To see the other types of publications on this topic, follow the link: In0.53Ga0.47As(001).

Journal articles on the topic 'In0.53Ga0.47As(001)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'In0.53Ga0.47As(001).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Georgakilas, Alexandros, Athanasios Dimoulas, Aristotelis Christou, and John Stoemenos. "Alloy clustering and defect structure in the molecular beam epitaxy of In0.53Ga0.47As on silicon." Journal of Materials Research 7, no. 8 (August 1992): 2194–204. http://dx.doi.org/10.1557/jmr.1992.2194.

Full text
Abstract:
The MBE growth of InxGa1−xAs (x ∼ 0.53) on silicon substrates has been investigated emphasizing the effects of substrate orientation and buffer layers between In0.53Ga0.47As and Si. It is shown that growth on silicon substrates misoriented from (001) toward a [110] direction eliminates the presence of antiphase domains. The best In0.53Ga0.47As surface morphology was obtained when a 0.9 μm epitaxial Si buffer was initially grown, followed by a pre-exposure of the silicon surface to As4 at 350 °C, followed by the growth of In0.53Ga0.47As. Threading dislocations, stacking faults, low-angle grain boundaries, and spinodal decomposition were observed by TEM in the InGaAs layers. The spinodal contrast scale was shown to depend on the buffer type and the total InGaAs thickness. Thick buffers consisted of GaAs or graded InxGa1−xAs layers, and large In0.53Ga0.47As thicknesses favor the development of a coarse-scale spinodal decomposition with periodicity around 0.1 μm. Thin GaAs buffers or direct In0.53Ga0.47As growth on Si may result in a fine-scale decomposition of periodicity ∼10 nm. The principal strain direction of the spinodal decomposition appeared along the [1$\overline 1$0] direction, parallel to the vicinal Si surface step edges. InGaAs immiscibility affects the InGaAs growth process, favoring a 3-D growth mode. X-ray diffraction measurements and photoreflectance spectra indicated that the sample quality was improved for samples exhibiting a fine-scale spinodal decomposition contrast even if they contained a higher dislocation density. Threading dislocations run almost parallel to the [001] growth axis and are not affected by strained layers and short period (InAs)3/(GaAs)3 superlattices. The lowest double crystal diffractometry FWHM for the (004) InGaAs reflection was 720 arc sec and has been obtained growing InGaAs directly on Si, while the lowest dislocation density was 3 × 109 cm−2 and was obtained using a 1.5 μm GaAs buffer before the In0.53Ga0.47As deposition.
APA, Harvard, Vancouver, ISO, and other styles
2

Liao, X. Z., Y. T. Zhu, Y. M. Qiu, D. Uhl, and H. F. Xu. "Quantum dot/substrate interaction in InAs/In0.53Ga0.47As/InP(001)." Applied Physics Letters 84, no. 4 (January 26, 2004): 511–13. http://dx.doi.org/10.1063/1.1642754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hybertsen, Mark S. "Interface strain at the lattice-matched In0.53Ga0.47As/InP(001) heterointerface." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 8, no. 4 (July 1990): 773. http://dx.doi.org/10.1116/1.584964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, Jian, Jonathon B. Clemens, Evgueni A. Chagarov, Darby L. Feldwinn, Wilhelm Melitz, Tao Song, Sarah R. Bishop, Andrew C. Kummel, and Ravi Droopad. "Structural and electronic properties of group III Rich In0.53Ga0.47As(001)." Surface Science 604, no. 19-20 (September 2010): 1757–66. http://dx.doi.org/10.1016/j.susc.2010.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Klenov, Dmitri O., Joshua M. Zide, Jeramy D. Zimmerman, Arthur C. Gossard, and Susanne Stemmer. "Interface atomic structure of epitaxial ErAs layers on (001) In0.53Ga0.47As and GaAs." Applied Physics Letters 86, no. 24 (June 13, 2005): 241901. http://dx.doi.org/10.1063/1.1947910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Jian, Darby L. Winn, Wilhelm Melitz, Jonathon B. Clemens, and Andrew C. Kummel. "Real Space Surface Reconstructions of Decapped As-rich In0.53Ga0.47As(001)-(2×4)." ECS Transactions 16, no. 5 (December 18, 2019): 463–68. http://dx.doi.org/10.1149/1.2981627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jennifer Y., Chris Pearson, and Joanna M. Millunchick. "Arsenic dependence on the morphology of ultrathin GaAs layers on In0.53Ga0.47As∕InP(001)." Journal of Applied Physics 103, no. 10 (May 15, 2008): 104309. http://dx.doi.org/10.1063/1.2917276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seo, Jae Hwa, Young Jun Yoon, Seongjae Cho, Heung-Sik Tae, Jung-Hee Lee, and In Man Kang. "Analyses on RF Performances of Silicon-Compatible InGaAs-Based Planar-Type and Fin-Type Junctionless Field-Effect Transistors." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 7615–19. http://dx.doi.org/10.1166/jnn.2015.11141.

Full text
Abstract:
The In0.53Ga0.47As-based planar-type junctionless fieled-effect transistor (JLFET) and fin-type FET (FinFET) have been designed and characterized by technology computer-aided design (TCAD) simulations. Because of their attractive material characteristics, the combination of In0.53Ga0.47As and InP has been adopted in some of the most recent semiconductor devices. In particular, the In0.53Ga0.47As-based transistor using an InP buffer is highly attractive due to its superior electrostatic performance which results from the by particular characteristics of the In0.53Ga0.47As material. In this paper, we focus on using small-signal RF modeling and Y-parameter extraction methods th extract various RF characteristics, such as gate capacitance, transconductance (gm), cut-off frequency (fT), and maximum oscillation frequency (fmax). The proposed In0.53Ga0.47As-based FinFET exhibits an on-state current (Ion) of 1030 μA/μm and an off-state current (Ioff) of 1.2×10−13 A/μm with a threshold voltage (Vth) of 0.1 V, and a subthreshold swing (S) of 96 mV/dec. In addition, fT and fmax are determined to be 243 GHz and 1.6 THz, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hu, and Jun Chen. "PbS QDs/Al2O3/In0.53Ga0.47As infrared photodetector with fast response and high sensitivity." Applied Physics Letters 121, no. 18 (October 31, 2022): 181106. http://dx.doi.org/10.1063/5.0117223.

Full text
Abstract:
Due to the size effect, multi-exciton effect, confinement effect, and tunable bandgap, quantum dots (QDs) have gradually been used in near-infrared photodetectors. In this paper, PbS QDs were integrated with In0.53Ga0.47As materials, and a PbS QDs/In0.53Ga0.47As hybrid photodetector with Al2O3 was investigated. Passivation of PbS QDs by ligand replacement and insertion of Al2O3 reduced the dark current density from 9.24 × 10−6 to 4.67 × 10−6 A·cm−2, which enabled the detector to obtain a high responsivity of 0.97 A·W−1 under −1 V bias, and the detectivity reached 2.21 × 1010 Jones. In addition, we found that the PbS QDs/In0.53Ga0.47As near-infrared photodetector with Al2O3 obtained a fast rise and fall time, which could respond to high-frequency signals. The findings will have application in the PbS QDs/In0.53Ga0.47As hybrid near-infrared photodetectors.
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Jian, Darby L. Feldwinn, Wilhelm Melitz, Ravi Droopad, and Andrew C. Kummel. "Scanning tunneling microscopy study of the interfacial bonding structures of Ga2O and In2O/In0.53Ga0.47As(001)." Microelectronic Engineering 88, no. 4 (April 2011): 377–82. http://dx.doi.org/10.1016/j.mee.2010.10.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Peiner, E., H. H. Wehmann, H. Iber, S. Mo, G. P. Tang, A. Bartels, A. Schlachetzki, A. Koch, K. Dettmer, and M. Hollfelder. "High-quality In0.53Ga0.47As on exactly (001)-oriented Si grown by metal-organic vapour-phase epitaxy." Journal of Crystal Growth 172, no. 1-2 (February 1997): 44–52. http://dx.doi.org/10.1016/s0022-0248(96)00736-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fang, Qianglong, Yang Shen, Zesen Liu, Xiaodong Yang, Shuqin Zhang, Liang Chen, Lingze Duan, and Shiqing Xu. "A DFT study on optoelectronic properties of near-infrared In0.53Ga0.47As (001), (011) and (111) surfaces." Superlattices and Microstructures 149 (January 2021): 106771. http://dx.doi.org/10.1016/j.spmi.2020.106771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shin, Byungha, Jonathon B. Clemens, Michael A. Kelly, Andrew C. Kummel, and Paul C. McIntyre. "Arsenic decapping and half cycle reactions during atomic layer deposition of Al2O3 on In0.53Ga0.47As(001)." Applied Physics Letters 96, no. 25 (June 21, 2010): 252907. http://dx.doi.org/10.1063/1.3452336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Liu, Hu, Lin-An Yang, Huawei Zhang, Bingtao Zhang, and Wenting Zhang. "An In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As double hetero-junction junctionless TFET." Japanese Journal of Applied Physics 60, no. 7 (June 10, 2021): 074001. http://dx.doi.org/10.35848/1347-4065/ac0611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sala, Elisa M., Max Godsland, Young In Na, Aristotelis Trapalis, and Jon Heffernan. "Droplet epitaxy of InAs/InP quantum dots via MOVPE by using an InGaAs interlayer." Nanotechnology 33, no. 6 (November 19, 2021): 065601. http://dx.doi.org/10.1088/1361-6528/ac3617.

Full text
Abstract:
Abstract InAs quantum dots (QDs) are grown on an In0.53Ga0.47As interlayer and embedded in an InP(100) matrix. They are fabricated via droplet epitaxy (DE) in a metal organic vapor phase epitaxy (MOVPE) reactor. Formation of metallic indium droplets on the In0.53Ga0.47As lattice-matched layer and their crystallization into QDs is demonstrated for the first time in MOVPE. The presence of the In0.53Ga0.47As layer prevents the formation of an unintentional non-stoichiometric 2D layer underneath and around the QDs, via suppression of the As-P exchange. The In0.53Ga0.47As layer affects the surface diffusion leading to a modified droplet crystallization process, where unexpectedly the size of the resulting QDs is found to be inversely proportional to the indium supply. Bright single dot emission is detected via micro-photoluminescence at low temperature, ranging from 1440 to 1600 nm, covering the technologically relevant telecom C-band. Transmission electron microscopy investigations reveal buried quantum dots with truncated pyramid shape without defects or dislocations.
APA, Harvard, Vancouver, ISO, and other styles
16

Hoang, Thoan Nguyen. "INVESTIGATION OF CHARGE TRAPS AT Al-DOPED HfO2/(100)InGaAs INTERFACE BY USING CAPACITANCE AND CONDUCTANCE METHODS." Vietnam Journal of Science and Technology 56, no. 1A (May 4, 2018): 110. http://dx.doi.org/10.15625/2525-2518/56/1a/12511.

Full text
Abstract:
In this study, capacitance and conductance methods were used to investigate the charge traps at a HfO2/(100)InGaAs interface with an atomic layer deposition HfO2 layer doped with Al2O3 by co-deposition technique. The effect of Al doping on the quality of the HfO2/In0.53Ga0.47As interface will be evaluated. The density of interface traps (D­it) near In0.53Ga0.47As midgap is close to 2×1012 cm−2eV−1. Based on comparison to the HfO2/In0.53Ga0.47As interface without Al2O3 interfacial passivation where the value Dit∼1013 cm−2eV−1 is encountered near the midgap, we can conclude that the presence of Al2O3 passivation noticeably improves the interface quality.
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Tae-Woo. "Effects of Equivalent-Oxide-Thickness and Fin-Width Scaling on In0.53Ga0.47As Tri-Gate Metal-Oxide-Semiconductor-Field-Effect-Transistors with Al2O3/HfO2 for Low-Power Logic Applications." Electronics 9, no. 1 (December 26, 2019): 29. http://dx.doi.org/10.3390/electronics9010029.

Full text
Abstract:
We created tri-gate sub-100 nm In0.53Ga0.47As metal-oxide-semiconductor-field-effect-transistors (MOSFETs) with a bi-layer Al2O3/HfO2 gate stack and investigated the scaling effects on equivalent-oxide-thickness (EOT) and fin-width (Wfin) at gate lengths of sub-100 nm. For Lg = 60 nm In0.53Ga0.47As tri-gate MOSFETs, EOT and Wfin scaling were effective for improving electrostatic immunities such as subthreshold swing and drain-induced-barrier-lowering. Reliability characterization for In0.53Ga0.47As Tri-Gate MOSFETs using constant-voltage-stress (CVS) at 300K demonstrates slightly worse VT degradation compared to planar InGaAs MOSFET with the same gate stack and EOT. This is due to the effects of both of the etched fin’s sidewall interfaces.
APA, Harvard, Vancouver, ISO, and other styles
18

Peric, Nemanja, Corentin Durand, Maxime Berthe, Yan Lu, Kekeli N'Konou, Roland Coratger, Isabelle Lefebvre, et al. "Direct measurement of band offsets on selective area grown In0.53Ga0.47As/InP heterojunction with multiple probe scanning tunneling microscopy." Applied Physics Letters 121, no. 19 (November 7, 2022): 192104. http://dx.doi.org/10.1063/5.0104807.

Full text
Abstract:
The knowledge of the band alignment in semiconductor heterostructures is crucial, as it governs carrier confinement with many impacts on the performances of devices. By controlling the direction of the current flow in in-plane In0.53Ga0.47As/InP heterostructure nanowires, either horizontally along the nanowires or vertically into the InP substrate with low temperature multiple-probe tunneling spectroscopy, a direct measurement of the band offsets at the buried In0.53Ga0.47As/InP heterointerface is performed. Despite the unavoidable processing steps involved in selective area epitaxy, conduction and valence band offsets of 0.21 ± 0.01 and 0.40 ± 0.01 eV are, respectively, found, indicating the formation of an interface with a quality comparable to two-dimensional In0.53Ga0.47As/InP heterostructures.
APA, Harvard, Vancouver, ISO, and other styles
19

Molle, A., E. Cianci, A. Lamperti, C. Wiemer, S. Baldovino, L. Lamagna, S. Spiga, et al. "Trimethylaluminum-based Atomic Layer Deposition of MO2 (M=Zr, Hf): Gate Dielectrics on In0.53Ga0.47As(001) Substrates." ECS Transactions 50, no. 13 (March 15, 2013): 11–19. http://dx.doi.org/10.1149/05013.0011ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yoo, Han Bin, Seong Kwang Kim, Junyeap Kim, Jintae Yu, Sung-Jin Choi, Dae Hwan Kim, and Dong Myong Kim. "Characterization of Subgap Density-of-States by Sub-Bandgap Optical Charge Pumping in In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect Transistors." Journal of Nanoscience and Nanotechnology 20, no. 7 (July 1, 2020): 4287–91. http://dx.doi.org/10.1166/jnn.2020.17785.

Full text
Abstract:
We report an experimental characterization of the interface states (Dit(E)) by using the subthreshold drain current with optical charge pumping effect in In0.53Ga0.47As metal-oxide-semiconductor fieldeffect transistors (MOSFETs). The interface states are derived from the difference between the dark and photo states of the current–voltage characteristics. We used a sub-bandgap photon (i.e., with the photon energy lower than the bandgap energy, Eph < Eg) to optically excite trapped carriers over the bandgap in In0.53Ga0.47As MOSFETs. We combined a gate bias-dependent capacitance model to determine the channel length-independent oxide capacitance. Then, we estimated the channel length-independent interface states in In0.53Ga0.47As MOSFETs having different channel lengths (Lch = 5, 10, and 25 [μm]) for a fixed overlap length (Lov = 5 [μm]).
APA, Harvard, Vancouver, ISO, and other styles
21

Osaka, Jiro, Koichi Maezawa, and andMasafumi Yamamoto. "Highly Uniform Regrown In0.53Ga0.47As/AlAs/InAs Resonant Tunneling Diodes on In0.53Ga0.47As." Japanese Journal of Applied Physics 38, Part 1, No. 2B (February 28, 1999): 1204–7. http://dx.doi.org/10.1143/jjap.38.1204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yablonovitch, E., R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza. "Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces." Applied Physics Letters 60, no. 3 (January 20, 1992): 371–73. http://dx.doi.org/10.1063/1.106660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Contreras, Yissel, Pablo Mancheno-Posso, and Anthony J. Muscat. "Comparison of the Chemical Passivation of GaAs, In0.53Ga0.47As, and InSb with 1-Eicosanethiol." Solid State Phenomena 255 (September 2016): 55–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.255.55.

Full text
Abstract:
Self-assembled 1-eicosanethiolate layers were deposited on the oxide-free (100) crystal planes of GaAs, In0.53Ga0.47As, and InSb to protect the surfaces. The layer prevented re-oxidation in air for 30 min on GaAs but only 8 min on In0.53Ga0.47As based on the O 1s x-ray photoelectron spectroscopy state. The layer protected InSb from reoxidation for only 4 min based on the O Auger state. Well-ordered monolayers formed on GaAs and In0.53Ga0.47As based on transmission Fourier transform infrared (FTIR) spectroscopy. A partially ordered layer was formed on InSb based on attenuated total reflection FTIR. The increased reoxidation rate of InGaAs and InSb is due to the larger lattice parameter of these surfaces and their In content, which forms weaker bonds to S, Ga, and Sb compared to Ga bonding to As and S.
APA, Harvard, Vancouver, ISO, and other styles
24

Leibovitch, M. "Reflection anisotropy spectroscopy, surface photovoltage spectroscopy, and contactless electroreflectance investigation of the InP/In0.53Ga0.47As(001) heterojunction system." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 4 (July 1996): 3089. http://dx.doi.org/10.1116/1.589069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ambrée, P., and B. Gruska. "Cd diffusion in In0.53Ga0.47As." Crystal Research and Technology 24, no. 3 (March 1989): 299–305. http://dx.doi.org/10.1002/crat.2170240312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, D. H., Sheng S. Li, N. J. Sauer, and T. Y. Chang. "High quality In0.53Ga0.47As Schottky diode formed by graded superlattice of In0.53Ga0.47As/In0.52Al0.48As." Applied Physics Letters 54, no. 19 (May 8, 1989): 1863–65. http://dx.doi.org/10.1063/1.101261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tamura, Hirotaka, Akira Yoshida, Shunichi Muto, and Shinya Hasuo. "Schottky Barrier Height of Al/n-In0.53Ga0.47As and Nb/n-In0.53Ga0.47As Diodes." Japanese Journal of Applied Physics 26, Part 2, No. 1 (January 20, 1987): L7—L9. http://dx.doi.org/10.1143/jjap.26.l7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lee, In-Geun, Hyeon-Bhin Jo, Ji-Min Baek, Sang-Tae Lee, Su-Min Choi, Hyo-Jin Kim, Wan-Soo Park, et al. "Lg = 50 nm Gate-All-Around In0.53Ga0.47As Nanosheet MOSFETs with Regrown In0.53Ga0.47As Contacts." Electronics 11, no. 17 (August 31, 2022): 2744. http://dx.doi.org/10.3390/electronics11172744.

Full text
Abstract:
In this paper, we report the fabrication and characterization of Lg = 50 nm gate-all-around (GAA) In0.53Ga0.47As nanosheet (NS) metal-oxide-semiconductor field-effect transistors (MOSFETs) with sub-20 nm nanosheet thickness that were fabricated through an S/D regrowth process. The fabricated GAA In0.53Ga0.47As NS MOSFETs feature a bi-layer high-k dielectric layer of Al2O3/HfO2, together with an ALD-grown TiN metal-gate in a cross-coupled manner. The device with Lg = 50 nm, WNS = 200 nm and tNS = 10 nm exhibited an excellent combination of subthreshold-swing behavior (S < 80 mV/dec.) and carrier transport properties (gm_max = 1.86 mS/mm and ION = 0.4 mA/mm) at VDS = 0.5 V. To the best of our knowledge, this is the first demonstration of InxGa1-xAs GAA NS MOSFETs that would be directly applicable for their use in future multi-bridged channel (MBC) devices.
APA, Harvard, Vancouver, ISO, and other styles
29

Maeda, Tatsuro, Kazuaki Oishi, Hiroto Ishii, Hiroyuki Ishii, Wen Hsin Chang, Tetsuji Shimizu, Akira Endoh, Hiroki Fujishiro, and Takashi Koida. "Schottky barrier contact on In0.53Ga0.47As with short-wave infrared transparent conductive oxide." Applied Physics Letters 121, no. 23 (December 5, 2022): 232102. http://dx.doi.org/10.1063/5.0129445.

Full text
Abstract:
In this study, we fabricate and investigate Schottky barrier contact on n- and p-type In0.53Ga0.47As with transparent conductive oxide (TCO) that transmits light from the visible to short-wave infrared (SWIR) region. The TCO/p-In0.53Ga0.47As contact exhibits explicit rectifying behavior in current–voltage measurement, with an effective Schottky barrier height of 0.587 eV ( I– V) and 0.567 eV ( C– V). Conversely, the TCO/n-In0.53Ga0.47As exhibits the Ohmic behavior. From high-resolution transmission electron microscopy observations, we identified two types of interfacial layers between TCO and InGaAs: an In/Ga-rich InGaAs oxide layer and an In/Ga-deficient InGaAs layer. These interfacial layers may have a significant impact on the performance of the Schottky barrier contact. An ultra-thin Ni-layer insertion at the TCO/n+-InGaAs interface reduces the contact resistivity by more than an order of magnitude while maintaining high transparency. The TCO/p-InGaAs Schottky barrier contact also performs broadband light detection from the visible to SWIR region in a front-side illumination manner, which is highly promising for detecting wavelengths covering the optical communication band.
APA, Harvard, Vancouver, ISO, and other styles
30

Nashimoto, Y. "Investigation of molecular beam epitaxial In0.53Ga0.47As regrown on liquid phase epitaxial In0.53Ga0.47As/InP." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4, no. 2 (March 1986): 540. http://dx.doi.org/10.1116/1.583423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Галиев, Г. Б., М. М. Грехов, Г. Х. Китаева, Е. А. Климов, А. Н. Клочков, О. С. Коленцова, В. В. Корниенко, К. А. Кузнецов, П. П. Мальцев, and С. С. Пушкарев. "Генерация терагерцевого излучения в низкотемпературных эпитаксиальных пленках InGaAs на подложках InP с ориентациями (100) и (411) A." Физика и техника полупроводников 51, no. 3 (2017): 322. http://dx.doi.org/10.21883/ftp.2017.03.44201.8312.

Full text
Abstract:
Методом терагерцевой спектроскопии временного разрешения исследованы спектр и волновые формы импульсов широкополосного терагерцевого излучения, генерируемых низкотемпературными эпитаксиальными пленками In0.53Ga0.47As при накачке фемтосекундными лазерными импульсами. Пленки In0.53Ga0.47As были получены методом молекулярно-лучевой эпитаксии при температуре 200oC и при различных давлениях мышьяка на подложках InP с ориентацией (100) и впервые на подложках InP с ориентацией (411)A. Исследованы морфология поверхности образцов с помощью атомно-силовой микроскопии и их структурное совершенство с помощью высокоразрешающей рентгеновской дифрактометрии. Обнаружено, что амплитуда терагерцевого излучения от слоев LT-InGaAs на подложках InP (411)A в 3-5 раз больше, чем от таких же слоев на подложках InP (100). DOI: 10.21883/FTP.2017.03.44201.8312
APA, Harvard, Vancouver, ISO, and other styles
32

Shin, Seung Heon, Jae-Phil Shim, Hyunchul Jang, and Jae-Hyung Jang. "Fabrication and Characterization of In0.53Ga0.47As/InAs/In0.53Ga0.47As Composite Channel Metamorphic HEMTs (mHEMTs) on a GaAs Substrate." Micromachines 14, no. 1 (December 25, 2022): 56. http://dx.doi.org/10.3390/mi14010056.

Full text
Abstract:
In this work, we successfully demonstrated In0.53Ga0.47As/InAs/In0.53Ga0.47As composite channel metamorphic high electron mobility transistors (mHEMTs) on a GaAs substrate. The fabricated mHEMTs with a 100 nm gate length exhibited excellent DC and logic characteristics such as VT = −0.13 V, gm,max = 949 mS/mm, subthreshold swing (SS) = 84 mV/dec, drain-induced barrier lowering (DIBL) = 89 mV/V, and Ion/Ioff ratio = 9.8 × 103 at a drain-source voltage (VDS) = 0.5 V. In addition, the device exhibited excellent high-frequency characteristics, such as fT/fmax = 261/304 GHz for the measured result and well-matched modeled fT/fmax = 258/309 GHz at VDS = 0.5 V, which is less power consumption compared to other material systems. These high-frequency characteristics are a well-balanced demonstration of fT and fmax in the mHEMT structure on a GaAs substrate.
APA, Harvard, Vancouver, ISO, and other styles
33

Wertheim, G. K. "Synchrotron radiation photoemission study of interfacial electronic structure of HfO2 on In0.53Ga0.47As(001)-4 × 2 from atomic layer deposition." Applied Physics Letters 104, no. 4 (January 27, 2014): 042904. http://dx.doi.org/10.1063/1.4863440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Long, A. P., P. H. Beton, and M. J. Kelly. "Hot‐electron transport in In0.53Ga0.47As." Journal of Applied Physics 62, no. 5 (September 1987): 1842–49. http://dx.doi.org/10.1063/1.339567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shah, Jagdeep, B. Tell, T. J. Bridges, E. G. Burkhardt, A. E. DiGiovanni, and K. Brown‐Goebeler. "Luminescence in ion‐implanted In0.53Ga0.47As." Applied Physics Letters 47, no. 2 (July 15, 1985): 146–48. http://dx.doi.org/10.1063/1.96243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ng, J. S., S. M. Pinches, J. P. R. David, G. Hill, and G. J. Rees. "Impact ionisation coefficients of In0.53Ga0.47As." IEE Proceedings - Optoelectronics 148, no. 5 (December 1, 2001): 225–28. http://dx.doi.org/10.1049/ip-opt:20010700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ng, J. S., J. P. R. David, G. J. Rees, and J. Allam. "Avalanche breakdown voltage of In0.53Ga0.47As." Journal of Applied Physics 91, no. 8 (April 15, 2002): 5200–5202. http://dx.doi.org/10.1063/1.1462845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gulwadi, Sadanand M., Mulpuri V. Rao, Alok K. Berry, David S. Simons, Peter H. Chi, and Harry B. Dietrich. "Transition metal implants in In0.53Ga0.47As." Journal of Applied Physics 69, no. 8 (April 15, 1991): 4222–27. http://dx.doi.org/10.1063/1.348393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rao, Mulpuri V., N. R. Keshavarz‐Nia, David S. Simons, P. M. Amirtharaj, Phillip E. Thompson, Tao Y. Chang, and Jenn Ming Kuo. "Fe implantation in In0.53Ga0.47As/InP." Journal of Applied Physics 65, no. 2 (January 15, 1989): 481–85. http://dx.doi.org/10.1063/1.343129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kash, Kathleen, and Jagdeep Shah. "Hot electron relaxation in In0.53Ga0.47As." Journal of Luminescence 30, no. 1-4 (February 1985): 333–39. http://dx.doi.org/10.1016/0022-2313(85)90063-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ahmed, S. R., B. R. Nag, and M. Deb Roy. "Hot-electron transport in In0.53Ga0.47As." Solid-State Electronics 28, no. 12 (December 1985): 1193–97. http://dx.doi.org/10.1016/0038-1101(85)90042-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Beerens, J., C. J. Miner, and N. Puetz. "Electron spin resonance in In0.53Ga0.47As." Semiconductor Science and Technology 10, no. 9 (September 1, 1995): 1233–36. http://dx.doi.org/10.1088/0268-1242/10/9/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Urquhart, J., D. J. Robbins, R. I. Taylor, and A. J. Moseley. "Impact ionisation coefficients in In0.53Ga0.47As." Semiconductor Science and Technology 5, no. 7 (July 1, 1990): 789–91. http://dx.doi.org/10.1088/0268-1242/5/7/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Seo, K. S., P. R. Berger, G. P. Kothiyal, and P. K. Bhattacharya. "Anomalous effects of lamp annealing in modulation-doped In0.53Ga0.47As/In0.52Al0.48As and Si-implanted In0.53Ga0.47As." IEEE Transactions on Electron Devices 34, no. 2 (February 1987): 235–40. http://dx.doi.org/10.1109/t-ed.1987.22912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

O'Connor, É., K. Cherkaoui, S. Monaghan, B. Sheehan, I. M. Povey, and P. K. Hurley. "Inversion in the In0.53Ga0.47As metal-oxide-semiconductor system: Impact of the In0.53Ga0.47As doping concentration." Applied Physics Letters 110, no. 3 (January 16, 2017): 032902. http://dx.doi.org/10.1063/1.4973971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chen, D. Y., Y. A. Chang, D. Swenson, and F. R. Shepherd. "Thermodynamically stable tungsten ohmic contacts to n-In0.53Ga0.47As." Journal of Materials Research 13, no. 4 (April 1998): 959–64. http://dx.doi.org/10.1557/jmr.1998.0134.

Full text
Abstract:
Based on a thermodynamic assessment of the W–In–Ga–As quaternary system, the metal W was selected as a thermodynamically stable ohmic contact material to n-In0.53Ga0.47As. As-deposited contacts (on n ∼ 1.4 × 1018 cm−3 In0.53Ga0.47As) had average specific contact resistances of 7 × 10−7 Ω ·cm2 as measured using the transmission line model. The contact resistances remained unchanged after rapid thermal annealing at 400 °C for 1 min or at 600 °C for 1 min, and exhibited no degradation in electrical properties even after long-term annealing at 500 °C for 100 h. Transmission electron microscopic examination of the contacts showed no interfacial reaction. The present investigation demonstrates the power of thermodynamics in identifying stable ohmic contacts to multicomponent semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
47

Ahn, D. H., S. M. Ji, M. Takenaka, and S. Takagi. "Design and properties of planar-type tunnel FETs using In0.53Ga0.47As/InxGa1-xAs/In0.53Ga0.47As quantum well." Journal of Applied Physics 122, no. 13 (October 7, 2017): 135704. http://dx.doi.org/10.1063/1.4992005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Waldrop, J. R., E. A. Kraut, C. W. Farley, and R. W. Grant. "Measurement of InP/In0.53Ga0.47As and In0.53Ga0.47As/In0.52Al0.48As heterojunction band offsets by x‐ray photoemission spectroscopy." Journal of Applied Physics 69, no. 1 (January 1991): 372–78. http://dx.doi.org/10.1063/1.347724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pal, S., S. M. Shivaprasad, Y. Aparna, and B. R. Chakraborty. "Phosphorous passivation of In0.53Ga0.47As using MOVPE and characterization of Au–Ga2O3(Gd2O3)–In0.53Ga0.47As MIS capacitor." Applied Surface Science 245, no. 1-4 (May 2005): 196–201. http://dx.doi.org/10.1016/j.apsusc.2004.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shen, Jian, Evgueni A. Chagarov, Darby L. Feldwinn, Wilhelm Melitz, Nancy M. Santagata, Andrew C. Kummel, Ravi Droopad, and Matthias Passlack. "Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As(001)-(4×2) surfaces." Journal of Chemical Physics 133, no. 16 (October 28, 2010): 164704. http://dx.doi.org/10.1063/1.3497040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography