92)90177-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Szweda, Roy. "Indium phosphide, the cinderella of electronics." Microelectronics Journal 23, no. 3 (May 1992): 159–61. http://dx.doi.org/10.1016/0026-2692(92)90003-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Benchimol, J. L., F. Alaoui, Y. Gao, G. Le Roux, E. V. K. Rao, and F. Alexandre. "Chemical beam epitaxy of indium phosphide." Journal of Crystal Growth 105, no. 1-4 (October 1990): 135–42. http://dx.doi.org/10.1016/0022-0248(90)90351-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Suzuki, Y., Y. Fukuda, Y. Nagashima, and H. Kan. "An indium phosphide solid state detector." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 275, no. 1 (February 1989): 142–48. http://dx.doi.org/10.1016/0168-9002(89)90344-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dong-Guang, Li. "Cleavage Luminescence from Cleaved Indium Phosphide." Chinese Physics Letters 25, no. 12 (December 2008): 4371–74. http://dx.doi.org/10.1088/0256-307x/25/12/052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Finlayson, D. M., and G. Mehaffey. "Inelastic scattering times in indium phosphide." Journal of Physics C: Solid State Physics 18, no. 29 (October 20, 1985): L953—L957. http://dx.doi.org/10.1088/0022-3719/18/29/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Finlayson, D. M., and P. J. Mason. "Variable-range hopping in indium phosphide." Journal of Physics C: Solid State Physics 19, no. 14 (May 20, 1986): L299—L301. http://dx.doi.org/10.1088/0022-3719/19/14/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pashinkin, A. S., A. S. Malkova, and M. S. Mikhailova. "The heat capacity of indium phosphide." Russian Journal of Physical Chemistry A 83, no. 6 (January 2009): 1051–52. http://dx.doi.org/10.1134/s0036024409060338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Crowley, J. D., D. R. Tringali, L. Wandinger, B. Wallace, R. E. Dalrymple, F. B. Fank, and C. Hang. "140 GHz indium phosphide Gunn diode." Electronics Letters 30, no. 6 (March 17, 1994): 499–500. http://dx.doi.org/10.1049/el:19940358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ikejiri, Keitaro, Fumiya Ishizaka, Katsuhiro Tomioka, and Takashi Fukui. "Bidirectional Growth of Indium Phosphide Nanowires." Nano Letters 12, no. 9 (August 20, 2012): 4770–74. http://dx.doi.org/10.1021/nl302202r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xu, Wei-Zong, Fang-Fang Ren, Dimitars Jevtics, Antonio Hurtado, Li Li, Qian Gao, Jiandong Ye, et al. "Vertically Emitting Indium Phosphide Nanowire Lasers." Nano Letters 18, no. 6 (May 21, 2018): 3414–20. http://dx.doi.org/10.1021/acs.nanolett.8b00334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Roy, J. N. "Bulk growth of polycrystalline indium phosphide." Bulletin of Materials Science 13, no. 1-2 (March 1990): 3–9. http://dx.doi.org/10.1007/bf02744851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Luo, Ming‐Cheng, Fang‐Fang Ren, Nikita Gagrani, Kai Qiu, Qianjin Wang, Le Yu, Jiandong Ye, et al. "Polarization‐Independent Indium Phosphide Nanowire Photodetectors." Advanced Optical Materials 8, no. 17 (June 8, 2020): 2000514. http://dx.doi.org/10.1002/adom.202000514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zafar, Fateen, and Azhar Iqbal. "Indium phosphide nanowires and their applications in optoelectronic devices." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2187 (March 2016): 20150804. http://dx.doi.org/10.1098/rspa.2015.0804.

Full text
Abstract:
Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed.
APA, Harvard, Vancouver, ISO, and other styles
41

Hamada, Hiroki. "Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode." Materials 10, no. 8 (July 28, 2017): 875. http://dx.doi.org/10.3390/ma10080875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Healy, Matthew D., Paul E. Laibinis, Paul D. Stupik, and Andrew R. Barron. "The reaction of indium(III) chloride with tris(trimethylsilyl)phosphine: a novel route to indium phosphide." Journal of the Chemical Society, Chemical Communications, no. 6 (1989): 359. http://dx.doi.org/10.1039/c39890000359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tang, Xiufeng, Chunhan Hseih, Fang Ou, and Seng-Tiong Ho. "Ohmic contact of indium oxide as transparent electrode to n-type indium phosphide." RSC Advances 5, no. 29 (2015): 22685–91. http://dx.doi.org/10.1039/c5ra00034c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Belyaev, A. E. "Ohmic contacts based on Pd to indium phosphide Gunn diodes." Semiconductor Physics Quantum Electronics and Optoelectronics 18, no. 3 (September 30, 2015): 317–23. http://dx.doi.org/10.15407/spqeo18.03.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sakharova, Nataliya A., Jorge M. Antunes, André F. G. Pereira, Bruno M. Chaparro, and José V. Fernandes. "Elastic Properties of Single-Walled Phosphide Nanotubes: Numerical Simulation Study." Nanomaterials 12, no. 14 (July 10, 2022): 2360. http://dx.doi.org/10.3390/nano12142360.

Full text
Abstract:
After a large-scale investigation into carbon nanotubes, significant research efforts have been devoted to discovering and synthesizing other nanotubes formed by chemical elements other than carbon. Among them, non-carbon nanotubes based on compounds of the elements of the 13th group of the periodic table and phosphorus. These inorganic nanotubes have proved to be more suitable candidates than carbon nanotubes for the construction of novel electronic and optical-electronic nano-devices. For this reason, until recently, mainly the structural and electrical properties of phosphide nanotubes were investigated, and studies to understand their mechanical behavior are infrequent. In the present work, the elastic properties of single-walled boron phosphide, aluminum phosphide, gallium phosphide and indium phosphide nanotubes were numerically evaluated using a nanoscale continuum modelling (also called molecular structural mechanics) approach. The force field constants required to assess the input parameters for numerical simulations were calculated for boron phosphide, aluminum phosphide, gallium phosphide and indium phosphide nanostructures using two different methods. The influence of input parameters on the elastic properties evaluated by numerical simulation was studied. A robust methodology to calculate the surface elastic moduli of phosphide nanotubes is proposed.
APA, Harvard, Vancouver, ISO, and other styles
46

Suchikova, Y. A., Valeriy Kidalov, Anatoliy Konovalenko, and G. A. Sukach. "Usage Of Porous Indium Phosphide as Substrate for Indium Nitride Films." ECS Transactions 33, no. 38 (December 17, 2019): 73–77. http://dx.doi.org/10.1149/1.3583516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yoshimura, Masatoshi, Eiji Nakai, Katsuhiro Tomioka, and Takashi Fukui. "Indium tin oxide and indium phosphide heterojunction nanowire array solar cells." Applied Physics Letters 103, no. 24 (December 9, 2013): 243111. http://dx.doi.org/10.1063/1.4847355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ito, K., and T. Nakazawa. "Heat‐resisting and efficient indium oxide/indium phosphide heterojunction solar cells." Journal of Applied Physics 58, no. 7 (October 1985): 2638–39. http://dx.doi.org/10.1063/1.335894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Suchikova, Y. O. "Sulfide Passivation of Indium Phosphide Porous Surfaces." Journal of Nano- and Electronic Physics 9, no. 1 (2017): 01006–1. http://dx.doi.org/10.21272/jnep.9(1).01006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Toufanian, Reyhaneh, Margaret Chern, Victoria H. Kong, and Allison M. Dennis. "Engineering Brightness-Matched Indium Phosphide Quantum Dots." Chemistry of Materials 33, no. 6 (March 5, 2021): 1964–75. http://dx.doi.org/10.1021/acs.chemmater.0c03181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography