Academic literature on the topic 'In vivo absorption spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'In vivo absorption spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "In vivo absorption spectroscopy"

1

Furukawa, Hiromitsu, and Takashi Fukuda. "In vivo absorption spectroscopy for absolute measurement." Biomedical Optics Express 3, no. 10 (September 18, 2012): 2587. http://dx.doi.org/10.1364/boe.3.002587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taroni, Paola, Antonio Pifferi, Alessandro Torricelli, Daniela Comelli, and Rinaldo Cubeddu. "In vivo absorption and scattering spectroscopy of biological tissues." Photochemical & Photobiological Sciences 2, no. 2 (2003): 124. http://dx.doi.org/10.1039/b209651j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Klinteberg, Claes af, Antonio Pifferi, Stefan Andersson-Engels, Rinaldo Cubeddu, and Sune Svanberg. "In vivo absorption spectroscopy of tumor sensitizers with femtosecond white light." Applied Optics 44, no. 11 (April 10, 2005): 2213. http://dx.doi.org/10.1364/ao.44.002213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Soomin, Collin J. Steen, Alexandra L. Fischer, and Graham R. Fleming. "Snapshot transient absorption spectroscopy: toward in vivo investigations of nonphotochemical quenching mechanisms." Photosynthesis Research 141, no. 3 (April 24, 2019): 367–76. http://dx.doi.org/10.1007/s11120-019-00640-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Colombo, L., M. Pagliazzi, S. Konugolu Venkata Sekar, D. Contini, T. Durduran, and A. Pifferi. "In vivo time-domain diffuse correlation spectroscopy above the water absorption peak." Optics Letters 45, no. 13 (June 17, 2020): 3377. http://dx.doi.org/10.1364/ol.392355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kezic, S. "Methods for measuring in-vivo percutaneous absorption in humans." Human & Experimental Toxicology 27, no. 4 (April 2008): 289–95. http://dx.doi.org/10.1177/0960327107085825.

Full text
Abstract:
In-vivo human data on percutaneous absorption are scarce, although they are indispensable for health risk assessment of dermal exposure. In addition, they are considered to be the gold standard for the evaluation of in-vitro systems as well as predictive mathematical models. Dermal absorption in vivo can be assessed using different approaches. The most used methods for determination of in-vivo dermal absorption are the measurement of the parent chemical and/or its metabolite level in biological material, the microdialysis technique and stratum corneum tape stripping. Recently, the non-invasive spectrophotometric methods based on infrared and Raman spectroscopy showed themselves as promising tools for studying percutaneous absorption though these approaches are still in their developmental stages and requires further optimization and validation. The aim of this article is to review different methods for determination of percutaneous absorption in vivo in humans. The advantages and limitations are discussed with respect to generating data for comparison with in-vitro or predictive mathematical models or health risk assessment of chemicals. Furthermore, the importance of the volunteer experiments in generating relevant data for human risk assessment as well as for the development and implementation of biological monitoring in occupational settings will be addressed.
APA, Harvard, Vancouver, ISO, and other styles
7

Piantadosi, C. A. "Spectrophotometry of b-type cytochromes in rat brain in vivo and in vitro." American Journal of Physiology-Cell Physiology 256, no. 4 (April 1, 1989): C840—C848. http://dx.doi.org/10.1152/ajpcell.1989.256.4.c840.

Full text
Abstract:
Terminal oxidase inhibitors such as cyanide (CN) and carbon monoxide (CO) produce different absorption changes in the intact brain, suggesting different mitochondrial responses to the inhibitors. In the present study, the nature of the cytochromes involved in CO and CN responses in vivo was investigated by low-temperature spectroscopy of rat brain, frozen in situ, and of preparations of brain homogenate and isolated mitochondria. Comparison of the spectra from different preparations at the high resolution afforded by low-temperature spectroscopy indicated that absorption responses to CO in vivo originated from mitochondrial b cytochromes. Further detailed spectral analysis of mitochondrial preparations revealed three CN-insensitive b cytochromes in nonsynaptic brain mitochondria; one cytochrome could be reduced by succinate in the presence of CN, the second could be reduced by succinate plus ATP, and the third could be reduced only by anaerobiosis. The spectral characteristics of the mitochondrial b cytochromes, when compared with spectra from CO-exposed brain tissue frozen in situ, strongly implicated the energy-dependent cytochrome b in the oxidation-reduction (redox) responses caused by CO in vivo.
APA, Harvard, Vancouver, ISO, and other styles
8

Nishidate, Izumi, Tomohiro Ishizuka, Afrina Mustari, Keiichiro Yoshida, Satoko Kawauchi, Shunichi Sato, and Manabu Sato. "Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging." Applied Spectroscopy 71, no. 5 (July 5, 2016): 866–78. http://dx.doi.org/10.1177/0003702816657569.

Full text
Abstract:
We investigated a quantitative imaging of reduced scattering coefficients μs’( λ) and the absorption coefficients μa( λ) of in vivo cortical tissues in the range from visible to near-infrared (NIR) wavelengths based on diffuse reflectance spectral imaging technique. In this method, diffuse reflectance images of in vivo cortical tissue are acquired at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm). A multiple regression analysis aided by the Monte Carlo simulation for the absorbance spectra is then utilized to estimate the optical coefficients of cortical tissue. This analysis calculates the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin, the scattering amplitude a and the scattering power b. The spectrum of absorption coefficient is deduced from the estimated concentrations of oxygenated hemoglobin and deoxygenated hemoglobin. The spectrum of reduced scattering coefficient is determined by the estimated scattering amplitude and scattering power. The particle size distribution of microstructure is calculated from the estimated scattering power b for evaluating the morphological change in brain tissue quantitatively. Animal experiments with in vivo exposed brain of rats demonstrated that the responses of the absorption properties to hyperoxic and anoxic conditions are in agreement with the expected well-known cortical hemodynamics. The average particle size was significantly reduced immediately after the onset of anoxia and then it was changed into an increase, which implied the swelling and shrinkage of the cellular and subcellular structures induced by loss of tissue viability in brain tissue.
APA, Harvard, Vancouver, ISO, and other styles
9

Suzuki, Hiroshi, Masatsugu Niwayama, Toshitaka Yamakawa, Masaki Ohkubo, Ryotaro Kime, and Toshihito Katsumura. "Simultaneous Determination of Absorption Coefficients for Skin and Muscle Tissues Using Spatially Resolved Measurements." Advanced Materials Research 222 (April 2011): 309–12. http://dx.doi.org/10.4028/www.scientific.net/amr.222.309.

Full text
Abstract:
We present a method for simultaneous measurement of optical absorption coefficients for skin (μas) and muscle (μam) tissues using spatially resolved near-infrared spectroscopy (SRS). A novel calculation algorithm was developed to determine the absorption coefficients of superficial and deep layers within a three-layered structure using Monte Carlo simulation. A method for measuring the skin and muscle absorption coefficients was proposed based on this algorithm. In vitro experiments with tissue-like phantom and in vivo tests were performed using the SRS system with four separate detectors. The results show that the absorption coefficients for both skin and muscle tissues were obtained accurately.
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Zhi Ying, and Nan Nan Gai. "Independent Component Analysis of Multiple-Component Gaseous Photoacoustic Spectroscopy to Determine Feature Absorption." Advanced Materials Research 518-523 (May 2012): 1544–51. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.1544.

Full text
Abstract:
A blind source separation model out of statistical information principle is applied to “decode” multi-gas photoacoustic spectroscopy from mixing signal into a couple of single independent component based on samples from a given detection experiment and A FastICA algorithm with used in the mode is introduced to separate the spectroscopy of low molecule mass by a feature extraction or to track that of higher-mass volatile molecule by a pattern recognition, such as acetone or its similar-species molecules. The research has exhibited its glamour by successfully extracting ammonia feature absorption in the real-time detection of breath ammonia in vivo.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "In vivo absorption spectroscopy"

1

Jelzow, Alexander [Verfasser], Rainer Akademischer Betreuer] Macdonald, Ulrike [Akademischer Betreuer] [Woggon, and Jens [Akademischer Betreuer] Steinbrink. "In vivo quantification of absorption changes in the human brain by time-domain diffuse near-infrared spectroscopy / Alexander Jelzow. Gutachter: Rainer Macdonald ; Ulrike Woggon ; Jens Steinbrink. Betreuer: Rainer Macdonald." Berlin : Technische Universität Berlin, 2013. http://d-nb.info/1067385398/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jelzow, Alexander Verfasser], Rainer [Akademischer Betreuer] Macdonald, Ulrike [Akademischer Betreuer] [Woggon, and Jens [Akademischer Betreuer] Steinbrink. "In vivo quantification of absorption changes in the human brain by time-domain diffuse near-infrared spectroscopy / Alexander Jelzow. Gutachter: Rainer Macdonald ; Ulrike Woggon ; Jens Steinbrink. Betreuer: Rainer Macdonald." Berlin : Technische Universität Berlin, 2013. http://d-nb.info/1067385398/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hani, Umama. "Regulation of cyclic and pseudocyclic electron transport." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB044.

Full text
Abstract:
La photosynthèse, principale voie de production d'énergie dans les environnements naturels, repose sur des flux d'électrons intervenant dans plusieurs complexes dans la membrane des thylakoïdes des organismes photosynthétiques. Le flux principal est le transport « linéaire » des électrons qui implique leur transfert de l'eau au NADP⁺, le tout couplé à la synthèse d'ATP. L'oxydation de l'eau photosynthétique est catalysée par les clusters de manganèse (Mn₄CaO₅) au niveau du photosystème II (PSII). Pour assurer un équilibre optimal entre la quantité d'énergie produite et consommée, les organismes photosynthétiques détournent une partie de l'énergie lumineuse récoltée des voies de transport d'électrons "linéaires" vers des voies "alternatives". Parmi ces voies, on trouve les transports cyclique et pseudocyclique des électrons autour du photosystème I (PSI), qui fournit de l'ATP supplémentaire pour répondre aux besoins métaboliques. En outre, des systèmes redox spécialisés appelés "thiorédoxines" sont responsables du maintien de l'état redox et de l'acclimatation rapide des plantes à un environnement changeant. Dans le cas contraire, cela peut conduire à des niveaux toxiques d'espèces réactives de l'oxygène (ROS) dans les cellules. Nous avons étudié les effets de l'excès et de la carence en manganèse (Mn) sur le transport des électrons au cours de la photosynthèse chez l'hépatique Marchantia polymorpha. Nous avons montré que l'homéostasie du Mn a un effet sur le métabolisme mais aussi sur la photosynthèse. De plus, nous avons étudié les changements redox in vivo du P700 et du la plastocyanine (PC) en utilisant le spectrophotomètre KLAS-NIR. Il semble que la carence en Mn permet une augmentation du transport cyclique des électrons (TCE) ce qui indique la présence de supercomplexes contenant le PSI et le complexe du cytochrome b6f. Dans un second temps, nous nous sommes concentrées sur la régulation redox de la réduction de l'oxygène (transport d'électrons pseudocyclique) du côté de l'accepteur du PSI. En utilisant la spectroscopie RPE par piégeage indirect de spin, nous avons montré que des plantes sauvages d'Arabidopsis thaliana génèrent plus de ROS en photopériode de jour court (JC) qu'en photopériode de jour long (JL). En outre, nous avons mis en évidence le rôle de plusieurs acteurs, y compris les thiorédoxines et plusieurs protéines du lumen et du stroma dans la régulation redox. De plus, j'ai découvert que le transfert du pouvoir réducteur du stroma au lumen est médié par une protéine appelée CCDA. Par ailleurs, l'attachement réversible de Trxm à la membrane des thylakoïdes agit comme une force motrice pour l’accumulation des ROS en JC. Dans l'ensemble, les résultats établissent un lien étroit entre le transport cyclique et pseudocyclique des électrons en termes de régulations redox médiées par les thiorédoxines. Une voie est également ouverte quant à une exploration plus approfondie du TCE dans différentes conditions de stress
Photosynthesis acts as the main gateway for energy production in natural environments and relies on the electron flow via several complexes in the thylakoid membrane of photosynthetic organisms. The major flux is “linear” electron transport, which involves the transfer of electrons from water to NADP⁺, coupled with the ATP synthesis. Photosynthetic water oxidation is catalyzed by manganese cluster (Mn₄CaO₅) at photosystem II (PSII). To ensure an optimal balance between the amount of energy produced and consumed, photosynthetic organisms divert part of the harvested light energy from “linear” to “alternative” electron transport pathways. Among those pathways are cyclic and pseudocyclic electron transport around Photosystem I (PSI), which supplies extra ATP to meet metabolic demands. Moreover, specialized redox systems, called " thioredoxins " are responsible for maintaining the redox status and fast acclimation of plants to constantly fluctuating environments, which could otherwise lead to toxic levels of reactive oxygen species (ROS) production. We studied the effects of manganese (Mn) excess and deficiency on photosynthetic electron transport in the liverwort Marchantia polymorpha. We have shown that Mn homeostasis has an effect at both metabolic and photosynthetic levels. Moreover, we have studied the in vivo redox changes of P700 and PC using KLAS-NIR spectrophotometer and have shown that Mn deficiency seems to enhance cyclic electron transport (CET), that may indicate the presence of supercomplexes containing PSI and cytochrome b6f complex. The second part of this PhD focused on the redox regulation of oxygen reduction (pseudocyclic electron transport) at the PSI acceptor side. By using indirect spin trapping EPR spectroscopy, we have shown that Arabidopsis thaliana wild type plants generate more ROS in short day (SD) photoperiod than in long day (LD) photoperiod. Further, the current study highlighted the role of several players in redox regulation; including thioredoxins and several other lumenal and stromal proteins. Moreover, I explored that the transfer of reducing powers from stroma to lumen is mediated by a protein called CCDA and that reversible attachment of Trxm to the thylakoid membrane acts as the driving force for higher ROS under the SD light regime. Overall, this research establishes a strong connection between cyclic and pseudocyclic electron transport in terms of thioredoxins mediated redox regulations and also paves the way to further explore CET under different stress conditions
APA, Harvard, Vancouver, ISO, and other styles
4

Wirth, Adrian. "Attosecond transient absorption spectroscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-140120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arita, Yoshihiko. "Multi-mode absorption spectroscopy." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489407.

Full text
Abstract:
A novel approach to absorption spectroscopy is presented which achieves, simultaneously, wide spectral coverage and high spectral resolution. The principle of the technique - dubbed multi-mode absorption spectroscopy (MUMAS) - is described, and demonstrations of the principle are reported using two multi-mode sources: diode lasers and micro-cavity solid state lasers. The technique is shown to have potential for the detection of multiple species and multiple parameters using a single laser and a single detector.
APA, Harvard, Vancouver, ISO, and other styles
6

Hageman, Stephen James. "Complex Attosecond Transient-absorption Spectroscopy." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1608050018545904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Durrant, James Robert. "Transient absorption spectroscopy of photosystem two." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/11455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davidson, Stephen John. "Absorption spectroscopy in near LTE plasmas." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fiedler, Sven E. "Incoherent broad band cavity enhanced absorption spectroscopy." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97431966X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Howard, John Brooks. "Double point contact single molecule absorption spectroscopy." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31648.

Full text
Abstract:
Thesis (Ph.D)--Physics, Georgia Institute of Technology, 2010.
Committee Chair: Marchenkov, Alexei; Committee Member: Davidovic, Dragomir; Committee Member: Gole, James; Committee Member: Hunt, William; Committee Member: Reido, Elisa. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "In vivo absorption spectroscopy"

1

Berliner, Lawrence J., and Jacques Reuben, eds. In Vivo Spectroscopy. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9477-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Annibale, Mottana, Burragato Francesco, and European Meeting on Absorption Spectroscopy in Mineralogy (1st : 1988 : Accademia nazionale dei Lincei), eds. Absorption spectroscopy in mineralogy. Amsterdam: Elsevier, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Graaf, Robin A. In Vivo NMR Spectroscopy. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119382461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Ando D., and Metcalfe Ed, eds. Atomic absorption and plasma spectroscopy. 2nd ed. Chichester: Published on behalf of ACOL (University of Greenwich) by J. Wiley, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elizabeth, Prichard F., ed. Atomic absorption and emission spectroscopy. Chichester: Published on behalf of ACOL, by J. Wiley, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1953-, Rudin M., and Beer R. de, eds. In-vivo magnetic resonance spectroscopy. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rudin, M., ed. In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77218-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rudin, M. In-Vivo Magnetic Resonance Spectroscopy III: In-Vivo MR Spectroscopy: Potential and Limitations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dedina, Jirí. Hydride generation atomic absorption spectrometry. Chichester [England]: Wiley, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schnohr, Claudia S., and Mark C. Ridgway, eds. X-Ray Absorption Spectroscopy of Semiconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44362-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "In vivo absorption spectroscopy"

1

Charnley, Steven B. "Absorption Spectroscopy." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_9-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Charnley, Steven B. "Absorption Spectroscopy." In Encyclopedia of Astrobiology, 29–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Loureiro, Jorge, and Jayr Amorim. "Absorption Spectroscopy." In Kinetics and Spectroscopy of Low Temperature Plasmas, 359–81. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-09253-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Charnley, Steven. "Absorption Spectroscopy." In Encyclopedia of Astrobiology, 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Xiaohua. "Absorption Spectroscopy." In Encyclopedia of Systems Biology, 2. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Charnley, Steven B. "Absorption Spectroscopy." In Encyclopedia of Astrobiology, 40–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rougier, André. "In Vivo Percutaneous Absorption." In Percutaneous Absorption, 53–64. 5th ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parson, William W. "Electronic Absorption." In Modern Optical Spectroscopy, 123–223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46777-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Parson, William W. "Vibrational Absorption." In Modern Optical Spectroscopy, 297–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46777-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Parson, William W., and Clemens Burda. "Vibrational Absorption." In Modern Optical Spectroscopy, 331–75. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17222-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "In vivo absorption spectroscopy"

1

Ye, Weilin, Yifei Huang, Linfeng He, Lifu Duan, and Zhidan Zheng. "Symmetrized Dot Pattern Infrared Absorption Spectroscopy." In 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Colombo, L., M. Pagliazzi, S. Konugolu Venkata Sekar, D. Contini, T. Durduran, and A. Pifferi. "In vivo time-domain diffuse correlation spectroscopy beyond the water absorption peak." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.sm3d.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patterson, Michael S., Stefan Andersson-Engles, Ernest Osei, James P. Brown, and Brian C. Wilson. "Spatial impulse response of in vivo optical spectroscopy." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mz2.

Full text
Abstract:
During in vivo fluorescence and absorption spectroscopy, light is usually delivered to the tissue surface by an optical fiber and collected either by the same fiber or another at some distance from the source. Because of absorption and scattering, the response of such a system to a local change in the absorption coefficient or the fluorescence quantum yield will depend on the position of this perturbation. Proper interpretation of spectra obtained from inhomogeneous media requires knowledge of this spatial dependence. In this paper we describe a model based on diffusion theory which permits calculation of this dependence in three dimensions. Since the propagation of excitation and emitted light are separately considered, both absorption and fluorescence spectroscopy can be studied. The model can also be applied to time-resolved or frequency-domain absorption spectroscopy by use of the time-dependent diffusion equation. Experimental tests of the model have been performed for cw fluorescence spectroscopy by moving a small fluorescent target in a tissue-simulating medium and recording the signal as a function of position. These results are presented with predictions of the model for various irradiation/collection geometries and a range of tissue optical properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Cubeddu, Rinaldo, Cosimo D’Andrea, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, and Gianluca Valentini. "Quantification of Breast Tissue Constituents from Time-Resolved Reflectance Spectra." In In Vivo optical Imaging at the NIH. Washington, D.C.: Optica Publishing Group, 1999. http://dx.doi.org/10.1364/ivoi.1999.dis118.

Full text
Abstract:
The optical properties of the breast of a 35 yr. old volunteer were studied as a function of the menstrual period using a system for time resolved reflectance spectroscopy from 610 to 1000 nm. The availability of a wide spectral range allowed us to derive the mean concentration of the main tissue absorbers (water, lipids, oxy-, and deoxy-hemoglobin), and to infer information on the microscopic structure. Reflectance spectra were richer of blood and lipids, while transmittance spectra showed a more marked water peak. Changes of absorption properties were observed as a function of phases within the menstrual cycle with an increase in blood and lipid absorption in reflectance and of water content in transmittance while approaching menstruation. Scattering spectra experienced a drop in slope across ovulation, suggesting a change in size and structure of scatterers. This spectroscopy technique can be of great help to understand breast physiology from an optical point of view, and to help further improvement of optical mammography.
APA, Harvard, Vancouver, ISO, and other styles
5

Bargigia, Ilaria, Siënna Karremans, Vamshi Damagatla, Alessandro Bossi, Paola Taroni, and Antonio Pifferi. "Comprehensive dataset of absorption and scattering spectra of in-vivo biological tissues using time-domain diffuse optical spectroscopy." In Optical Tomography and Spectroscopy. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/ots.2024.os3d.8.

Full text
Abstract:
Through time-domain diffuse optical spectroscopy measurements, we present a comprehensive overview of the optical properties (reduced scattering and absorption co-efficients) found in in-vivo tissues. Furthermore, this dataset represents a working example of Open Data.
APA, Harvard, Vancouver, ISO, and other styles
6

Cubeddu, Rinaldo, Cosimo D’Andrea, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, Gianluca Valentini, and Gianfranco Canti. "Effects of PDT on the in vivo absorption properties of AlS2Pc in tumor-bearing mice." In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/bosd.2000.suh5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thueler, Philippe, Frederic Bevilacqua, Christian Depeursinge, Gaëlic Ory, Nadereh Azar-Pey, Bernard Vermeulen, Igor Charvet, Domenico Bosco, and Paolo Meda. "A new method to simultaneously determine the absorption and elastic scattering spectra of tissues in vivo." In Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/bosd.2000.suh7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qiu, Le, Hui Fang, Edward Vitkin, Munir M. Zaman, Charlotte Andersson, Saira Salahuddin, Lauren M. Kimerer, et al. "Studying cells in vivo with confocal light absorption and scattering spectroscopy (CLASS)." In Biomedical Optics (BiOS) 2007, edited by Adam Wax and Vadim Backman. SPIE, 2007. http://dx.doi.org/10.1117/12.699385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arpaia, Pasquale, Ornella Cuomo, Fortuna Galdieri, Olfa Kanoun, Francesca Mancino, Nicola Moccaldi, and Hanen Nouri. "Bioimpedance Spectroscopy Improves Insulin Absorption Measurement Method: A Feasibility In-Vivo Study Based on Saline." In 2023 International Workshop on Impedance Spectroscopy (IWIS). IEEE, 2023. http://dx.doi.org/10.1109/iwis61214.2023.10302768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bradu, A., R. Sablong, C. Julien, I. Troprès, J. F. Payen, and J. Derouard. "In vivo absorption spectroscopy in brain using small optical fiber probes: effect of blood confinement." In European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4432_85.

Full text
Abstract:
Broad band light absorption spectroscopy in the visible range (520-590nm) has been carried out using implanted small optical fibers to probe the hemodynamics of deep tissues (striatum) in rat brain subjected to hypoxia. We observe a decrease of the cerebral blood oxygenation by a factor of up to two, while the cerebral blood volume (CBV) does not seem to increase significantly. However, nuclear magnetic resonance measurements of CBV in the same conditions using a magnetic contrast agent show that CBV increases by about 50%. This shows that absorption spectroscopy in the visible range strongly underestimates the CBV, probably due to the confinement of blood in vessels. This effect is confirmed by absorption spectroscopy measurements performed in phantoms with similar geometry.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "In vivo absorption spectroscopy"

1

Diachok, Orest. Bioacoustic Absorption Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada628210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diachok, Orest. Bioacoustic Absorption Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Diachok, Orest. Bioacoustic Absorption Spectroscopy (ASIAEX). Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada610200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eberle, b. Relic Neutrino Absorption Spectroscopy. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koffend, John B., John S. Holloway, Munson A. Kwok, III Heidner, and Raymond F. High-Resolution Absorption Spectroscopy of NO2. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada184835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tobin, J. X-Ray Absorption Spectroscopy of Uranium Dioxide. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1018793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elder, Richard C., and William R. Heineman. X-Ray Absorption Spectroscopy of Electrochemically Generated Species. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada205572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Steve, and Chuni Ghosh. Medical Gas Diagnosis Via Diode Laser Absorption Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada299343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Curl, Robert F., and Graham Glass. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/838138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Curl, R. F., and G. P. Glass. Infrared absorption spectroscopy and chemical kinetics of free radicals. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5184794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography