Academic literature on the topic 'Incompressible and compressible flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Incompressible and compressible flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Incompressible and compressible flow"
Crnojevic´, C., and V. D. Djordjevic´. "Correlated Compressible and Incompressible Channel Flows." Journal of Fluids Engineering 119, no. 4 (December 1, 1997): 911–15. http://dx.doi.org/10.1115/1.2819516.
Full textChoi, Young-Pil. "Compressible Euler equations interacting with incompressible flow." Kinetic and Related Models 8, no. 2 (March 2015): 335–58. http://dx.doi.org/10.3934/krm.2015.8.335.
Full textPretorius, J. J., A. G. Malan, and J. A. Visser. "A flow network formulation for compressible and incompressible flow." International Journal of Numerical Methods for Heat & Fluid Flow 18, no. 2 (March 27, 2008): 185–201. http://dx.doi.org/10.1108/09615530810846338.
Full textKim, Donguk, Minsoo Kim, and Seungsoo Lee. "Extension of Compressible Flow Solver to Incompressible Flow Analysis." Journal of the Korean Society for Aeronautical & Space Sciences 49, no. 6 (June 30, 2021): 449–56. http://dx.doi.org/10.5139/jksas.2021.49.6.449.
Full textVON ELLENRIEDER, KARL D., and BRIAN J. CANTWELL. "Self-similar, slightly compressible, free vortices." Journal of Fluid Mechanics 423 (November 3, 2000): 293–315. http://dx.doi.org/10.1017/s0022112000001853.
Full textAboelkassem, Yasser, and Georgios H. Vatistas. "New Model for Compressible Vortices." Journal of Fluids Engineering 129, no. 8 (February 26, 2007): 1073–79. http://dx.doi.org/10.1115/1.2746897.
Full textTIMMERMANS, MARY-LOUISE E., JOHN R. LISTER, and HERBERT E. HUPPERT. "Compressible particle-driven gravity currents." Journal of Fluid Mechanics 445 (October 16, 2001): 305–25. http://dx.doi.org/10.1017/s0022112001005705.
Full textMarner, F., M. Scholle, D. Herrmann, and P. H. Gaskell. "Competing Lagrangians for incompressible and compressible viscous flow." Royal Society Open Science 6, no. 1 (January 2019): 181595. http://dx.doi.org/10.1098/rsos.181595.
Full textSong, Charles C. S., and Mingshun Yuan. "A Weakly Compressible Flow Model and Rapid Convergence Methods." Journal of Fluids Engineering 110, no. 4 (December 1, 1988): 441–45. http://dx.doi.org/10.1115/1.3243575.
Full textKwon, O. Key, R. H. Pletcher, and R. A. Delaney. "Solution Procedure for Unsteady Two-Dimensional Boundary Layers." Journal of Fluids Engineering 110, no. 1 (March 1, 1988): 69–75. http://dx.doi.org/10.1115/1.3243513.
Full textDissertations / Theses on the topic "Incompressible and compressible flow"
Blank, Henrik. "Numerical methods for compressible and incompressible flow." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300125.
Full textYang, Zhiyan. "Numerical simulation of incompressible and compressible flow." Thesis, University of Sheffield, 1989. http://etheses.whiterose.ac.uk/3485/.
Full textWadey, Philip David. "Goetler vortex instabilities of incompressible and compressible boundary layers." Thesis, University of Exeter, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253560.
Full textBaghaei, Masoud. "Research on fluidic oscillators under incompressible and compressible flow conditions." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669607.
Full textEl principal avantatge dels oscil·ladors fluídics es que no te parts mòbils, i això fa que sigui més fiable en aplicacions reals. Per tal d'aplicar aquests oscil·ladors en un cas concret, es necessari avaluar el seu comportament, doncs cada cas concret necessita una freqüència i quantitat de moviment donades. En el present doctorat s'ha analitzat mitjançant 3D-CFD, una configuració de oscil·lador fluídic per diferents números de Reynolds, diferents geometries internes i considerant el fluid com incompressible i compressible. Inicialment, la quantitat de moviment aplicada al jet entrant a la cambra de barreja, es comparada amb la pressió d'estancament dinàmica a les parets convergents de la cambra de barreja, amb el cabal màssic dinàmic que surt del actuador, amb el cabal màssic dinàmic que passa per els canals de realimentació, amb la pressió dinàmica que hi ha a la sortida dels canals de realimentació i amb el angle de oscil·lació del jet a l'entrada de la cambra de barreja. Tots aquests paràmetres es va veure que estaven correlacionats i això indicava que el origen de les oscil·lacions del jet era únic i era la pressió d'estancament a les parets convergents de la cambra de barreja, provant que les oscil·lacions son dirigides per gradients de pressió. Posteriorment es va fer el mateix tipus de estudi però modificant la amplada i angle de inclinació a l'entrada de la cambra de barreja i també modificant la amplada i angle de inclinació de les parets de sortida de la cambra de barreja. Aquestes quatre modificacions de la geometria interna es van fer per tres números de Reynolds diferents, 8711, 16034 i 32068. Entre les conclusions obtingudes cal destacar que, la freqüència i amplitud de oscil·lació del jet a la sortida del actuador pot ser modificada al variar les dimensions i angles interns de la cambra de barreja. Independentment del número de Reynolds estudiat i de la modificació interna considerada, es va comprovar que les oscil·lacions estaven dirigides per els gradients de pressió existents entre les dos sortides dels conductes de realimentació. L'efecte generat per qualsevol modificació interna era sempre més rellevant a números de Reynolds alts. En la tercera fase de la tesi el fluid es va considerar com a compressible subsònic, i es va avaluar els efectes de la modificació de la longitud dels canals de realimentació, sobre la freqüència i amplitud del flux que surt del oscil·lador. Quatre diferents longituds i dos números de Mach van ser avaluats. Al augmentar la longitud del canal de realimentació, la freqüència i amplitud de la oscil·lació disminueix, la oscil·lació tendeix a ser mes caòtica, apareixen altes freqüències que fan que el jet fluctuï en lloc de oscil·lar, de fet a partir de una certa longitud les oscil·lacions desapareixen i només hi han fluctuacions. Aquestes fluctuacions apareixen abans per elevats números de Mach. Les oscil·lacions son degudes a gradients de pressió, al igual que en el cas de fluid incompressible. De fet, per fluid compressible, el cabal màssic que passa per els canals de realimentació, juga un paper menys rellevant que en el cas de fluid incompressible.
RONZANI, ERNESTO RIBEIRO. "NUMERICAL SOLUTION OF COMPRESSIBLE AND INCOMPRESSIBLE FLOW IN IRREGULAR GEOMETRIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18648@1.
Full textEste trabalho propõe um método numérico de solução de escoamentos de fluidos compressíveis e incompressíveis a qualquer número de Mach em geometrias irregulares. Um sistema bidimensional de coordenadas curvilíneas não-ortogonais,coincidentes com os contornos físicos é utilizado. Os componentes cartesianos de velocidade são usados nas equações da quantidade de movimento e os covariantes na equação da continuidade. Seleciona-se a técnica de volumes finitos para discretizar as equações de conservação relacionadas aos princípios físicos, em regime permanente devido esta preservar a propriedade conservativa das equações e a sua con sistência física no processo numérico. Adota-se a configuração de malha co-localizada, avaliando-se todas as variáveis dependentes nos pontos centrais dos volumes são avaliados com esquemas Power-Law e Quick. Especial atenção é dada ao tratamento numérico das condições de contorno. O problema do acoplamento massa específica-pressão-velocidade é solucionado usando-se uma combinação das equações da continuidade, de quantidade de movimento linear e de uma equação de estado, gerando duas equações de correção da pressão. A primeira corrige a massa específica e a pressão, a segunda, o fluxo de massa e a velocidade. Propõe-se uma modificação da equação da correção da velocidade usando um termo de compensação do erro obtido na sua avaliação a fim de acelerar a convergência. Utilizam-se vários tipos de interpolação da massa específica na face, para minimizar as atenuações das variáveis, causadas pela falsa difusão. Para a solução das equações algébricas resultantes usa-se o algoritmo TDMA linha por linha e um processo de correção por blocos para acelerar a convergência. O método proposto é verificado em seis problemas testes, através da comparação com os resultados analíticos e numéricos disponíveis na literatura.
The present work consists in the development of a numerical method of solution of compressible and incompressible fluid flow for all speed in iregular geometries. A boundary-fitted two-dimensional nonorthogonal curvilinear coordinate systeam is utilized. The cartesian velocity components are the dependent variables in the momentum equations and covariant velocity components are used in the continuity equation. The finite-volume technique was selected to discretuze the steady-state physical phenomenon conservation equations, since this method keeps the conservative property of the equations and its physical consistency in the numerical process. A nonstaggered grid was employed, and all dependent variables are evaluated at the cell center points, which divides the physical domain. The convection-diffusion fluxes at the control volumes faces are evaluated with the Power Law and Quick shemes. Special attention is paid to the numerical treatment of boundary conditions. The problem of velocity-pressure-density coupling is solved using a combination of continuity, momentum equations and state equation resulting in two pressure correction equations. The first equation corrects the density and the pressure, the second equation corrects the mass flux and the velocity. A modification in the velocity correction equations is proposed using a compensationterm to accelerate the convergence. Several types of interpolation of the face density are used to reduce variable atenuations, caused by false diffusion. For the solution of the resulting algebric equations,the line-by-line TDMA algorith is used as well as a block-correction method to accelerate the convergence. The proposed method is verified on six test problems,by comparing the present results with analytical and numerical results avaiable in the literature.
Kho, Cedric. "A unified formulation for mixed incompressible/compressible flows." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ44017.pdf.
Full textTain, Ludovic. "Compressor leading edges in incompressible and compressible flows." Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272432.
Full textChinarak, Theerarak. "Development of a time-based mass flow controller for compressible and incompressible fluids." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503923.
Full textHuber, Jamison Jared. "Numerical Simulations of Incompressible and Compressible Transitional Turbine Flows." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27124.
Full textPattinson, John. "A cut-cell, agglomerated-multigrid accelerated, Cartesian mesh method for compressible and incompressible flow." Pretoria : [s.n.]m, 2006. http://upetd.up.ac.za/thesis/available/etd-07052007-103047.
Full textBooks on the topic "Incompressible and compressible flow"
Talwar, Mahesh. Multiphase, compressible, and incompressible flow. Houston: Gulf Pub. Co., Book Division, 1985.
Find full textKawahara, Mutsuto. Finite Element Methods in Incompressible, Adiabatic, and Compressible Flows. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55450-9.
Full textPope, Stephen B. PDF methods for combustion in high-speed turbulent flows: Second annual technical report. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textIncompressible flow. 3rd ed. New York: J. Wiley, 2005.
Find full textPanton, Ronald L. Incompressible flow. 3rd ed. New York, NY: J. Wiley, 2005.
Find full textPanton, Ronald L. Incompressible flow. 2nd ed. New York: Wiley, 1996.
Find full textPanton, Ronald L. Incompressible flow. 2nd ed. New York: Wiley, 1995.
Find full textPanton, Ronald L. Incompressible Flow. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118713075.
Full textSaad, Michel A. Compressible fluid flow. 2nd ed. Englewood Cliffs, N.J: Prentice Hall, 1993.
Find full textCompressible fluid flow. Englewood Cliffs, N.J: Prentice-Hall, 1985.
Find full textBook chapters on the topic "Incompressible and compressible flow"
Wesseling, Pieter. "Unified methods for computing incompressible and compressible flow." In Principles of Computational Fluid Dynamics, 567–601. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05146-3_14.
Full textHafez, M. "On the Incompressible Limit of Compressible Fluid Flow." In Computational Fluid Dynamics for the 21st Century, 255–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44959-1_16.
Full textJohnson, Claes. "Streamline Diffusion Finite Element Methods for Incompressible and Compressible Fluid Flow." In The IMA Volumes in Mathematics and Its Applications, 87–106. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3882-9_6.
Full textBillaud, M., G. Gallice, and B. Nkonga. "Stabilized Finite Element Method for Compressible–Incompressible Diphasic Flows." In Numerical Mathematics and Advanced Applications 2009, 171–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11795-4_17.
Full textChacon, T., and O. Pironneau. "Convection of Microstructures by Incompressible and Slightly Compressible Flows." In The IMA Volumes in Mathematics and Its Applications, 1–22. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8689-6_1.
Full textLouda, Petr, Jaromír Příhoda, and Karel Kozel. "Numerical Simulation of Turbulent Incompressible and Compressible Flows Over RoughWalls." In Lecture Notes in Computational Science and Engineering, 157–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19665-2_17.
Full textChurbanov, Alexander. "A Unified Algorithm to Predict Both Compressible and Incompressible Flows." In Numerical Methods and Applications, 412–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36487-0_46.
Full textLéal De Sousa, L., J. Duplex, and A. Caruso. "Extension of an Incompressible Algorithm for Compressible Flow Calculations; Validation on a Transsonic Flow in a Bump." In Notes on Numerical Fluid Mechanics (NNFM), 412–19. Wiesbaden: Vieweg+Teubner Verlag, 1998. http://dx.doi.org/10.1007/978-3-322-89859-3_45.
Full textFriedrich, R., R. Lechner, J. Sesterhenn, and T. J. Hüttl. "Direct Numerical Simulation of Turbulent Compressible and Incompressible Wall-Bounded Shear Flows." In Recent Advances in DNS and LES, 13–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4513-8_2.
Full textBristeau, M. O., R. Glowinski, and J. Periaux. "Acceleration Procedures for The Numerical Simulation of Compressible and Incompressible Viscous Flows." In Advances in Computational Nonlinear Mechanics, 197–243. Vienna: Springer Vienna, 1989. http://dx.doi.org/10.1007/978-3-7091-2828-2_6.
Full textConference papers on the topic "Incompressible and compressible flow"
Darbandi, M., S. Hosseinizadeh, and G. Schneider. "Solving compressible flow using simple incompressible procedure." In 35th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2967.
Full textBalázsová, M., M. Feistauer, P. Sváček, and J. Horáček. "INCOMPRESSIBLE AND COMPRESSIBLE VISCOUS FLOW WITH LOW MACH NUMBERS." In Topical Problems of Fluid Mechanics 2017. Institute of Thermomechanics, AS CR, v.v.i., 2017. http://dx.doi.org/10.14311/tpfm.2017.002.
Full textDarbandi, M., G. Schneider, M. Darbandi, and G. Schneider. "Use of a flow analogy in solving compressible and incompressible flows." In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-706.
Full textLiang, Y., and M. Damodaran. "Finite volume calculation of incompressible aerodynamic flows using preconditioned compressible flow equations." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-526.
Full textLohner, Rainhald, Philippe Ravier, Pierre de Kermel, and Jean Roger. "Combination of Compressible and Incompressible Flow Codes Via Immersed Methods." In 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-528.
Full textCHEN, YEN-SEN. "Compressible and incompressible flow computations with a pressure based method." In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-286.
Full textGajjar, J., M. Arebi, and P. Sibanda. "Nonlinear development of cross-flow instabilities in compressible and incompressible boundary layer flows." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2159.
Full textAhmed, Anwar, John Wissler, and Roy Hartfield. "Experiments on laser beam propagation through incompressible and compressible flow regimes." In 31st Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2352.
Full textDarbandi, M., and G. Schneider. "Extension of a control volume incompressible approach to compressible flow solutions." In 34th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2506.
Full textRossow, Cord. "Toward Efficient Computation of Compressible and Incompressible Flows." In 36th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-3522.
Full textReports on the topic "Incompressible and compressible flow"
McHugh, P. R. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/130602.
Full textColella, Phillip. Oscillations and Concentrations in Compressible and Incompressible Fluids. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada254706.
Full textMcDonough, J. M., Y. Yang, and X. Zhong. Additive Turbulent Decomposition of the Incompressible and Compressible Navier-Stokes Equations. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada277321.
Full textBerger, Marsha. Adaptive Methods for Compressible Flow. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada277861.
Full textKashiwa, B. Statistical theory of turbulent incompressible multimaterial flow. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/6009875.
Full textWalker, J. D. Shear Layer Breakdown in Compressible Flow. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada303627.
Full textSTRICKLAND, JAMES H. Gridless Compressible Flow: A White Paper. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/780296.
Full textCurfman, L. V. A new finite element formulation for incompressible flow. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/26516.
Full textVaughn, Jr, and Milton F. Error Estimation for Three Turbulence Models: Incompressible Flow. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada476439.
Full textKerschen, Edward J. Receptivity Theory in Compressible Jet Flow Control. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada325563.
Full text