Academic literature on the topic 'In-beam monitoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'In-beam monitoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "In-beam monitoring"
Михалко, Евгения, Evgeniya Mikhalko, Юрий Балабин, Yuriy Balabin, Евгений Маурчев, Evgeniy Maurchev, Алексей Германенко, and Aleksey Germanenko. "New narrow-beam neutron spectrometer in complex monitoring system." Solar-Terrestrial Physics 4, no. 1 (March 31, 2018): 71–74. http://dx.doi.org/10.12737/stp-41201808.
Full textPennazio, Francesco, Giuseppe Battistoni, Maria Giuseppina Bisogni, Niccolò Camarlinghi, Alfredo Ferrari, Veronica Ferrero, Elisa Fiorina, et al. "Carbon ions beam therapy monitoring with the INSIDE in-beam PET." Physics in Medicine & Biology 63, no. 14 (July 17, 2018): 145018. http://dx.doi.org/10.1088/1361-6560/aacab8.
Full textSchmidt, Leander, Florian Römer, David Böttger, Frank Leinenbach, Benjamin Straß, Bernd Wolter, Klaus Schricker, Marc Seibold, Jean Pierre Bergmann, and Giovanni Del Galdo. "Acoustic process monitoring in laser beam welding." Procedia CIRP 94 (2020): 763–68. http://dx.doi.org/10.1016/j.procir.2020.09.139.
Full textBetz, M., O. R. Jones, T. Lefevre, and M. Wendt. "Bunched-beam Schottky monitoring in the LHC." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 874 (December 2017): 113–26. http://dx.doi.org/10.1016/j.nima.2017.08.045.
Full textPovoli, M., E. Alagoz, A. Bravin, I. Cornelius, E. Bräuer-Krisch, P. Fournier, T. E. Hansen, et al. "Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy." Journal of Instrumentation 10, no. 11 (November 16, 2015): P11007. http://dx.doi.org/10.1088/1748-0221/10/11/p11007.
Full textChien, Ring‐Ling, and Michael R. Sogard. "Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8, no. 3 (May 1990): 1597–602. http://dx.doi.org/10.1116/1.576772.
Full textBraccini, Saverio, Roberto Cirio, Marco Donetti, Flavio Marchetto, Giuseppe Pittà, Marco Lavagno, and Vanessa La Rosa. "Segmented ionization chambers for beam monitoring in hadrontherapy." Modern Physics Letters A 30, no. 17 (May 22, 2015): 1540026. http://dx.doi.org/10.1142/s021773231540026x.
Full textKlimpki, G., M. Eichin, C. Bula, U. Rechsteiner, S. Psoroulas, D. C. Weber, A. Lomax, and D. Meer. "Real-time beam monitoring in scanned proton therapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 891 (May 2018): 62–67. http://dx.doi.org/10.1016/j.nima.2018.02.107.
Full textNakagawa, Keiichi, Yukimasa Aoki, Atsuo Akanuma, Yuzou Onogi, Atsurou Terahara, Kouichi Sakata, Nobuharu Muta, Yasuhito Sasaki, Hideyuki Kawakam, and Kazuyuki Hanakawa. "Real-time beam monitoring in dynamic conformation therapy." International Journal of Radiation Oncology*Biology*Physics 30, no. 5 (December 1994): 1233–38. http://dx.doi.org/10.1016/0360-3016(94)90334-4.
Full textAzizi, Aydin, and Ali Ashkzari. "Health Monitoring in Petrochemical Vessels." Advanced Materials Research 1030-1032 (September 2014): 983–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1030-1032.983.
Full textDissertations / Theses on the topic "In-beam monitoring"
Benot, Morell Alfonso. "Beam position monitoring in the clic drive beam decelerator using stripline technology." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/64067.
Full text[ES] El Colisionador Lineal Compacto (Compact Linear Collider, CLIC), un colisionador de electrones y positrones concebido en el CERN para el estudio de la Física de Altas Energías en la región de los TeV, se basa en un principio de funcionamiento de doble haz: en lugar de emplear elementos activos (klystrons) para proporcionar la potencia RF requerida para acelerar el haz principal (Main Beam, MB), ésta se obtiene de la deceleración de un haz secundario (Drive Beam, DB), de alta corriente y energía moderada, en las llamadas estructuras de extracción y transferencia de potencia (Power Extraction and Transfer Structures, PETS). Estas estructuras emiten una señal interferente RF de más de 130 MW de potencia a 12 GHz, que, por estar localizada en una frecuencia superior a la de corte del modo fundamental en el tubo de vacío del haz (7.6 GHz), se propaga por éste hacia los dispositivos adyacentes, entre los cuales se encuentran los sistemas de monitorización de la posición (Beam Position Monitor, BPM). De acuerdo con el informe conceptual de diseño de CLIC (Conceptual Design Report, CDR) , un sistema eficiente de monitorización de la posición del haz en el decelerador del haz secundario deberá cumplir los siguientes requisitos: - Debe ser lo más sencillo y económico posible, ya que se precisan 41580 unidades: el 75% de todos los BPMs de CLIC. - El procesado de señal en el sistema de adquisición deberá ser inmune a la interferencia generada en las PETS. Esto excluye la solución habitual de procesar las señales del BPM a la frecuencia de pulsado del haz (12 GHz). - La señal de posición resultante del procesado debe ser capaz de detectar cambios en la posición del haz de duración igual o mayor a 10 ns (resolución temporal). - La resolución espacial requerida es de 2 um para un tubo de vacío de 23 mm de diámetro, con una calibración precisa. - Amplio rango dinámico: el sistema electrónico de adquisición del BPM debe poder resistir los altos valores de señal provocados por los casos de desviación extrema del haz nominal (se contempla una desviación máxima de la mitad del radio del tubo), así como detectar las señales inducidas por las configuraciones de haz con menor carga de todas las previstas, cuyos niveles serán muy débiles.
[CAT] El Col·lisionador Lineal Compacte (Compact Linear Collider, CLIC), un col·lisionador d'electrons i positrons concebut per l'estudi de la Física d'Altes Energies a la regió dels TeV (energía del centre de massa), es basa en un principi de funcionament de doble feix:en lloc de fer servir elements actius (klystrons) per proporcionar la potència RF requerida per accelerar el feix principal (Main Beam, MB), aquesta s'obtè de la desacceleració d'un feix secundari (Drive Beam, DB), d'alt corrent i energia moderada, a les anomenades estructures d'extracció i transferència de potència (Power Extraction and Transfer Structures, PETS). Aquestes estructures emeten una senyal interferent RF de més de 130 MW de potència a 12 GHz, que, pel fet d'estar localitzada a una freqüència superior a la de tall del mode fonamental al tub de buit del feix (7.6 GHz), es propaga a través d'aquest fins els dispositius adjacents, entre els quals trobem els sistemes de monitorització de la posició (Beam Position Monitor, BPM). D'acord amb l'informe conceptual de disseny de CLIC (Conceptual Design Report, CDR), un sistema eficient de monitorització de la posició del feix al desaccelerador del feix secundari haurà de complir els següents requisits: ¿ - Ha de ser el més senzill i econòmic possible, ja que es necessiten 41580 unitats: el 75% de tots els BPMs de CLIC. ¿ - El processat de la senyal al sistema d'adquisició haurà de ser inmune a la interferència generada als PETS. Això exclou la solució habitual de processar les senyals del BPM a la freqüència de pulsacions del feix (12 GHz). ¿- La senyal de posició resultant del processat ha de ser capaç de detectar canvis a la posició del feix de durada igual o més gran que 10 ns (resolució temporal). ¿- La resolució espaial necessària és de 2 um per a un tub de buit de 23 mm de diàmetre. ¿- Ampli rang dinàmic: el sistema electrònic d'adquisició del BPM ha de poder processar senyals amb nivells extrems, induïdes per feixos de molt alt (100 A) i molt baix (3 A) corrent.
Benot Morell, A. (2016). Beam position monitoring in the clic drive beam decelerator using stripline technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64067
TESIS
KOSTARA, ELEFTHERIA. "Full-beam PET monitoring in hadron therapy and related coincidence logic." Doctoral thesis, Università di Siena, 2017. http://hdl.handle.net/11365/1013502.
Full textHadron therapy is a widely employed technique that uses protons and heavy ions to treat cancer. It has the potential of delivering highly conformal dose distributions to the tumor volume while sparing the surrounding healthy tissue, thanks to the dose distribution characterized by the Bragg peak at the end of charged particles range. In order to exploit the full potential of hadron therapy, an in vivo monitoring technique is desirable in order to reduce the uncertainties and therefore the treatment safety margins. Positron emission tomography (PET) is considered one of the most promising in vivo non-invasive imaging techniques for monitoring the particle range in radiation treatments. One of the data acquisition methods is the so-called in-beam which is performed during irradiation at the treatment site. The problem of in-beam monitoring is that in-spill data are much noisier while inter-spill data for accelerators with high duty cycles, are much less due to the small number of acquired decays. During the spills, the noisy background is due to the presence of strong beam-induced radiation that increases the random coincidence rates. This background might originate from the decay of β+ emitters with half-lives in millisecond range and high endpoint energies, by γ-rays following nuclear reactions not related to β+ decay or by pair productions and neutrons. The noisy events cannot be separated from the usable decays of long-lived β+ emitters and cannot be corrected with standard random coincidence correction techniques because of the time-correlation of the beam-induced background with the ion beam microstructure. Until now, only two methods exist for identifying coincident events that occur during the microbunches in the spills. Both of them use information about the beam microstructure from external sources. In the first method, the RF signal from the accelerator is used externally and the data processing is done offline. In the second one, a fast particle detector placed in the beam path before the target is used and the process is triggered only when a particle arrives. With this thesis, the correlation between the beam microstructure and the RF of the synchrotron is confirmed by analyzing the events in the spills without the need of an external signal. An algorithm for the calculation of the period of the beam microstructure is developed. Small differences in the period between the spills impose the separate analysis for every spill. The period is calculated with 4 digits precision in nanosecond time scale, making a significant difference to the representation of the microbunch. In the end, the firmware related to the algorithm for the calculation of the period of the beam microstructure is developed using only the events in the spills. The simulation results show that it is possible the algorithm to be implemented in an FPGA and provide information about the period of the beam microstructure in real time. Moreover, a coincidence sorter is developed in order to provide real time coincidence detection. The simulation results for the two different architectures of the sorter that uses comparators with two and three inputs, are presented. The 3D spatial distribution and the 1D activity profiles of the coincidence events are constructed for inter-spill and in-spill data. The strong radiation background is visible in the reconstructed images, especially before the entrance surface of the phantom and at the end of the activity range with a tail. After filtering out the in-spill data by discarding the coincidence events that occur in a sub-interval of the microbunch, it is shown that the reconstructed image improves severely. In the 1D activity profile, one can observe that the number of coincidence events before the entrance surface of the phantom decreases significantly. This might happen because neutrons are discarded since they are detected a few ns later after the interaction of the beam with the nuclei. Results show that the signal to noise ratio (SNR), defined as the activity peak in the phantom divided by the background level, is improved by a factor of about 4.8 with respect to the in-spill signal. In the end, it is important to mention that this activity has been developed within the projects INSIDE and INFIERI (FP7-PEOPLE-2012-ITN project number 317446) funded by MIUR and EU respectively.
Shakirin, Georgy. "System solution for in beam positron emission tomography monitoring of radiation therapy." Doctoral thesis, Dresden TUDpress, 2009. http://d-nb.info/996092544/04.
Full textRowbottom, Carl Graham. "Optimisation of beam-orientations in conformal radiotherapy treatment planning." Thesis, Institute of Cancer Research (University Of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314088.
Full textAhmed, Syed Naeem. "Quantum fluctuations in a segmented ionization chamber for beam monitoring of synchrotron radiation." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=957510330.
Full textCrespo, Paulo. "Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28512.
Full textCrespo, Paulo. "Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy." Forschungszentrum Rossendorf, 2006. https://hzdr.qucosa.de/id/qucosa%3A21679.
Full textBuga, Vlad, and Roysten Jason Dsouza. "In-process monitoring for Electron Beam Additive Manufacturing using an infrared camera system." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245064.
Full text“Additive manufacturing” (AM) eller “friformsframställning” har snabbt ökat i omfattning, främst tack vare dess fördelar jämfört med konventionell bearbetning. Fördelarna inkluderar möjligheten att tillverka delar med komplexa geometrier medan slöseri minimeras. Den exponentiella tillväxten av tekniken har medfört utmaningar inom kvalitetssäkring, vilket har visat sig vara ett hinder för storskalig anpassning. Utveckling av processövervakningstekniker för AM är en pågående utmaning, och ligger efter i utveckling jämfört med de mer etablerade teknikerna som utvecklats för konventionell bearbetning. Tidigare forskning har visat fall där tekniken har implementerats med fokus på titanlegeringar. Denna studie syftar till att bidra till den forskning som genomförs inom processövervakning och fokuserar på EBM-processen (Electronic Beam Melting). Materialet som övervakas är Inconel 625, för att expandera forskningsområdet till högre temperaturområden. Den mest lämpliga övervakningstekniken och leverantör av utrustning väljs ut genom en gransking av tidigare litteratur och en marknadsundersökning. Experimentella försök för att analysera övervakningsteknikens prestanda med Inconel 625 utförs. De extraherade data analyseras sedan med bildbehandling, vilket ger intressanta resultat med avseende på temperaturfluktuationer över successiva lager av byggobjektet. Händelserna inom byggprocessen för ett lager visar intressanta avvikelser i temperatur, vilka kartläggs och presenteras som grafer. Tillståndet efter räfsning visar en särskilt stor avvikelse, som sedan tillskrivs differentialvärme av metallpulvret under räfsningsfasen. Denna observation stöds genom att notera "cold-spots" i extraherade bilder av byggobjektet. Resultaten diskuteras och vidare omfång för studien framförs. Avsikten med denna studie är att ta fram en grund för vidare forskning i processövervakning för högre temperaturområden och bidra till utvecklingen av realtidsprocessövervakning för AM.
Kelly, Brendan T. "A Newly Proposed Method for Detection, Location, and Identification of Damage in Prestressed Adjacent Box Beam Bridges." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1339520527.
Full textAlessio, Federico. "Beam, Background and Luminosity Monitoring in LHCb and Upgrade of the LHCb Fast Readout Control." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22044/document.
Full textThere are two main central topics in the thesis: the LHCb beam, background and luminosity monitoring systems and the LHCb optimization systems of experimental conditions. These systems are heavily connected to each other, as improving the machine beam, background and luminosity conditions will automatically improve global operation by maximizing the ratio of luminosity recorded over signal background. At the same time, improving the operation of the experiment will help improve luminosity, by studying more accurately the beam and background conditions and therefore improving the LHC machine settings. In this thesis, the systems to accomplish the requirements of these two main topics are described in detail
Books on the topic "In-beam monitoring"
Lone, M. A. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators. Chalk River, Ont: Chalk River Laboratories, 1992.
Find full textHughes, Jim. Radiation protection. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198813170.003.0005.
Full textPeet, Deborah J., Patrick Horton, Colin J. Martin, and David G. Sutton. Radiotherapy: external beam radiotherapy. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0019.
Full textBook chapters on the topic "In-beam monitoring"
Maischner, D. "Monitoring the Degree of Full Penetration in Laser Beam Welding." In Laser in der Technik / Laser in Engineering, 515–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_86.
Full textSaxner, M., and A. Ahnesjö. "Implementation of a Pencil Beam Model in the TMS-Radix Treatment Planning System." In Tumor Response Monitoring and Treatment Planning, 487–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48681-4_80.
Full textShevtsov, Sergey, Igor Zhilyaev, Paul Oganesyan, and Vladimir Akopyan. "A Probabilistic Approach to the Crack Identification in a Beam-like Structure Using Monitored Mode Shapes and Their Curvature Data with Uncertainty." In Applied Condition Monitoring, 447–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20463-5_34.
Full textAuberger, T., W. Reuschel, M. Mayr, P. Kneschaurek, P. Lukas, B. Clasen, and A. Breit. "Mixed-Beam Photon-Neutron Therapy in Recurrences and Nodal Metastases of Head and Neck Cancer." In Tumor Response Monitoring and Treatment Planning, 803–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48681-4_133.
Full textXiao, Yancai, Kun Fu, Zhuang Li, Zhiping Zeng, Jian Bai, Zhibin Huang, Xudong Huang, and Yu Yuan. "Research on Construction Process of Steel Beam Incremental Launching Based on Finite Element Method." In Lecture Notes in Civil Engineering, 254–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_22.
Full textSauerwein, W., F. Pöller, J. Rassow, and H. Sack. "Enhancement of the Absorbed Dose in a d(14) + Be Fast-Neutron Beam by 10B Neutron-Capture Therapy." In Tumor Response Monitoring and Treatment Planning, 797–801. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48681-4_132.
Full textShao, Zhengjie, Siyi Liu, Wei Wu, Xi Chen, and Guanhua Wu. "The AE Monitoring in Load Testing in Helicopter Tail Beam with Prefabricated Defects." In Springer Proceedings in Physics, 543–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9837-1_48.
Full textTu, J. Q., C. B. Yun, X. Xu, Z. F. Tang, and J. J. Wu. "PCA-Based Temperature Effect Compensation in Monitoring of Steel Beam Using Guided Waves." In Lecture Notes in Civil Engineering, 85–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8079-6_8.
Full textZembaty, Zbigniew, Seweryn Kokot, and Piotr Bobra. "Application of Rotation Rate Sensors in Measuring Beam Flexure and Structural Health Monitoring." In Seismic Behaviour and Design of Irregular and Complex Civil Structures II, 65–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14246-3_6.
Full textLi, Lili, Hao Luo, He Qi, and Feiyu Wang. "Sensor Fault Diagnosis Method of Bridge Monitoring System Based on FS-LSTM." In Advances in Frontier Research on Engineering Structures, 487–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_44.
Full textConference papers on the topic "In-beam monitoring"
Steen, W. M., and V. M. Weerasinghe. "In Process Beam Monitoring." In 1986 Quebec Symposium, edited by Walter W. Duley and Robert W. Weeks. SPIE, 1986. http://dx.doi.org/10.1117/12.938882.
Full textSunaoshi, Hitoshi, Munehiro Ogasawara, Jun Takamatsu, and Naoharu Shimomura. "In-situ beam position monitoring system for electron-beam lithography." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Eric Munro. SPIE, 1999. http://dx.doi.org/10.1117/12.370133.
Full textNootz, Gero A., Silvia C. Matt, Andrey V. Kanaev, Ewa Jarosz, and Weilin W. Hou. "Beam wander due to optical turbulence in water (Conference Presentation)." In Ocean Sensing and Monitoring IX, edited by Weilin (Will) Hou and Robert A. Arnone. SPIE, 2017. http://dx.doi.org/10.1117/12.2264922.
Full textMüller-Borhanian, J., C. Deininger, and F. Dausinger. "In-process monitoring during laser beam welding." In PICALO 2006: 2nd Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5056939.
Full textGarcia-Weidner, A., A. V. Khomenko, and Diana Tentori-Santa-Cruz. "Probe-beam scanning method for beam-coupling monitoring in photorefractive crystals." In Second Iberoamerican Meeting on Optics, edited by Daniel Malacara-Hernandez, Sofia E. Acosta-Ortiz, Ramon Rodriguez-Vera, Zacarias Malacara, and Arquimedes A. Morales. SPIE, 1996. http://dx.doi.org/10.1117/12.231044.
Full textDE OLIVEIRA, MARIO, and DANIEL INMAN. "PCA-based Method for Damage Detection Exploring Electromechanical Impedance in a Composite Beam." In Structural Health Monitoring 2015. Destech Publications, 2015. http://dx.doi.org/10.12783/shm2015/94.
Full textDearden, G., M. Sharp, P. W. French, K. G. Watkins, and L. I. Green. "Initial studies of laser beam performance monitoring using a novel camera-based in-line beam monitoring system." In ICALEO® 2001: Proceedings of the Laser Materials Processing Conference and Laser Microfabrication Conference. Laser Institute of America, 2001. http://dx.doi.org/10.2351/1.5059773.
Full textCORRADO, NICOLO, CECILIA SURACE, LORENZO MONTANARI, and ANDREA SPAGNOLI. "Comparing Three Derivative Discontinuities Detection Methods for the Localisation of Cracks in Beam-like Structures." In Structural Health Monitoring 2015. Destech Publications, 2015. http://dx.doi.org/10.12783/shm2015/173.
Full textZheng, Peng, David W. Greve, and Irving J. Oppenheim. "Ultrasonic flaw detection in a monorail box beam." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. SPIE, 2009. http://dx.doi.org/10.1117/12.815515.
Full textSha, Ganggang, Maciej Radzienski, Rohan Soman, Maosen Cao, and Wieslaw Ostachowicz. "Concentrated mass localization in beam-like structures using natural frequencies." In Health Monitoring of Structural and Biological Systems IX, edited by Paul Fromme and Zhongqing Su. SPIE, 2020. http://dx.doi.org/10.1117/12.2557950.
Full textReports on the topic "In-beam monitoring"
Cooke, M. S. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839851.
Full textSokol, J., T. J. Pultz, and V. Bulzgis. Monitoring wetland hydrology in Atlantic Canada using multi-temporal and multi-beam RADARSAT data. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/219630.
Full textLee, J. W., S. J. Pearton, C. R. Abernathy, G. A. Vawter, R. J. Shul, M. M. Bridges, and C. L. Willison. In-situ monitoring of etch by-products during reactive ion beam etching of GaAs in chlorine/argon. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/292864.
Full textWhalen, Michael. Trigger for Momentum Calibration and Beam Position Monitoring by Means of Decay-in-Orbit $\mu$ in the Mu2e Experiment [Poster]. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1579218.
Full textVolwater, Joey, and Ralf van Hal. Monitoring zeebodemafval in de Noordzee en Waddenzee naar aanleiding van de containerramp met de MSC Zoe : Beam trawl survey en Demersal Fish survey 2019. IJmuiden: Wageningen Marine Research, 2019. http://dx.doi.org/10.18174/506606.
Full textRahmani, Mehran, Xintong Ji, and Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, September 2022. http://dx.doi.org/10.31979/mti.2022.2033.
Full textDudley, J. P., and S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.
Full textDahm, Philipp, Michelle Brasure, Elizabeth Ester, Eric J. Linskens, Roderick MacDonald, Victoria A. Nelson, Charles Ryan, et al. Therapies for Clinically Localized Prostate Cancer. Agency for Healthcare Research and Quality (AHRQ), September 2020. http://dx.doi.org/10.23970/ahrqepccer230.
Full textAPPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN THE CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.070.
Full text