Academic literature on the topic 'Indicators of the material flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Indicators of the material flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Indicators of the material flow"
Moriguchi, Yuichi. "Material flow indicators to measure progress toward a sound material-cycle society." Journal of Material Cycles and Waste Management 9, no. 2 (September 26, 2007): 112–20. http://dx.doi.org/10.1007/s10163-007-0182-0.
Full textFischer‐Kowalski, M., F. Krausmann, S. Giljum, S. Lutter, A. Mayer, S. Bringezu, Y. Moriguchi, H. Schütz, H. Schandl, and H. Weisz. "Methodology and Indicators of Economy‐wide Material Flow Accounting." Journal of Industrial Ecology 15, no. 6 (August 31, 2011): 855–76. http://dx.doi.org/10.1111/j.1530-9290.2011.00366.x.
Full textPatrício, João, Yuliya Kalmykova, Leonardo Rosado, and Vera Lisovskaja. "Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels." Journal of Industrial Ecology 19, no. 5 (September 23, 2015): 837–52. http://dx.doi.org/10.1111/jiec.12336.
Full textKulikov, Petrо, Alla Bielova, and Nataliia Zhuravska. "Two-tier integral indicator system for controlling the material flow heat-power engineering objects." USEFUL online journal 2, no. 4 (December 30, 2018): 80–87. http://dx.doi.org/10.32557/useful-2-4-2018-0009.
Full textFang, Ming, Ming Li Cao, Yan Li, and Yong Li. "Material Flow Analysis on Cement Industry." Advanced Materials Research 512-515 (May 2012): 3042–46. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.3042.
Full textKim, Yu-Jeong. "Evaluation for Sustainable Resource Management In Korea using Material Flow Indicators." Journal of the Korean Institute of Resources Recycling 20, no. 6 (December 31, 2011): 43–49. http://dx.doi.org/10.7844/kirr.2011.20.6.043.
Full textZhi, Jing, Ze Qiang Fu, Peng Shen, and Bao Gao. "Analysis of Material Metabolism for Ningdong Energy(Coal) and Coal Chemical Base." Applied Mechanics and Materials 71-78 (July 2011): 2132–35. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.2132.
Full textModrak, Vladimir, and Zuzana Soltysova. "Novel Complexity Indicator of Manufacturing Process Chains and Its Relations to Indirect Complexity Indicators." Complexity 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/9102824.
Full textAmano, Koji, and Misato Ebihara. "Eco‐intensity analysis as sustainability indicators related to energy and material flow." Management of Environmental Quality: An International Journal 16, no. 2 (April 2005): 160–66. http://dx.doi.org/10.1108/14777830510583173.
Full textMayer, Andreas, and Willi Haas. "Cumulative material flows provide indicators to quantify the ecological debt." Journal of Political Ecology 23, no. 1 (December 1, 2016): 350. http://dx.doi.org/10.2458/v23i1.20222.
Full textDissertations / Theses on the topic "Indicators of the material flow"
Eisenmenger, Nina, Dominik Wiedenhofer, Anke Schaffartzik, Stefan Giljum, Martin Bruckner, Heinz Schandl, Thomas Wiedmann, Manfred Lenzen, Arnold Tukker, and de Koning Arjan. "Consumption-based material flow indicators - Comparing six ways of calculating the Austrian raw material consumption providing six results." Elsevier, 2016. http://epub.wu.ac.at/6684/1/ECOLEC.pdf.
Full textGonzález, Martínez Ana Citlalic. "Social metabolism and patterns of material use Mexico, South-America and Spain." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5812.
Full textThis thesis is composed of three published articles and a submitted one. All share the same theoretical approach: social metabolism. By tracing all material flows into several economic systems by means of the Material Flows Accounting methodology (MFA), this thesis aims on the one hand at characterizing current metabolic profiles of different economies, identifying their main driving forces; on the other hand, it aims at providing empirical evidence on dematerialisation of the economies. The main conclusion is that in our globalised world, countries are becoming more dependent on international trade and that the role a country plays in the international markets strongly determines its pattern of material use. This dependency followed different trajectories. On the one hand, we identify countries such as Spain that benefited from this process as it increased welfare based in an intensive use of strategic natural resources coming from other economic systems such as fossil fuels. Nevertheless, the main driving force shaping the biophysical profile of this economy was the construction sector, an internal factor. On the other hand, we identify those countries that historically have relied on the extraction of natural resources such as Chile, Ecuador, Mexico and Peru although we can no longer talk about a uniform pattern of natural resource use in the region. In Ecuador, Chile and Peru, international trade was the main driving force for material use. Ecuador remains the typical example of an extractive economy whereas a diversification of exports away from bulk commodities towards products with more added value could be observed to a greater extent in Chile and incipiently in Peru. Chile can be regarded as a successful example of the staple theory of growth as its GDP increased considerably. Mexico is a special and contradictory case. Firstly, despite being an important oil exporter, it has achieved a diversification of production, moving towards technology-intensive products due to the assembly industries. Secondly, despite it has a great potential of biomass extraction, it is undergoing a substitution process of imported biomass for national biomass, in particular, basic crops for human consumption. Instead of international trade, population growth was the main driving force for biophysical growth in this economy. Thirdly, it was observed an increasing emphasis on the use of construction materials and fossil fuels in the whole economy whereas in the countryside, rural households still rely heavily on traditional biomass flows such as fuelwood to satisfy their energetic needs. A general conclusion is that neither absolute dematerialisation nor relative dematerialisation occurred in any of the analysed countries.
Piñero, P. (Pablo). "The metabolism of socio-economic systems:combination of input-output analysis and material flow accounting for footprint-type indicators." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526224848.
Full textTiivistelmä Tässä työssä tutkittiin innovatiivisia tapoja, joilla voitaisiin parantaa materiaalijalanjälki -tyyppisten indikaattoreiden käytettävyyttä panos-tuotos (Input-Output, IO) -analyysissa, kun niitä sovelletaan Materiaalivirta-analyysi (Material Flow Accounting, MFA) -metodiin. Seuraaviin tutkimuskysymyksiin haettiin vastauksia: 1) Mikä on sektorien yhdistämisen potentiaalinen vaikutus raaka-ainevirtojen IO-mallintamisessa ja miten poikkeamia voidaan estää? Tämän puitteissa tarkasteltiin mallinnusvirheitä, jotka johtuvat erilaisten toimialojen yhdistämisistä yhdeksi sektoriksi. 2) Voivatko alhaalta ylöspäin suuntautuvat lähestymistavat, kuten elinkaariarviointi parantaa tuotteisiin sisältyvien raaka-ainevirtojen arviointia? ja 3) Mitä vaikutuksia on laajan maantieteellisen kattavuuden IO-malleihin sisältyvien maakohtaisten tietojen yhdistämisestä LCA-pohjaisiin lähestymistapoihin, kun tavoitteena on laskea tuotteisiin sisältyviä raaka-ainemääriä? Tämän tutkimista varten kehitettiin lähestymistapa, joka yhdisti maakohtaiset tuotantosuunnitelmat ja elinkaariarvioinnin. Tämä lähestymistapa osoittautui hyödylliseksi tarkentamalla arvioita tuotteissa olevista raaka-aineista, vaikkakin sen soveltaminen edellyttää varovaisuutta, koska uusia vääristymiä voi syntyä. 4) Voidaanko uusia näkökulmia löytää uudella arvonlisäykseen perustuvalla allokointimenetelmällä, joka jakaa raaka-aineen louhinnan kullekin toimintaketjun osallistuvalle taloudelliselle toimijalle lisäarvon tuotannon mukaan? Tämän uuden kirjanpitomenetelmän mukaan jotkut maat ja alat ovat materiaali-intensiivisempiä kuin niitä on pidetty kulutuksen jalanjälkiallokointimenetelmien perusteella. 5) Onko korkean tulotason talouksien ja keskitasoiselle ja alhaiselle tulotasolle asettuvien maiden välillä epätasaisia vaihtoja, kun raaka-ainekulutusta ja arvonlisäystä mitataan? ja 6) Voisiko paikallisten ja globaalien IO-tietojen integrointi antaa hyödyllisiä näkökulmia tutkimukseen, joka tarkastelee epätasaisen aineenvaihdon esiintymistä tai puuttumista alueellisella tasolla? Materiaalivirtojen tutkiminen kansainvälisellä ja kansallisella tasolla, jossa yhdistettiin IO-tietokannat erilaisella maantieteellisellä resoluutiolla osoitti, että alueellisella taloudella voi olla kaksoisrooli sekä raaka-aineiden että arvonlisäyksen lähteenä tai nieluna riippuen sen asemasta globaalissa taloushierarkiassa
Lutter, Franz Stephan, Stefan Giljum, and Martin Bruckner. "A review and comparative assessment of existing approaches to calculate material footprints." Elsevier, 2016. http://dx.doi.org/10.1016/j.ecolecon.2016.03.012.
Full textЧайка, Тетяна Юріївна. "Матеріальні потоки в готельно-ресторанному бізнесі: логістичний підхід." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39241.
Full textAndré, Axel. "Raw Material Consumption - Ett mått på Sveriges materialanvändning i ett mer resurseffektivt samhälle." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-367195.
Full textBeing able to measure the amount of materials used in society, is central in the transition to a resource-efficient and circular economy. Within the EU, Domestic Material Consumption (DMC) is currently used as indicator for material use. It is calculated by adding the materials that a country extracts, plus the materials imported, minus the materials being exported. There is criticism of DMC, as a measure, since it only considers the weight of imported and exported goods when they cross the country border. It does not consider the upstream materials needed to produce a product, which are not represented in the final product (the so-called material backpack). Globalisation has led to a geographical disconnection in production and consumption, and to consider net-importing countries’ total material consumption, it is necessary to include traded product’s material backpack. Raw Material Consumption (RMC) considers the material backpack, but is currently without a standardised calculation method. Both RMC and DMC are used in Agenda 2030 to follow up the UN Sustainability Development Goal 12 "Sustainable Consumption and Production", as well as Goal 8 "Decent Work Conditions and Economic Growth". Only DMC is used today in the EU. The aim of this project was to calculate Sweden’s material consumption, using the indicator Raw Material Consumption (RMC), as well as identifying strengths and weaknesses of RMC. For calculating RMC, Eurostat’s RME-tool has been used. According to RMC, Sweden's total material usage increased from 2008 when it amounted to 198 million tonnes of raw material equivalents (RME), to 221 million tonnes RME in 2015. There has also been an increase per capita: 21,4 RME per capita in 2008 to 22,6 RME per capita in 2015. These results have been compared with the results for Sweden's DMC, calculated by SCB. RMC and DMC gave similar results for Sweden's total material consumption. This is believed to be due to the similar size of the material backpack of imports and exports. Another reason is believed to be due to Sweden’s largest material category, non-metallic minerals, is a small part of our trade balance, and therefore is not affected when the material backpack is included. At the material category level, however, the differences between RMC and DMC are greater. Results from Eurostat's RME tool, calculated in this study, have been compared with results presented by the OECD and UNEP. They have used a different calculation method for Sweden’s RMC than the RME tool applies. The difference in total RMC for different calculation methods is between 11 % and 22 %. At material category level, the differences are greater, more than 50 % for fossil fuels, for example. Similar results have been presented in a study over Austria's RMC for the year 2007, using different calculation methods. Both DMC and RMC can be used as policy-support for resource efficiency, but RMC is theoretically a more suitable indicator for comparison of countries. This is since many countries today have moved a significant share of their production abroad, and DMC therefore risks displaying a false perception of resource efficiency and decoupling, when the material backpack is not included.
Stridh, Madeleine. "Material flow : An analysis of a production area for improved material flow." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80193.
Full textHelber, Stefan. "Performance analysis of flow lines with non-linear flow of material /." Berlin : Springer, 1999. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=3540659544.
Full textFan, Xiaolin. "Material flow in a wood-chip refiner." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63977.
Full textMullen, T. D. "Material flow control in complex manufacturing systems." Thesis, University of Strathclyde, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360792.
Full textBooks on the topic "Indicators of the material flow"
Wagner, Bernd, and Stefan Enzler, eds. Material Flow Management. Heidelberg: Physica-Verlag, 2006. http://dx.doi.org/10.1007/3-7908-1665-5.
Full textKostick, Dennis S. The material flow of salt. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1993.
Find full textTanchoco, J. M. A. Material Flow Systems in Manufacturing. Boston, MA: Springer US, 1994.
Find full textTanchoco, J. M. A., ed. Material Flow Systems in Manufacturing. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2498-4.
Full textBrunner, Paul H., and Helmut Rechberger. Handbook of Material Flow Analysis. Boca Raton : Taylor & Francis, CRC Press, 2017. | Revised: CRC Press, 2016. http://dx.doi.org/10.1201/9781315313450.
Full textBlair, Margaret M. Industry-level indicators of free cash flow. Boston, MA: Boston University, School of Management, 1992.
Find full textHelmut, Rechberger, ed. Practical handbook of material flow analysis. Boca Raton, Fla: Lewis, 2004.
Find full textNertinger, Stefan. Carbon and Material Flow Cost Accounting. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-08130-0.
Full textHelber, Stefan. Performance Analysis of Flow Lines with Non-Linear Flow of Material. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-95863-2.
Full textInternational, Conference on Factory 2000 (1988 Churchill College Cambridge). Factory 2000: Integrating information and material flow. London: Institution of Electronic and Radio Engineers, 1988.
Find full textBook chapters on the topic "Indicators of the material flow"
Istrate, Ioan-Robert, José-Luis Gálvez-Martos, and Javier Dufour. "A Life Cycle-Based Scenario Analysis Framework for Municipal Solid Waste Management." In Towards a Sustainable Future - Life Cycle Management, 217–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_20.
Full textSirgy, M. Joseph. "Material Wellbeing." In Social Indicators Research Series, 437–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71888-6_19.
Full textDini, Gino, and Dieter Spath. "Material Flow." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_9-4.
Full textDini, Gino, and Dieter Spath. "Material Flow." In CIRP Encyclopedia of Production Engineering, 844–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_9.
Full textDini, Gino, and Dieter Spath. "Material Flow." In CIRP Encyclopedia of Production Engineering, 1150–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_9.
Full textSirgy, M. Joseph. "Material Well-Being." In Social Indicators Research Series, 325–51. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4405-9_19.
Full textLaner, David, and Helmut Rechberger. "Material Flow Analysis." In LCA Compendium – The Complete World of Life Cycle Assessment, 293–332. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7610-3_7.
Full textNylund, Hasse, and Minna Lanz. "Material Flow Analysis." In Encyclopedia of the UN Sustainable Development Goals, 462–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-95726-5_8.
Full textNylund, Hasse, and Minna Lanz. "Material Flow Analysis." In Encyclopedia of the UN Sustainable Development Goals, 1–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-71062-4_8-1.
Full textMüller, Anette, and Isabel Martins. "Material Flow Management." In Recycling of Building Materials, 21–49. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-34609-6_2.
Full textConference papers on the topic "Indicators of the material flow"
Farkasova, Edita. "THE IMPORTANCE OF MATERIAL FLOWS INDICATORS AND THE EVALUATION OF THEIR DEVELOPMENT IN SLOVAKIA." In SGEM2011 11th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2011/s22.138.
Full textGrebenyuk, E. A., and E. L. Itskovich. "Indirect estimations of current quality indicators of the process unit material flows and their correlation." In 2017 Tenth International Conference Management of Large-Scale System Development (MLSD). IEEE, 2017. http://dx.doi.org/10.1109/mlsd.2017.8109630.
Full textZhao, Yao, and Chen Zhao. "Eco-Efficiency Evaluation Indicator of Plantation Harvesting System and Its Improvement Based on Material Flow Analysis." In 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2011. http://dx.doi.org/10.1109/appeec.2011.5748784.
Full textWu, Zhenhua. "Empirical Modeling of Material Removal Considering Tool Condition in Chemical Mechanical Planarization Process." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3027.
Full textHossain, Md Shahjahan, Hossein Taheri, Niraj Pudasaini, Alexander Reichenbach, and Bishal Silwal. "Ultrasonic Nondestructive Testing for In-Line Monitoring of Wire-Arc Additive Manufacturing (WAAM)." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23317.
Full textYoon, Ikroh, and Seungwon Shin. "Numerical Simulation of Multiple Seeds Interaction During Three-Dimensional Dendritic Solidification With Fluid Flow." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18129.
Full textAu-Yang, M. K. "Flow-Induced Wear in Steam Generator Tubes: Prediction Versus Operational Experience." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0120.
Full textPopovich, David P., M. H. Hu, Jonathan L. Barkich, and Peter R. Nelson. "Increased Concern for Degradation of Upper Steam Drum Internals Leading to Monitoring and Modifications Considerations." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48938.
Full textPontaza, Juan P., Varadarajan Nadathur, and John L. Rosche. "Flow-Induced Vibration Screening of a Thermoplastic Composite Pipe Water Injection Jumper." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18180.
Full textCarbajal, Gerardo. "Study of Flow Field Configuration Effect in Cooling Systems." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-72170.
Full textReports on the topic "Indicators of the material flow"
Dreicer, J. S., D. S. Rutherford, P. K. Fasel, and J. M. Riese. Global nuclear material flow/control model. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/532615.
Full textBrown, Hayden, and Mark Ehlen. Technology adoption indicators applied to the ATP flow-control machining project. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.6888.
Full textDredge, L. A., and L. Robertson. Ice flow and recessional ice margin indicators, central Baffin Island, Nunavut. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2006. http://dx.doi.org/10.4095/222527.
Full textMcClenaghan, M. B., J. J. Veillette, and R. N. W. DiLabio. Ice flow indicators in the Timmins and Kirkland Lake areas, northeastern Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/203616.
Full textMcClenaghan, M. B., and J. J. Veillette. Surficial geology, ice flow indicators for the New Liskeard-Temagami area, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212639.
Full textLuh, M. H., and J. S. Strenkowski. Simulations of ductile flow in brittle material processing. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/476646.
Full textGarimella, Rao Veerabhadra. Introduction to Interface Tracking in Multi-Material Flow Simulations. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1367800.
Full textGarimella, Rao Veerabhadra. Introduction to Interface Tracking in Multi-Material Flow Simulations. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1457283.
Full textWard, B. C., L. A. Dredge, and D. E. Kerr. Ice flow indicators, Winter Lake - Lac de Gras - Aylmer Lake, District of Mackenzie, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/193504.
Full textHolter, G. M., and D. C. Stapp. Solid waste initiative Macro Material Flow Modeling conceptual description and requirements. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6598967.
Full text