Dissertations / Theses on the topic 'In-beam monitoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 36 dissertations / theses for your research on the topic 'In-beam monitoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Benot, Morell Alfonso. "Beam position monitoring in the clic drive beam decelerator using stripline technology." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/64067.
Full text[ES] El Colisionador Lineal Compacto (Compact Linear Collider, CLIC), un colisionador de electrones y positrones concebido en el CERN para el estudio de la Física de Altas Energías en la región de los TeV, se basa en un principio de funcionamiento de doble haz: en lugar de emplear elementos activos (klystrons) para proporcionar la potencia RF requerida para acelerar el haz principal (Main Beam, MB), ésta se obtiene de la deceleración de un haz secundario (Drive Beam, DB), de alta corriente y energía moderada, en las llamadas estructuras de extracción y transferencia de potencia (Power Extraction and Transfer Structures, PETS). Estas estructuras emiten una señal interferente RF de más de 130 MW de potencia a 12 GHz, que, por estar localizada en una frecuencia superior a la de corte del modo fundamental en el tubo de vacío del haz (7.6 GHz), se propaga por éste hacia los dispositivos adyacentes, entre los cuales se encuentran los sistemas de monitorización de la posición (Beam Position Monitor, BPM). De acuerdo con el informe conceptual de diseño de CLIC (Conceptual Design Report, CDR) , un sistema eficiente de monitorización de la posición del haz en el decelerador del haz secundario deberá cumplir los siguientes requisitos: - Debe ser lo más sencillo y económico posible, ya que se precisan 41580 unidades: el 75% de todos los BPMs de CLIC. - El procesado de señal en el sistema de adquisición deberá ser inmune a la interferencia generada en las PETS. Esto excluye la solución habitual de procesar las señales del BPM a la frecuencia de pulsado del haz (12 GHz). - La señal de posición resultante del procesado debe ser capaz de detectar cambios en la posición del haz de duración igual o mayor a 10 ns (resolución temporal). - La resolución espacial requerida es de 2 um para un tubo de vacío de 23 mm de diámetro, con una calibración precisa. - Amplio rango dinámico: el sistema electrónico de adquisición del BPM debe poder resistir los altos valores de señal provocados por los casos de desviación extrema del haz nominal (se contempla una desviación máxima de la mitad del radio del tubo), así como detectar las señales inducidas por las configuraciones de haz con menor carga de todas las previstas, cuyos niveles serán muy débiles.
[CAT] El Col·lisionador Lineal Compacte (Compact Linear Collider, CLIC), un col·lisionador d'electrons i positrons concebut per l'estudi de la Física d'Altes Energies a la regió dels TeV (energía del centre de massa), es basa en un principi de funcionament de doble feix:en lloc de fer servir elements actius (klystrons) per proporcionar la potència RF requerida per accelerar el feix principal (Main Beam, MB), aquesta s'obtè de la desacceleració d'un feix secundari (Drive Beam, DB), d'alt corrent i energia moderada, a les anomenades estructures d'extracció i transferència de potència (Power Extraction and Transfer Structures, PETS). Aquestes estructures emeten una senyal interferent RF de més de 130 MW de potència a 12 GHz, que, pel fet d'estar localitzada a una freqüència superior a la de tall del mode fonamental al tub de buit del feix (7.6 GHz), es propaga a través d'aquest fins els dispositius adjacents, entre els quals trobem els sistemes de monitorització de la posició (Beam Position Monitor, BPM). D'acord amb l'informe conceptual de disseny de CLIC (Conceptual Design Report, CDR), un sistema eficient de monitorització de la posició del feix al desaccelerador del feix secundari haurà de complir els següents requisits: ¿ - Ha de ser el més senzill i econòmic possible, ja que es necessiten 41580 unitats: el 75% de tots els BPMs de CLIC. ¿ - El processat de la senyal al sistema d'adquisició haurà de ser inmune a la interferència generada als PETS. Això exclou la solució habitual de processar les senyals del BPM a la freqüència de pulsacions del feix (12 GHz). ¿- La senyal de posició resultant del processat ha de ser capaç de detectar canvis a la posició del feix de durada igual o més gran que 10 ns (resolució temporal). ¿- La resolució espaial necessària és de 2 um per a un tub de buit de 23 mm de diàmetre. ¿- Ampli rang dinàmic: el sistema electrònic d'adquisició del BPM ha de poder processar senyals amb nivells extrems, induïdes per feixos de molt alt (100 A) i molt baix (3 A) corrent.
Benot Morell, A. (2016). Beam position monitoring in the clic drive beam decelerator using stripline technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64067
TESIS
KOSTARA, ELEFTHERIA. "Full-beam PET monitoring in hadron therapy and related coincidence logic." Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1013502.
Full textHadron therapy is a widely employed technique that uses protons and heavy ions to treat cancer. It has the potential of delivering highly conformal dose distributions to the tumor volume while sparing the surrounding healthy tissue, thanks to the dose distribution characterized by the Bragg peak at the end of charged particles range. In order to exploit the full potential of hadron therapy, an in vivo monitoring technique is desirable in order to reduce the uncertainties and therefore the treatment safety margins. Positron emission tomography (PET) is considered one of the most promising in vivo non-invasive imaging techniques for monitoring the particle range in radiation treatments. One of the data acquisition methods is the so-called in-beam which is performed during irradiation at the treatment site. The problem of in-beam monitoring is that in-spill data are much noisier while inter-spill data for accelerators with high duty cycles, are much less due to the small number of acquired decays. During the spills, the noisy background is due to the presence of strong beam-induced radiation that increases the random coincidence rates. This background might originate from the decay of β+ emitters with half-lives in millisecond range and high endpoint energies, by γ-rays following nuclear reactions not related to β+ decay or by pair productions and neutrons. The noisy events cannot be separated from the usable decays of long-lived β+ emitters and cannot be corrected with standard random coincidence correction techniques because of the time-correlation of the beam-induced background with the ion beam microstructure. Until now, only two methods exist for identifying coincident events that occur during the microbunches in the spills. Both of them use information about the beam microstructure from external sources. In the first method, the RF signal from the accelerator is used externally and the data processing is done offline. In the second one, a fast particle detector placed in the beam path before the target is used and the process is triggered only when a particle arrives. With this thesis, the correlation between the beam microstructure and the RF of the synchrotron is confirmed by analyzing the events in the spills without the need of an external signal. An algorithm for the calculation of the period of the beam microstructure is developed. Small differences in the period between the spills impose the separate analysis for every spill. The period is calculated with 4 digits precision in nanosecond time scale, making a significant difference to the representation of the microbunch. In the end, the firmware related to the algorithm for the calculation of the period of the beam microstructure is developed using only the events in the spills. The simulation results show that it is possible the algorithm to be implemented in an FPGA and provide information about the period of the beam microstructure in real time. Moreover, a coincidence sorter is developed in order to provide real time coincidence detection. The simulation results for the two different architectures of the sorter that uses comparators with two and three inputs, are presented. The 3D spatial distribution and the 1D activity profiles of the coincidence events are constructed for inter-spill and in-spill data. The strong radiation background is visible in the reconstructed images, especially before the entrance surface of the phantom and at the end of the activity range with a tail. After filtering out the in-spill data by discarding the coincidence events that occur in a sub-interval of the microbunch, it is shown that the reconstructed image improves severely. In the 1D activity profile, one can observe that the number of coincidence events before the entrance surface of the phantom decreases significantly. This might happen because neutrons are discarded since they are detected a few ns later after the interaction of the beam with the nuclei. Results show that the signal to noise ratio (SNR), defined as the activity peak in the phantom divided by the background level, is improved by a factor of about 4.8 with respect to the in-spill signal. In the end, it is important to mention that this activity has been developed within the projects INSIDE and INFIERI (FP7-PEOPLE-2012-ITN project number 317446) funded by MIUR and EU respectively.
Shakirin, Georgy. "System solution for in beam positron emission tomography monitoring of radiation therapy." Doctoral thesis, Dresden TUDpress, 2009. http://d-nb.info/996092544/04.
Full textRowbottom, Carl Graham. "Optimisation of beam-orientations in conformal radiotherapy treatment planning." Thesis, Institute of Cancer Research (University Of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314088.
Full textAhmed, Syed Naeem. "Quantum fluctuations in a segmented ionization chamber for beam monitoring of synchrotron radiation." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=957510330.
Full textCrespo, Paulo. "Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28512.
Full textCrespo, Paulo. "Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy." Forschungszentrum Rossendorf, 2006. https://hzdr.qucosa.de/id/qucosa%3A21679.
Full textBuga, Vlad, and Roysten Jason Dsouza. "In-process monitoring for Electron Beam Additive Manufacturing using an infrared camera system." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245064.
Full text“Additive manufacturing” (AM) eller “friformsframställning” har snabbt ökat i omfattning, främst tack vare dess fördelar jämfört med konventionell bearbetning. Fördelarna inkluderar möjligheten att tillverka delar med komplexa geometrier medan slöseri minimeras. Den exponentiella tillväxten av tekniken har medfört utmaningar inom kvalitetssäkring, vilket har visat sig vara ett hinder för storskalig anpassning. Utveckling av processövervakningstekniker för AM är en pågående utmaning, och ligger efter i utveckling jämfört med de mer etablerade teknikerna som utvecklats för konventionell bearbetning. Tidigare forskning har visat fall där tekniken har implementerats med fokus på titanlegeringar. Denna studie syftar till att bidra till den forskning som genomförs inom processövervakning och fokuserar på EBM-processen (Electronic Beam Melting). Materialet som övervakas är Inconel 625, för att expandera forskningsområdet till högre temperaturområden. Den mest lämpliga övervakningstekniken och leverantör av utrustning väljs ut genom en gransking av tidigare litteratur och en marknadsundersökning. Experimentella försök för att analysera övervakningsteknikens prestanda med Inconel 625 utförs. De extraherade data analyseras sedan med bildbehandling, vilket ger intressanta resultat med avseende på temperaturfluktuationer över successiva lager av byggobjektet. Händelserna inom byggprocessen för ett lager visar intressanta avvikelser i temperatur, vilka kartläggs och presenteras som grafer. Tillståndet efter räfsning visar en särskilt stor avvikelse, som sedan tillskrivs differentialvärme av metallpulvret under räfsningsfasen. Denna observation stöds genom att notera "cold-spots" i extraherade bilder av byggobjektet. Resultaten diskuteras och vidare omfång för studien framförs. Avsikten med denna studie är att ta fram en grund för vidare forskning i processövervakning för högre temperaturområden och bidra till utvecklingen av realtidsprocessövervakning för AM.
Kelly, Brendan T. "A Newly Proposed Method for Detection, Location, and Identification of Damage in Prestressed Adjacent Box Beam Bridges." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1339520527.
Full textAlessio, Federico. "Beam, Background and Luminosity Monitoring in LHCb and Upgrade of the LHCb Fast Readout Control." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22044/document.
Full textThere are two main central topics in the thesis: the LHCb beam, background and luminosity monitoring systems and the LHCb optimization systems of experimental conditions. These systems are heavily connected to each other, as improving the machine beam, background and luminosity conditions will automatically improve global operation by maximizing the ratio of luminosity recorded over signal background. At the same time, improving the operation of the experiment will help improve luminosity, by studying more accurately the beam and background conditions and therefore improving the LHC machine settings. In this thesis, the systems to accomplish the requirements of these two main topics are described in detail
Stützer, Kristin. "Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131398.
Full textDie Ionenstrahltherapie (englisch: ion beam therapy, IBT) ist eine vielversprechende Behandlungsoption im Bereich der Strahlentherapie. Die charakteristischen physikalischen und biologischen Eigenschaften der Ionenstrahlen werden genutzt, um tumorkonformale Dosisverteilungen zu erzeugen. Die verbesserte Schonung des an den Tumor angrenzenden Normalgewebes und eventuell naheliegender Risikoorgane ermöglicht eine Dosissteigerung im Zielgebiet und somit potentiell höhere Tumorkontroll- und Überlebensraten. Für tiefliegende, gegenüber konventioneller Strahlung resistente, statische und gut fixierte Tumore wurden bereits beachtliche klinische Resultate erzielt. Wahrscheinlich könnten noch mehr Patienten von den Vorteilen der IBT profitieren, wenn diese auch für häufiger auftretende und intrafraktionell bewegliche Tumore uneingeschränkt nutzbar wäre. Verschiedene bewegungskompensierte Bestrahlungsmethoden wurden entwickelt und stehen zumindest unter experimentellen Bedingungen für weitere Untersuchungen am GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt zur Verfügung. Um eine sichere und präzise Dosisapplikation in der IBT zu ermöglichen, werden hohe Anforderungen an die Qualitätssicherung gesetzt. Sowohl auftretende Überdosierungen im Normalgewebe als auch Unterdosierungen im Tumor können den Therapieerfolg gefährden. Da bereits kleine, unerwartete anatomische Veränderungen, zum Beispiel durch Fehlpositionierung des Patienten, Schrumpfung des Tumors oder Schwellungen, zu erheblichen Abweichungen zwischen geplanter und applizierter Dosisverteilung führen können, gibt es Bestrebungen, die applizierte Dosis zumindest qualitativ zu verifizieren. Die Positronen-Emissions-Tomografie (PET) ist derzeit die einzige, bereits klinisch erprobte Methode für ein in vivo, in situ und nicht-invasives qualitatives Dosismonitoring. Diese Methode ist im Stande, die Autoaktivierung des bestrahlten Gewebes zu erfassen, welche aufgrund von Kernfragmentierungsprozessen entlang des Strahlweges erzeugt wird. Unter anderem werden in diesen Reaktionen instabile Nuklide erzeugt, die entsprechend ihrer Halbwertszeit unter Emission eines Positrons zerfallen. Bei der anschließenden Positron-Elektron-Annihilation werden zwei 511keV Photonen in entgegengesetzter Richtung emittiert und können mittels eines geeigneten PET-Scanners als Koinzidenzereignis detektiert werden. Die im Patienten induzierte dreidimensionale (3D) β+-Aktivitätsverteilung kann aus den gemessenen Koinzidenzen rekonstruiert werden. Ein Vergleich der gemessenen mit einer erwarteten, mittels Monte-Carlo Simulation erzeugten β+-Aktivitätsverteilung erlaubt es, Schlussfolgerungen über die tatsächlich im Patienten deponierte 3D Dosisverteilung zu ziehen. Diese Art der Datenauswertung wurde erfolgreich für die qualitative Dosisverifikation von über 440 Patienten eingesetzt, deren Tumore (vorwiegend im Kopf- und Halsbereich) an der GSI mit 12C-Ionen bestrahlt wurden. Bei der konventionellen 3D IBT-PET-Datenverarbeitung wird eine mögliche intrafraktionelle Bewegung des Zielgebietes nicht berücksichtigt und fehlerhaft rekonstruierte β+-Aktivitätsverteilungen sind die Folge. Daher werden vierdimensionale, zeitaufgelöste (4D) Rekonstruktionsalgorithmen benötigt, die für die spezielle Geometrie eines in-beam PET-Scanner adaptiert wurden und eine Kompensation der bewegungsinduzierten Artefakte ermöglichen. Im Rahmen der vorliegenden Arbeit wurde für den an der GSI installierten Doppelkopf-PET-Scanner Bastei ein 4D Maximum-Likelihood-Expectation-Maximization (MLEM) Algorithmus implementiert. Die Funktionsfähigkeit des Algorithmus sowie dessen verbesserte Reduktion von Bewegungsartefakten im Vergleich zu einem bereits vorhandenen Koregistrierungsansatz wurde anhand verschiedener Messungen mit bewegten radioaktiven Quellen und bestrahlten Phantomen sowie einer vergleichenden Simulationsstudie dargelegt. Für die Experimente wurden entsprechende Phantomgeometrien (zumeist aus Polymethylmethacrylat (PMMA)) sowie ein Bewegungstisch für reguläre eindimensionale (1D) Bewegungsmuster entworfen und gefertigt. Zudem wurde durch die erfolgreiche, quasi-statische und nahezu artefaktfreie Rekonstruktion einer rotierenden und sich damit zweidimensional bewegenden Aktivitätsverteilung die prinzipielle Anwendbarkeit des 4D MLEM Algorithmus für komplexere Bewegungsmuster gezeigt. Systematische Punktquellenmessungen mit 1D cos^2- und cos^4-förmigen Bewegungsmustern haben deutlich gemacht, dass der Bewegungseinfluss mit der gleichen Anzahl an Bewegungsphasen besser kompensiert werden kann, wenn die Bewegungsphasen entsprechend der Bewegungsamplitude anstelle der -phase unterteilt sind. In jedem Fall können aber zufriedenstellende Rekonstruktionsergebnisse erzielt werden, wenn durch geeignete Parameterwahl eine mittlere Restbewegung pro Bewegungsphase von maximal etwa der halben Größe eines Detektorkristalls eingestellt wird. Durch weitere Experimente konnte gezeigt werden, dass nach der Rekonstruktion mit dem 4D MLEM Algorithmus die relevanten Parameter für die qualitative Dosisverifikation (Teilchenreichweite, laterale Feldposition und -gradienten) zuverlässig erfasst werden können. Dies ist auch dann der Fall, wenn nur eine verminderte Anzahl an Koinzidenzereignissen, so wie sie unter klinischen Bedingungen zu erwarten ist, für die Auswertung verwendet wird. Um die gemessene β+-Aktivitätsverteilung besser zu beurteilen, sollte sie mit einer simulierten, für die bewegungskompensierte Bestrahlung erwarteten Verteilung verglichen werden und es bedarf deshalb einer 4D Version der Simulationssoftware. Diese muss die Erzeugung sowie den Zerfall der Positronenemitter unter Berücksichtigung der intrafraktionellen Bewegung simulieren und aus den gültigen Koinzidenzereignissen Listmode-Datensätze erstellen. Eine derart überarbeitet Version des Simulationsprogramms wurde für den Bastei PET-Scanner erstellt und wird in dieser Arbeit vorgestellt. Informationen über den exakten Verlauf der bewegungskompensierten Bestrahlung werden durch das Therapiekontrollsystem geliefert. Diese Informationen sowie die intrafraktionelle Bewegung werden in die Simulation realistischer β+-Aktivitätsverteilungen bzw. der zugehörigen Listmode-Datensätze einbezogen. Anhand einer präklinischen Phantom-Simulationsstudie wurde die korrekte Funktionsweise des Simulationsprogramms sowie die Notwendigkeit der zusätzlichen Parameter gezeigt. Im Gegensatz zur Datenauswertung für statische Zielvolumina bedarf es bei intrafraktioneller Bewegung gegebenenfalls zusätzlichen Aufwand, um eine Fehlinterpretation aus dem Vergleich der gemessenen und simulierten β+-Aktivitätsverteilung zu vermeiden. In der vorliegenden Arbeit wird beispielhaft gezeigt, dass sich bei fehlerhafter Bewegungskompensation die gemessene und simulierte β+-Aktivitätsverteilung einander ähneln können, obwohl die applizierte Dosisverteilung deutlich von der geplanten abweicht. Im Gegensatz dazu können auch Abweichungen zwischen Messung und Simulation auftreten, die nicht auf anatomische Veränderungen, sondern auf eine ungenaue 4D Datenverarbeitung zurückzuführen sind. Es werden Vorschläge unterbreitet, um den Prozess der 4D IBT-PET Datenauswertung zu optimieren und somit Fehlinterpretationen zu vermeiden. Die vorliegende Dissertationsschrift enthält durch die Bereitstellung der benötigten 4D Rekonstruktions- und Simulationsprogramme grundlegende Arbeiten für eine mögliche zukünftige Anwendung der 4D IBT-PET als qualitatives Dosismonitoring bei intrafraktionell bewegten Zielvolumina. Für weitere Verbesserungen des Verfahrens sind zusätzliche systematische Betrachtungen mit realistischeren, mehrdimensionalen und unregelmäßigen Bewegungsmustern notwendig. Zukünftige Untersuchungen sollten außerdem echte Bestrahlungspläne, Atemkurven sowie 4D Patienten-CT-Daten einschließen, um den erwartbaren Nutzen eines 4D IBT-PET Dosismonitorings besser abschätzen zu können
Barapatre, Nirav. "Application of Ion Beam Methods in Biomedical Research." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-126262.
Full textLönn, Gustaf. "In-beam proton range monitoring during proton therapy : a Monte Carlo study on the feasibility of secondary gamma imaging." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188651.
Full textStrålbehandling av cancer med hjälp av protoner är fördelaktigt jämfört medkonventionell strålterapi då protonerna kan leverera en hög dos till ett välavgränsat område samtidigt som dosen till intilliggande vävnad effektivtreduceras. Tack vare statistiska variationer i protoners dosfördelning, anatomiskaavvikelser i patienter samt små fel vid patientfixering måste behandlingsplanerinnehålla marginaler som motsvarar ca 3.5% avvikelse i protonräckvidd. Att irealtid kunna mäta protoners räckvidd i patienten skulle vara tills stor nytta ochskulle bidra till att minska marginalerna i behandlingsplanen. I ett första skede avarbetet undersöktes möjligheten att avbilda protonräckvidden med promptgammaemission och Positron Emissions Tomografi (PET) genom GEANT4Application for Tomographic Emission (GATE) Monte Carlo (MC) simuleringar.Resultatet från MC simuleringarna användes sedan för att utvärdera ettdetektorsystem för prompt-gamma avbildning. Simuleringarna indikerade attproduktion av både prompt-gamma och PET isotoper är korrelerade medprotonernas räckvidd, särskilt 4.4 MeV emissionslinjen från Kol. Positionen förmaximal gamma emission kunde avbildas för tre olika positioner idetektorsystemet med en medelförskjutning på -2 ± 1 mm, -3 ± 0.7 mm och -4 ±1.3 mm. Detektorprofilen var förskjuten -12 ± 1 mm, -13 ± 0.7 mm och -14 ± 1.3mm jämfört med protonräckvidden p.g.a. interaktionernas energiberoende.Resultatet påvisar detektorsystemets potential att avbilda prompt-gamma fotoneroch framtida arbete omfattar ytterligare MC simuleringar och experimentellamätningar på Skandionklinken.
Apsimon, Robert J. "The development and implementation of a beam position monitoring system for use in the FONT Feedback System at ATF2." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:522614b8-d4fd-4bd3-9010-d604fc828295.
Full textMalusek, Alexandr. "Calculation of scatter in cone beam CT : Steps towards a virtual tomograph." Doctoral thesis, Linköping : Department of Medical and Health Sciences, Linköping University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11275.
Full textPinto, Marco. "Modelling and simulation of physics processes for in-beam imaging in hadrontherapy." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10330/document.
Full textHadrontherapy is taking an increasingly important role in radiotherapy thanks to the ballistic properties of ions and, for those heavier than protons, an enhancement in the relative biological effectiveness in the tumour region. These features allow for a higher tumour conformality possible and gives the opportunity to tackle the problem of radioresistant tumours. However, they may lead to a great sensitivity of ion range to treatment uncertainties, namely to morphological changes along their path. In view of this, the detection of secondary radiations emitted after nuclear interactions between the incoming ions and the patient have been long proposed as ion range probes and, in this regard, positron emitters and prompt gammas have been the matter of intensive research. The European training network ENTERVISION, supported by the ENLIGHT community, was created in the end of 2009 in order to develop such imaging techniques and more generally to address treatment uncertainties during hadrontherapy. The present work is one of the many resulting from this project, under the subject “Modelling and simulation of physics processes for in-beam imaging in hadrontherapy”. Despite the extensive range of the topic, the purpose was always to make a systematic study towards the clinical implementation of a prompt-gamma imaging device to be used for both proton and carbon ion treatments
Liprandi, Silvia [Verfasser], and Peter [Akademischer Betreuer] Thirolf. "Development and performance evaluation of detectors in a Compton camera arrangement for ion beam range monitoring in particle therapy / Silvia Liprandi ; Betreuer: Peter Thirolf." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1199265233/34.
Full textStützer, Kristin [Verfasser], Wolfgang [Akademischer Betreuer] Enghardt, and Gerhard [Akademischer Betreuer] Kraft. "Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy / Kristin Stützer. Gutachter: Wolfgang Enghardt ; Gerhard Kraft. Betreuer: Wolfgang Enghardt." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068444681/34.
Full textCroset, Guillaume. "Caractérisation in situ par imagerie proche infrarouge en fabrication additive "fusion sur lit de poudre par faisceau d'électrons." Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI018.
Full textElectron beam Powder Bed Fusion (E-PBF) is an additive manufacturing process that allows metallic parts to be built by selectively melting successive layers of powder. However, this process can generate defects in the fabricated parts. To improve the reliability of this process, there is a need to develop in-situ monitoring imaging techniques. The main objective of this work is to set up strategies to characterize in-situ the E-PBF process. The selected tool is a near-infrared (NIR) camera employed to obtain images of the parts being manufactured. The first part of the work has been dedicated to setting up an experimental device allowing to acquire near-infrared images in an automated way and by taking into account the constrained environment of E-PBF (high temperature, vacuum, metal deposit on the walls). Two strategies of in-situ monitoring of E-PBF are suggested. The first one aims at taking one image per layer, just after the melting stage. Image analysis routines were developed and allow to identify and determine the spatial distribution of the defects (geometrical distortions, porosity) from their thermal signatures on the NIR-images. The detection of internal defects is validated with a non-destructive characterization (X-rays computed tomography). The second strategy consists of carrying out continuous image acquisition to analyze the temporal evolution of the grey level which is directly related to temperature changes. A methodology allowing to detect, even to anticipate given defects related to the energy delivered by the electron beam has been proposed. Those two approaches should allow the defects to be identified as quickly as possible to apply a correction within the framework of future closed-loop process control
Mäder, Thomas. "Neuartige Sensoren zur Erfassung von Dehnungen in Faserverbundwerkstoffen (Structural Health Monitoring)." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-159727.
Full textStrain sensors are used for structural health monitoring issues, certainly in parts with high safety requirements made of fibre-reinforced plastic composites. The integration of these sensors inside the parts protects them against any mechanical and corrosive impact. The sensor functionality can be enhanced by integration. There is a lot of international research effort to further develop integratable strain sensors. Different approaches are currently pursued. This thesis presents the results of investigations on three different approaches for novel strain sensors. The main goal of these investigations was to minimise the sensor diameter down to the diameter of reinforcing fibres. The small diameter allows for an optimum and artefact free integration of the sensors. The formation of resin nests and notches to the material structure can be prevented by integrating sensor with a smaller diameter. The strain measurement and monitoring is enhanced and more reliable then
Shih, Hoi Wai. "Damage assessment in structures using vibration characteristics." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/30319/1/Hoi_Shih_Thesis.pdf.
Full textShih, Hoi Wai. "Damage assessment in structures using vibration characteristics." Queensland University of Technology, 2009. http://eprints.qut.edu.au/30319/.
Full textTan, Zhi Xin. "Detecting, locating and quantifying damage in slab-on-girder bridge using vibration based techniques." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/132470/1/Zhi%20Xin_Tan_Thesis.pdf.
Full textLi, Junping. "Intelligent load monitoring in beam structures." 2002. http://www.lib.ncsu.edu/theses/available/etd-10312002-213658/unrestricted/etd.pdf.
Full textShakirin, Georgy. "System Solution for In-Beam Positron Emission Tomography Monitoring of Radiation Therapy." Doctoral thesis, 2008. https://tud.qucosa.de/id/qucosa%3A25094.
Full textTRAINI, GIACOMO. "Development of an innovative device for beam range monitoring in particle therapy." Doctoral thesis, 2018. http://hdl.handle.net/11573/1079675.
Full textVieira, Crespo Paulo Alexandre. "Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy." Phd thesis, 2006. https://tuprints.ulb.tu-darmstadt.de/655/1/PhD-Crespo-2005-A.pdf.
Full textZ, Shakarami. "Development of a novel solid state detector for beam monitoring in proton therapy." Doctoral thesis, 2021. http://hdl.handle.net/2318/1843251.
Full textShakirin, Georgy [Verfasser]. "System solution for in beam positron emission tomography monitoring of radiation therapy / Georgy Shakirin." 2009. http://d-nb.info/1007712600/34.
Full textStützer, Kristin. "Positron emission tomography for the dose monitoring of intra-fractionally moving targets in ion beam therapy." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27383.
Full textDie Ionenstrahltherapie (englisch: ion beam therapy, IBT) ist eine vielversprechende Behandlungsoption im Bereich der Strahlentherapie. Die charakteristischen physikalischen und biologischen Eigenschaften der Ionenstrahlen werden genutzt, um tumorkonformale Dosisverteilungen zu erzeugen. Die verbesserte Schonung des an den Tumor angrenzenden Normalgewebes und eventuell naheliegender Risikoorgane ermöglicht eine Dosissteigerung im Zielgebiet und somit potentiell höhere Tumorkontroll- und Überlebensraten. Für tiefliegende, gegenüber konventioneller Strahlung resistente, statische und gut fixierte Tumore wurden bereits beachtliche klinische Resultate erzielt. Wahrscheinlich könnten noch mehr Patienten von den Vorteilen der IBT profitieren, wenn diese auch für häufiger auftretende und intrafraktionell bewegliche Tumore uneingeschränkt nutzbar wäre. Verschiedene bewegungskompensierte Bestrahlungsmethoden wurden entwickelt und stehen zumindest unter experimentellen Bedingungen für weitere Untersuchungen am GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt zur Verfügung. Um eine sichere und präzise Dosisapplikation in der IBT zu ermöglichen, werden hohe Anforderungen an die Qualitätssicherung gesetzt. Sowohl auftretende Überdosierungen im Normalgewebe als auch Unterdosierungen im Tumor können den Therapieerfolg gefährden. Da bereits kleine, unerwartete anatomische Veränderungen, zum Beispiel durch Fehlpositionierung des Patienten, Schrumpfung des Tumors oder Schwellungen, zu erheblichen Abweichungen zwischen geplanter und applizierter Dosisverteilung führen können, gibt es Bestrebungen, die applizierte Dosis zumindest qualitativ zu verifizieren. Die Positronen-Emissions-Tomografie (PET) ist derzeit die einzige, bereits klinisch erprobte Methode für ein in vivo, in situ und nicht-invasives qualitatives Dosismonitoring. Diese Methode ist im Stande, die Autoaktivierung des bestrahlten Gewebes zu erfassen, welche aufgrund von Kernfragmentierungsprozessen entlang des Strahlweges erzeugt wird. Unter anderem werden in diesen Reaktionen instabile Nuklide erzeugt, die entsprechend ihrer Halbwertszeit unter Emission eines Positrons zerfallen. Bei der anschließenden Positron-Elektron-Annihilation werden zwei 511keV Photonen in entgegengesetzter Richtung emittiert und können mittels eines geeigneten PET-Scanners als Koinzidenzereignis detektiert werden. Die im Patienten induzierte dreidimensionale (3D) β+-Aktivitätsverteilung kann aus den gemessenen Koinzidenzen rekonstruiert werden. Ein Vergleich der gemessenen mit einer erwarteten, mittels Monte-Carlo Simulation erzeugten β+-Aktivitätsverteilung erlaubt es, Schlussfolgerungen über die tatsächlich im Patienten deponierte 3D Dosisverteilung zu ziehen. Diese Art der Datenauswertung wurde erfolgreich für die qualitative Dosisverifikation von über 440 Patienten eingesetzt, deren Tumore (vorwiegend im Kopf- und Halsbereich) an der GSI mit 12C-Ionen bestrahlt wurden. Bei der konventionellen 3D IBT-PET-Datenverarbeitung wird eine mögliche intrafraktionelle Bewegung des Zielgebietes nicht berücksichtigt und fehlerhaft rekonstruierte β+-Aktivitätsverteilungen sind die Folge. Daher werden vierdimensionale, zeitaufgelöste (4D) Rekonstruktionsalgorithmen benötigt, die für die spezielle Geometrie eines in-beam PET-Scanner adaptiert wurden und eine Kompensation der bewegungsinduzierten Artefakte ermöglichen. Im Rahmen der vorliegenden Arbeit wurde für den an der GSI installierten Doppelkopf-PET-Scanner Bastei ein 4D Maximum-Likelihood-Expectation-Maximization (MLEM) Algorithmus implementiert. Die Funktionsfähigkeit des Algorithmus sowie dessen verbesserte Reduktion von Bewegungsartefakten im Vergleich zu einem bereits vorhandenen Koregistrierungsansatz wurde anhand verschiedener Messungen mit bewegten radioaktiven Quellen und bestrahlten Phantomen sowie einer vergleichenden Simulationsstudie dargelegt. Für die Experimente wurden entsprechende Phantomgeometrien (zumeist aus Polymethylmethacrylat (PMMA)) sowie ein Bewegungstisch für reguläre eindimensionale (1D) Bewegungsmuster entworfen und gefertigt. Zudem wurde durch die erfolgreiche, quasi-statische und nahezu artefaktfreie Rekonstruktion einer rotierenden und sich damit zweidimensional bewegenden Aktivitätsverteilung die prinzipielle Anwendbarkeit des 4D MLEM Algorithmus für komplexere Bewegungsmuster gezeigt. Systematische Punktquellenmessungen mit 1D cos^2- und cos^4-förmigen Bewegungsmustern haben deutlich gemacht, dass der Bewegungseinfluss mit der gleichen Anzahl an Bewegungsphasen besser kompensiert werden kann, wenn die Bewegungsphasen entsprechend der Bewegungsamplitude anstelle der -phase unterteilt sind. In jedem Fall können aber zufriedenstellende Rekonstruktionsergebnisse erzielt werden, wenn durch geeignete Parameterwahl eine mittlere Restbewegung pro Bewegungsphase von maximal etwa der halben Größe eines Detektorkristalls eingestellt wird. Durch weitere Experimente konnte gezeigt werden, dass nach der Rekonstruktion mit dem 4D MLEM Algorithmus die relevanten Parameter für die qualitative Dosisverifikation (Teilchenreichweite, laterale Feldposition und -gradienten) zuverlässig erfasst werden können. Dies ist auch dann der Fall, wenn nur eine verminderte Anzahl an Koinzidenzereignissen, so wie sie unter klinischen Bedingungen zu erwarten ist, für die Auswertung verwendet wird. Um die gemessene β+-Aktivitätsverteilung besser zu beurteilen, sollte sie mit einer simulierten, für die bewegungskompensierte Bestrahlung erwarteten Verteilung verglichen werden und es bedarf deshalb einer 4D Version der Simulationssoftware. Diese muss die Erzeugung sowie den Zerfall der Positronenemitter unter Berücksichtigung der intrafraktionellen Bewegung simulieren und aus den gültigen Koinzidenzereignissen Listmode-Datensätze erstellen. Eine derart überarbeitet Version des Simulationsprogramms wurde für den Bastei PET-Scanner erstellt und wird in dieser Arbeit vorgestellt. Informationen über den exakten Verlauf der bewegungskompensierten Bestrahlung werden durch das Therapiekontrollsystem geliefert. Diese Informationen sowie die intrafraktionelle Bewegung werden in die Simulation realistischer β+-Aktivitätsverteilungen bzw. der zugehörigen Listmode-Datensätze einbezogen. Anhand einer präklinischen Phantom-Simulationsstudie wurde die korrekte Funktionsweise des Simulationsprogramms sowie die Notwendigkeit der zusätzlichen Parameter gezeigt. Im Gegensatz zur Datenauswertung für statische Zielvolumina bedarf es bei intrafraktioneller Bewegung gegebenenfalls zusätzlichen Aufwand, um eine Fehlinterpretation aus dem Vergleich der gemessenen und simulierten β+-Aktivitätsverteilung zu vermeiden. In der vorliegenden Arbeit wird beispielhaft gezeigt, dass sich bei fehlerhafter Bewegungskompensation die gemessene und simulierte β+-Aktivitätsverteilung einander ähneln können, obwohl die applizierte Dosisverteilung deutlich von der geplanten abweicht. Im Gegensatz dazu können auch Abweichungen zwischen Messung und Simulation auftreten, die nicht auf anatomische Veränderungen, sondern auf eine ungenaue 4D Datenverarbeitung zurückzuführen sind. Es werden Vorschläge unterbreitet, um den Prozess der 4D IBT-PET Datenauswertung zu optimieren und somit Fehlinterpretationen zu vermeiden. Die vorliegende Dissertationsschrift enthält durch die Bereitstellung der benötigten 4D Rekonstruktions- und Simulationsprogramme grundlegende Arbeiten für eine mögliche zukünftige Anwendung der 4D IBT-PET als qualitatives Dosismonitoring bei intrafraktionell bewegten Zielvolumina. Für weitere Verbesserungen des Verfahrens sind zusätzliche systematische Betrachtungen mit realistischeren, mehrdimensionalen und unregelmäßigen Bewegungsmustern notwendig. Zukünftige Untersuchungen sollten außerdem echte Bestrahlungspläne, Atemkurven sowie 4D Patienten-CT-Daten einschließen, um den erwartbaren Nutzen eines 4D IBT-PET Dosismonitorings besser abschätzen zu können.:1 Motivation 1.1 Potential and obstacles of ion beam therapy 1.2 Objectives of the thesis 2 Ion beam therapy and moving targets 2.1 Physical and biological properties of ion beams 2.1.1 Dose deposition 2.1.2 Biological effectivity 2.2 Technical aspects of ion beam delivery 2.2.1 Active and passive beam delivery technique 2.2.2 Beam monitoring for pencil beam scanning 2.2.3 Considerations in treatment planning related to patient CT image 2.3 Organ motion in ion beam therapy 2.3.1 Types of organ motion 2.3.2 Detection of intra-fractional motion 2.3.3 Motion compensated ion beam therapy 2.4 Dose monitoring by means of positron emission tomography 2.4.1 Principle of PET imaging in ion beam therapy 2.4.2 In-beam PET at GSI 3 Reconstruction of in-beam PET data taken from moving targets 3.1 Reconstruction algorithm 3.1.1 3D MLEM reconstruction applied at GSI 3.1.2 4D in-beam PET reconstruction methods 3.1.3 Comparison of gated co-registration and 4D MLEM 3.2 Experiments with moving radioactive sources 3.2.1 Rotation of radioactive sources 3.2.2 One-dimensional point source motion 3.3 In-beam PET measurements with moving targets 3.3.1 Verification of lateral field position and gradients 3.3.2 Verification of particle range 3.4 Summary and discussion 4 Simulation of phase-sorted in-beam PET data for moving targets 4.1 Upgrading the IBT-PET simulation from 3D to 4D 4.1.1 General and motion-related simulation demands 4.1.2 Input parameters for the 4D simulation program 4.1.3 Workflow of the 4D simulation program 4.2 Verification of the 4D simulation code by means of a preclinical phantom study 4.2.1 Experiment design 4.2.2 4D in-beam PET data simulation 4.2.3 Comparison with 3D simulation 4.3 Summary and discussion 5 Interpretation of 4D IBT-PET data with respect to deficient motion mitigation or data processing 5.1 Detectability of failed motion mitigation 5.1.1 Failure in gated beam delivery 5.1.2 Failure in lateral target tracking 5.2 Deficient correlation between motion and PET data 5.3 Recommendations for the 4D IBT-PET workflow 6 Summary and outlook 7 Appendix A Transformation matrices A.1 Composition of transformation matrices A.2 Storage of transformation matrices A.3 Transformation matrices for rotation B Noise reduction in analogue signals by FFT-based filtering C Motion tables and corresponding motion patterns C.1 Rotational motion C.2 Motion table with stepping motor for precise 1D motion patterns C.3 Motion table enabling relative target movement D Synchronisation of PET, motion and beam monitoring data E Sorting PET data by time or amplitude and calculating corresponding mean offsets Bibliography
Senake, Ralalage Buddhi Wimarshana. "Identification of breathing cracks in a beam structure with entropy." 2016. http://hdl.handle.net/1993/31748.
Full textOctober 2016
Crespo, Paulo Alexandre Vieira [Verfasser]. "Optimization of in-beam positron emission tomography for monitoring heavy ion tumor therapy / von Paulo Alexandre Vieira Crespo." 2006. http://d-nb.info/978818113/34.
Full textAhmed, Syed Naeem [Verfasser]. "Quantum fluctuations in a segmented ionization chamber for beam monitoring of synchrotron radiation / presented by Syed Naeem Ahmed." 1998. http://d-nb.info/957510330/34.
Full textJuina, Oscar, and 胡士嘉. "Development of an Aerosol visualization system based on the scattering of light produced by a slide beam laser aimed at the monitoring and controlling of particle contamination in a cleanroom." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/8p9yg7.
Full text國立臺北科技大學
機械與自動化碩士外國學生專班
106
In the field of clean room systems, the need to have high standards of cleaning and environmental control has generated the creation of new equipment which can solve the different problems of monitoring in particle filtration. To carry out this research we aimed at the light scattering by particles, the light scattering by particles is the process by which small particles such as dust, planetary dust, and blood cells cause optical phenomena such as rainbows and color of the sky. The system proposed below has been developed based on new technologies like the evolution of camera sensors, the use of a beam laser to visualize particles, and the link between programming algorithms with free platforms. We use a green beam laser (a Ld Pumped All-Solid-State Green Laser) which it has been modified in order to control its aperture and angle of slide, the light is determined as a visible electromagnetic radiation having a wavelength λ between 0.4 (violet color) and 0.7 µm (red color), the center of the visible light region is green light, with a wavelength of approximately 0.5 µm, being it the range which we are going to handle, furthermore several holder designs were manufactured to create the suitable holder lens for the beam laser. In addition, to recognize the real wavelength of the laser we performed a test of stroboscopic measurement thereby we can filter the noise wavelength; a bandpass filter with the center point in 0.532 µm was chosen to clarify the image. We demonstrate the viability of using a high sensitivity camera to perform a Particle image visualization system after testing three different kinds of cameras which each one has a special feature. Canon EOS 650D which has a high resolution in photographs at long distances, Logitech ConferenceCam CC3000e USB camera used to test the communication between the program and the photography sensor. A high-speed camera such as Lumenera’s Lt225 2.2 Megapixel High-Speed CMOS Camera. With the purpose to figure out the advantages and disadvantages of each camera, strict tests were performed inside a controlled environment where the exposure of external diameter light was removed, we used a transparent FOUP (Front Opening Unified Pod) where the sample of white marble dust (Fumed Silica) was introduced to see its dispersion among the particles. Consequently, photographs were taken at different angles of incidence such as against the laser and 60 degrees with reference to the line of action of the laser. Moreover, other tests were carried out in an external diameter environment, where photographs of particles from the human body were taken. Herein when performing the different tests, the parameter to consider in order to create an efficient Particle Image Visualization system is to use a high sensitivity camera, such as the Hamamatsu Orca Flash camera, which has a high percentage of the spectrum response, its control of the resolution and frame per seconds, its the most powerful tool for Particle Image Visualization. The tests were performed using the fumed silica particles which have a diameter size of 12 µm, consequently the information was processed through the software programmed in visual studio and Matlab. Image processing using OpenCV libraries in such a case EmguCV. The fundamental principle of the image processing is the reading of each pixel (the intensities of each pixel) and in that event of processing black and white images and each pixel receives values from 0 to 255, with 0 being the value for black and 255 for white. The program algorithm responds to these values and will separate the high-intensity values from the low-intensity values. The green color will become an important value, which by means of mathematical filters; will generate a clearer image of where the particles are. In an additional way, this research included the applying image algorithms in Matlab to visualize particles in the air, in other words, we handled the image like a matrix where each pixel is a vector which has information, and this information is its location inside of the image and its trajectory. Moreover, The simulation using Ansys was achieved to contrast the result of the video and image processing, the comparison give us an accurate idea of the principal point to improve our system, such as speed of visualization and range of visualizing measure.
Mäder, Thomas. "Neuartige Sensoren zur Erfassung von Dehnungen in Faserverbundwerkstoffen (Structural Health Monitoring)." 2014. https://monarch.qucosa.de/id/qucosa%3A20185.
Full textStrain sensors are used for structural health monitoring issues, certainly in parts with high safety requirements made of fibre-reinforced plastic composites. The integration of these sensors inside the parts protects them against any mechanical and corrosive impact. The sensor functionality can be enhanced by integration. There is a lot of international research effort to further develop integratable strain sensors. Different approaches are currently pursued. This thesis presents the results of investigations on three different approaches for novel strain sensors. The main goal of these investigations was to minimise the sensor diameter down to the diameter of reinforcing fibres. The small diameter allows for an optimum and artefact free integration of the sensors. The formation of resin nests and notches to the material structure can be prevented by integrating sensor with a smaller diameter. The strain measurement and monitoring is enhanced and more reliable then.
Ajith, V. "Wave Propagation in Healthy and Defective Composite Structures under Deterministic and Non-Deterministic Framework." Thesis, 2012. http://hdl.handle.net/2005/3253.
Full text