To see the other types of publications on this topic, follow the link: In vivo experiments on rats.

Books on the topic 'In vivo experiments on rats'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 books for your research on the topic 'In vivo experiments on rats.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Ferguson, Kimberly Anne. The acute effect of insulin on hepatic very low density lipoprotein triglyceride secretion in rats in vivo. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Lilian. An in vivo study on the skeletal effects of Bap/DMBA and resveratrol in estrogen-repleted OVX aged rats. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Larsson, Carina Ingvast. Pharmacodynamic effects and pharmacokinetics of theophylline and clenbuterol: In vitro and in vivo studies in the horse and rat. Uppsala: Sveriges Lantbruksuniversitet, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pharmakokinetik von 2-Nitropropan: Untersuchungen in vivo an Kaninchen, Untersuchungen in vitro an Leberfraktionen von Kaninchen und Ratte. Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fernandez-Botran, Rafael. Immunological and hematopoietic biotechnology studies: Final report, NASA interchange NCA2-687. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

D, Mele Gary, Naidu Sujata, and United States. National Aeronautics and Space Administration., eds. NASA rat acoustic tolerance test, 1994-1995: 8 kHz, 16 kHz, 32 kHz experiments : final report for NASA cooperative agreement #NCC2-822. San Jose, CA: Dept. of Biological Sciences, San Jose State University, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

D, Mele Gary, Naidu Sujata, and United States. National Aeronautics and Space Administration., eds. NASA rat acoustic tolerance test, 1994-1995: 8 kHz, 16 kHz, 32 kHz experiments : final report for NASA cooperative agreement #NCC2-822. San Jose, CA: Dept. of Biological Sciences, San Jose State University, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Samathanam, Glory K. An examination of spinal cord neuronal damage and in vivo neurotransmitter release in rats with acute experimental allergic encephalomyelitis. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arnold, Monica M., Lauren M. Burgeno, and Paul E. M. Phillips. Fast-Scan Cyclic Voltammetry in Behaving Animals. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0005.

Full text
Abstract:
Gaining insight into the mechanisms by which neural transmission governs behavior remains a central goal of behavioral neuroscience. Multiple applications exist for monitoring neurotransmission during behavior, including fast-scan cyclic voltammetry (FSCV). This technique is an electrochemical detection method that can be used to monitor subsecond changes in concentrations of electroactive molecules such as neurotransmitters. In this technique, a triangular waveform voltage is applied to a carbon fiber electrode implanted into a selected brain region. During each waveform application, specific molecules in the vicinity of the electrode will undergo electrolysis and produce a current, which can be detected by the electrode. In order to monitor subsecond changes in neurotransmitter release, waveform application is repeated every 100 ms, yielding a 10 Hz sampling rate. This chapter describes the fundamental principles behind FSCV and the basic instrumentation required, using as an example system the detection of in vivo phasic dopamine changes in freely-moving animals over the course of long-term experiments. We explain step-by-step, how to construct and surgically implant a carbon fiber electrode that can readily detect phasic neurotransmitter fluctuations and that remains sensitive over multiple recordings across months. Also included are the basic steps for recording FSCV during behavioral experiments and how to process voltammetric data in which signaling is time-locked to behavioral events of interest. Together, information in this chapter provides a foundation of FSCV theory and practice that can be applied to the assembly of an FSCV system and execution of in vivo experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Fullana, Jose-Maria, Valerie Deplano, and Claude Verdier. Biological Flow in Large Vessels: Dialog Between Numerical Modeling and in Vitro/in Vivo Experiments. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fullana, Jose-Maria, Valerie Deplano, and Claude Verdier. Biological Flow in Large Vessels: Dialog Between Numerical Modeling and in Vitro/in Vivo Experiments. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fullana, Jose-Maria, Valerie Deplano, and Claude Verdier. Biological Flow in Large Vessels: Dialog Between Numerical Modeling and in Vitro/in Vivo Experiments. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fullana, Jose-Maria, Valerie Deplano, and Claude Verdier. Biological Flow in Large Vessels: Dialog Between Numerical Modeling and in Vitro/in Vivo Experiments. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

The in vivo effects of BaP: DMBA and resveratrol on the bone and the ovary of young rats. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ferster, David. Patch Clamp Recording in Vivo. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0002.

Full text
Abstract:
Patch clamp recording in vivo allows an investigator to study intracellular membrane potentials in an intact organism (as opposed to cells in culture or acute brain slices). This technique is a reliable method of obtaining high-quality intracellular recordings from neurons, regardless of their size, in several parts of the mammalian brain. This chapter will describe the principles and practice of performing patch clamp experiments in vivo, beginning with a brief history of the technological developments that have made this technique possible.
APA, Harvard, Vancouver, ISO, and other styles
16

In vivo insulin action on whole body and individual tissues in obese SHHF/Mcc-cp rats with or without acute exercise. 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Becker, Lora A. Pattern of light induced fos expression in the neonatal rat suprachiasmatic nucleus: Relationship to subpopulation cells and motor output. 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

NASA rat acoustic tolerance test 1994-1995: 8 kHz, 16 kHz, 32 kHz experiments : final report for NASA cooperative agreement #NCC2-822 : [draft report]. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

NASA rat acoustic tolerance test 1994-1995: 8 kHz, 16 kHz, 32 kHz experiments : final report for NASA cooperative agreement #NCC2-822 : [draft report]. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

The Spy Next door: Mutant Rat Attack! Scholastic, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles
22

Erdem, Uğur Murat, Nicholas Roy, John J. Leonard, and Michael E. Hasselmo. Spatial and episodic memory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0029.

Full text
Abstract:
The neuroscience of spatial memory is one of the most promising areas for developing biomimetic solutions to complex engineering challenges. Grid cells are neurons recorded in the medial entorhinal cortex that fire when rats are in an array of locations in the environment falling on the vertices of tightly packed equilateral triangles. Grid cells suggest an exciting new approach for enhancing robot simultaneous localization and mapping (SLAM) in changing environments and could provide a common map for situational awareness between human and robotic teammates. Current models of grid cells are well suited to robotics, as they utilize input from self-motion and sensory flow similar to inertial sensors and visual odometry in robots. Computational models, supported by in vivo neural activity data, demonstrate how grid cell representations could provide a substrate for goal-directed behavior using hierarchical forward planning that finds novel shortcut trajectories in changing environments.
APA, Harvard, Vancouver, ISO, and other styles
23

Campagnola, Luke, and Paul Manis. Patch Clamp Recording in Brain Slices. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199939800.003.0001.

Full text
Abstract:
Patch clamp recording in brain slices allows unparalleled access to neuronal membrane signals in a system that approximates the in-vivo neural substrate while affording greater control of experimental conditions. In this chapter we discuss the theory, methodology, and practical considerations of such experiments including the initial setup, techniques for preparing and handling viable brain slices, and patching and recording signals. A number of practical and technical issues faced by electrophysiologists are also considered, including maintaining slice viability, visualizing and identifying healthy cells, acquiring reliable patch seals, amplifier compensation features, hardware configuration, sources of electrical noise and table vibration, as well as basic data analysis issues and some troubleshooting tips.
APA, Harvard, Vancouver, ISO, and other styles
24

Frew, Anthony. Air pollution. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0341.

Full text
Abstract:
Any public debate about air pollution starts with the premise that air pollution cannot be good for you, so we should have less of it. However, it is much more difficult to determine how much is dangerous, and even more difficult to decide how much we are willing to pay for improvements in measured air pollution. Recent UK estimates suggest that fine particulate pollution causes about 6500 deaths per year, although it is not clear how many years of life are lost as a result. Some deaths may just be brought forward by a few days or weeks, while others may be truly premature. Globally, household pollution from cooking fuels may cause up to two million premature deaths per year in the developing world. The hazards of black smoke air pollution have been known since antiquity. The first descriptions of deaths caused by air pollution are those recorded after the eruption of Vesuvius in ad 79. In modern times, the infamous smogs of the early twentieth century in Belgium and London were clearly shown to trigger deaths in people with chronic bronchitis and heart disease. In mechanistic terms, black smoke and sulphur dioxide generated from industrial processes and domestic coal burning cause airway inflammation, exacerbation of chronic bronchitis, and consequent heart failure. Epidemiological analysis has confirmed that the deaths included both those who were likely to have died soon anyway and those who might well have survived for months or years if the pollution event had not occurred. Clean air legislation has dramatically reduced the levels of these traditional pollutants in the West, although these pollutants are still important in China, and smoke from solid cooking fuel continues to take a heavy toll amongst women in less developed parts of the world. New forms of air pollution have emerged, principally due to the increase in motor vehicle traffic since the 1950s. The combination of fine particulates and ground-level ozone causes ‘summer smogs’ which intensify over cities during summer periods of high barometric pressure. In Los Angeles and Mexico City, ozone concentrations commonly reach levels which are associated with adverse respiratory effects in normal and asthmatic subjects. Ozone directly affects the airways, causing reduced inspiratory capacity. This effect is more marked in patients with asthma and is clinically important, since epidemiological studies have found linear associations between ozone concentrations and admission rates for asthma and related respiratory diseases. Ozone induces an acute neutrophilic inflammatory response in both human and animal airways, together with release of chemokines (e.g. interleukin 8 and growth-related oncogene-alpha). Nitrogen oxides have less direct effect on human airways, but they increase the response to allergen challenge in patients with atopic asthma. Nitrogen oxide exposure also increases the risk of becoming ill after exposure to influenza. Alveolar macrophages are less able to inactivate influenza viruses and this leads to an increased probability of infection after experimental exposure to influenza. In the last two decades, major concerns have been raised about the effects of fine particulates. An association between fine particulate levels and cardiovascular and respiratory mortality and morbidity was first reported in 1993 and has since been confirmed in several other countries. Globally, about 90% of airborne particles are formed naturally, from sea spray, dust storms, volcanoes, and burning grass and forests. Human activity accounts for about 10% of aerosols (in terms of mass). This comes from transport, power stations, and various industrial processes. Diesel exhaust is the principal source of fine particulate pollution in Europe, while sea spray is the principal source in California, and agricultural activity is a major contributor in inland areas of the US. Dust storms are important sources in the Sahara, the Middle East, and parts of China. The mechanism of adverse health effects remains unclear but, unlike the case for ozone and nitrogen oxides, there is no safe threshold for the health effects of particulates. Since the 1990s, tax measures aimed at reducing greenhouse gas emissions have led to a rapid rise in the proportion of new cars with diesel engines. In the UK, this rose from 4% in 1990 to one-third of new cars in 2004 while, in France, over half of new vehicles have diesel engines. Diesel exhaust particles may increase the risk of sensitization to airborne allergens and cause airways inflammation both in vitro and in vivo. Extensive epidemiological work has confirmed that there is an association between increased exposure to environmental fine particulates and death from cardiovascular causes. Various mechanisms have been proposed: cardiac rhythm disturbance seems the most likely at present. It has also been proposed that high numbers of ultrafine particles may cause alveolar inflammation which then exacerbates preexisting cardiac and pulmonary disease. In support of this hypothesis, the metal content of ultrafine particles induces oxidative stress when alveolar macrophages are exposed to particles in vitro. While this is a plausible mechanism, in epidemiological studies it is difficult to separate the effects of ultrafine particles from those of other traffic-related pollutants.
APA, Harvard, Vancouver, ISO, and other styles
25

Odds, Frank C. Pathogenesis of fungal disease. Edited by Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum, and Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0008.

Full text
Abstract:
The pathogenesis of fungal disease involves an interplay between fungal virulence factors and host immune responses. Most fungal pathogens are opportunists that preferentially invade hosts with immune defects, but the fact that relative pathogenicity varies between fungal species (and even between different strains within a species) is evidence that fungi have evolved multiple, different molecular virulence factors. Experiments in which genes encoding putative virulence attributes are specifically disrupted and the resulting mutants are tested for virulence in a range of vertebrate and invertebrate hosts have identified or confirmed many gene products as significant for the pathogenesis of various types of fungal disease. These include factors determining fungal shape in vivo, biofilm formation, and a plethora of surface components, including adhesins and hydrolytic enzymes. This chapter provides an overview of fungal virulence attributes.
APA, Harvard, Vancouver, ISO, and other styles
26

Wójcik-Gładysz, Anna. Ghrelin – hormone with many faces. Central regulation and therapy. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_awg_2020.

Full text
Abstract:
Discovered in 1999, ghrelin, is one of the peptides co-creating the hypothalamicgastrointestinal axis, otherwise known as the brain-gut axis. Ghrelin participates in many physiological processes and spectrum of its activity is still being discovered. This 28 amino acid peptide ‒ a product of the ghrl gene, was found in all vertebrates and is synthesized and secreted mainly from enteroendocrine X/A cells located in the gastric mucosa of the stomach. Expression of the ghrelin receptor has been found in many nuclei of the hypothalamus involved in appetite regulation. Therefore it’s presumed that ghrelin is one of the crucial hormones deciphering the energy status required for the maintenance of organism homeostasis. Ghrelin acts as a signal of starvation or energy insufficiency and its level in plasma is reduced after the meal. Neuropeptide Y (NPY) and agouti-related peptide (AgRP; NPY/AgRP) neurons located in the arcuate nucleus (ARC) area are the main target of ghrelin in the hypothalamus. This subpopulation of neurons is indispensable for inducing orexigenic action of ghrelin. Moreover ghrelin acting as a neurohormone, mainly in the hypothalamus area, plays an important role in the regulation of growth and reproduction processes. Indeed, ghrelin action on reproductive processes has been observed in the systemic effects exerted at both hypothalamus-pituitary and gonadal levels. Similarly the GH-releasing ghrelin action was observed both on the hypothalamus level and directly on the somatotrophic cells in the pituitary and this dose-related GH releasing activity was found in in vitro as well as in in vivo experiments. In recent years, numerous studies revealed that ghrelin potentially takes part in the treatment of diseases associated with serious disturbances in the organism energy balance and/or functioning of the gastrointestinal tract. It was underlined that ghrelin may be a hormone with a broad spectrum of therapeutic effect on obesity and anorexia nervosa, as well as may also have protective effect on neurodegenerative diseases, inflammatory disorders or functional changes in the body caused by cancers. In overall, ghrelin treatment has been tested in over 100 preclinical studies with healthy volunteers as well as patients with various types of cancer, eating disorders such as anorexia nervosa and bulimia nervosa. It was observed that ghrelin has an excellent clinical safety profile and emerging side effects occurred only in 3–10% of patients and did not constitute a sufficient premise to discontinue the therapy. In general, it can be concluded that ghrelin may be sufficiently used as a prescription drug.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography