Academic literature on the topic 'IMRT'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IMRT.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IMRT"
Youssef, Irini, Jennifer Yoon, Nader Mohamed, Kaveh Zakeri, Robert H. Press, Linda Chen, Daphna Y. Gelblum, et al. "Toxicity Profiles and Survival Outcomes Among Patients With Nonmetastatic Oropharyngeal Carcinoma Treated With Intensity-Modulated Proton Therapy vs Intensity-Modulated Radiation Therapy." JAMA Network Open 5, no. 11 (November 11, 2022): e2241538. http://dx.doi.org/10.1001/jamanetworkopen.2022.41538.
Full textThaker, Nikhil G., David Boyce-Fappiano, Matthew S. Ning, Dario Pasalic, Alexis Guzman, Grace Smith, Emma B. Holliday, et al. "Activity-Based Costing of Intensity-Modulated Proton versus Photon Therapy for Oropharyngeal Cancer." International Journal of Particle Therapy 8, no. 1 (June 1, 2021): 374–82. http://dx.doi.org/10.14338/ijpt-20-00042.1.
Full textYoon, Han Gyul, Yong Chan Ahn, Dongryul Oh, Jae Myoung Noh, Seung Gyu Park, Heerim Nam, Sang Gyu Ju, Dongyeol Kwon, and Seyjoon Park. "Early Clinical Outcomes of Intensity Modulated Radiation Therapy/Intensity Modulated Proton Therapy Combination in Comparison with Intensity Modulated Radiation Therapy Alone in Oropharynx Cancer Patients." Cancers 13, no. 7 (March 27, 2021): 1549. http://dx.doi.org/10.3390/cancers13071549.
Full textNenoff, Lena, Atchar Sudhyadhom, Jackson Lau, Gregory C. Sharp, Harald Paganetti, and Jennifer Pursley. "Comparing Predicted Toxicities between Hypofractionated Proton and Photon Radiotherapy of Liver Cancer Patients with Different Adaptive Schemes." Cancers 15, no. 18 (September 15, 2023): 4592. http://dx.doi.org/10.3390/cancers15184592.
Full textCunningham, Lisa, Scott Penfold, Eileen Giles, Hien Le, and Michala Short. "Impact of Breast Size on Dosimetric Indices in Proton Versus X-ray Radiotherapy for Breast Cancer." Journal of Personalized Medicine 11, no. 4 (April 8, 2021): 282. http://dx.doi.org/10.3390/jpm11040282.
Full textLescut, Nicolas, Etienne Martin, Philippe Maingon, Magali Quivrin, Celine Mirjolet, Suzanne Naudy, Aurelie Petitfils, and Gilles Crehange. "Dependence of intrafraction prostate motion within the pelvis on fraction duration during whole pelvic intensity modulated arctherapy (IMAT) versus dynamic IMRT." Journal of Clinical Oncology 31, no. 6_suppl (February 20, 2013): 190. http://dx.doi.org/10.1200/jco.2013.31.6_suppl.190.
Full textJain, Varsha, Peyton Irmen, Shannon O'Reilly, Jennifer H. Vogel, Liyong Lin, and Alexander Lin. "Predicted Secondary Malignancies following Proton versus Photon Radiation for Oropharyngeal Cancers." International Journal of Particle Therapy 6, no. 4 (March 1, 2020): 1–10. http://dx.doi.org/10.14338/ijpt-19-00076.1.
Full textPatrice Aka, Fleman, Roger Taylor, Richard Hugtenburg, Jamil Lambert, and James Powell. "Hippocampal sparing radiotherapy in adults with primary brain tumours: a comparative planning and dosimetric study using IMPT, IMRT and 3DCRT." Neuro-Oncology 21, Supplement_4 (October 2019): iv2—iv3. http://dx.doi.org/10.1093/neuonc/noz167.008.
Full textWong, Ru Xin, Jacqueline Faught, Melissa Gargone, William Myers, Matthew Krasin, Austin Faught, and Sahaja Acharya. "Cardiac-Sparing and Breast-Sparing Whole Lung Irradiation Using Intensity-Modulated Proton Therapy." International Journal of Particle Therapy 7, no. 4 (March 1, 2021): 65–73. http://dx.doi.org/10.14338/ijpt-20-00079.1.
Full textVernanda, V., A. Azzi, and S. A. Pawiro. "Dose Planning Evaluation of Intensity-Modulated Proton Therapy (IMPT) Technique Based on In-House Dynamic Thorax Phantom." Atom Indonesia 1, no. 1 (March 24, 2023): 7–11. http://dx.doi.org/10.55981/aij.2023.1196.
Full textDissertations / Theses on the topic "IMRT"
Sheta, Amal. "IMRT and Rotational IMRT (mARC) Using Flat and Unflat Photon Beams." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-208212.
Full textKhadija, Murshed. "A Comparative Analysis of Conventional MLC Based IMRT and Solid Compensator Based IMRT Treatment Techniques." University of Toledo Health Science Campus / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=mco1264434257.
Full textSchiefer, Hans. "Kontrollen des Planungs-Bestrahlungsprozesses bei IMRT /." Basel : [s.n.], 2009. http://edoc.unibas.ch/diss/DissB_8781.
Full textMatsushima, Luciana Cardoso. "Determinação das curvas de isodose e confirmação do planejamento em Radioterapia de Intensidade Modulada - IMRT convencional empregando as técnicas de termoluminescência, luminescência opticamente estimulada e detectores semicondutores." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-24042015-095037/.
Full textRadiotherapy is one of three principal treatment modalities used in the treatment of malignant diseases such as cancer; the other two are chemotherapy and radiosurgery. In contrast to other medical specialties that rely mainly on the clinical knowledge and experience of medical specialists, radiotherapy, with its use of ionizing radiation in treatment of cancer, relies heavily on modern technology and the collaborative efforts of several professionals whose coordinated team approach greatly influences the outcome of the treatment. Intensity modulated radiation therapy (IMRT) with the use of multileaf collimators (MLCs) has the potential to achieve a much higher degree of target conformity and normal tissue sparing than most other treatment techniques, especially for target volumes or organs at risk with complex shapes. However, recent studies show that low doses of radiation can cause secondary cancers. This work aims to determine the radiation dose distribution in several radiation therapy treatment simulations with use of LiF:Mg,Ti; CaSO4:Dy and Al2O3:C dosimeters using a PMMA phantom for the following dosimetry techniques: thermoluminescence, optically stimulated luminescence (OSL) and semiconductor detectors.
Barros, Catarina da Silva. "Estudo, avaliação e optimização em radioterapia - IMRT." Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/4797.
Full textO cancro continua ser um problema de saúde pública, apesar dos esforços e desenvolvimentos verificados na luta contra o mesmo. Estima-se que em 2030 a incidência do cancro na população mundial duplique, sendo o envelhecimento da população a principal causa apontada pela Organização Mundial de Saúde (WHO, do inglês World Health Organization Desta forma, os avanços tecnológicos na saúde têm sido constantes, trazendo desenvolvimentos essenciais no diagnóstico e tratamento das mais variadas patologias. No que concerne à radioterapia, especialidade terapêutica utilizada em cerca de 50% a 60% dos doentes oncológicos, o seu estado acompanha os panoramas mais vanguardistas. ). A radioterapia de intensidade modelada (IMRT, do inglês Intensity-Modulated Radiation Therapy), resultante da evolução da técnica de radioterapia conformacional tridimensional (3D-CRT, do inglês Three-Dimensional Conformal Radiotherapy), veio a acrescentar à conformação geométrica do feixe de radiação, a capacidade de utilização da modulação da intensidade do mesmo. Desta forma a IMRT permite uma conformação dosimétrica, que salvaguarda ao máximo a integridade das estruturas adjacentes, bem como, o escalonamento de dose, mais eficaz do ponto de vista de controlo tumoral. No entanto, este ganho em saúde faz-se acompanhar, muitas vezes, do aumento de custos. Neste contexto é essencial avaliar e quantificar os custos, e as respectivas consequências/benefícios clínicos inerentes à utilização da tecnologia. Com este projecto, realizado em contexto empresarial, pretendeu-se estudar, avaliar e elaborar propostas de optimização que visem a implementação clínica da IMRT, aplicada a patologias da próstata e mama, num Serviço de Radioterapia de um Prestador de Cuidados de Saúde (PCS) público. Neste prestador, foram analisados todos os procedimentos do workflow de 3D-CRT das patologias da cabeça e pescoço (C&P), mama e da próstata, incluindo a caracterização a nível dos recursos humanos (RH) com a respectiva duração característica de cada tarefa mapeada, quer dos recursos tecnológicos envolvidos. Visto este PCS já ter iniciado a aplicação clínica de IMRT ao cancro de C&P, foram também analisados os procedimentos referentes a esta patologia, de forma a servirem de base para a realização dos modelos de IMRT para a mama e próstata, tal como, para comparar os custos inerentes à realização desta técnica, em relação à técnica conformacional. Por último projectou-se cenários da realização IMRT ao invés da 3D-CRT no PCS em estudo, para a neoplasia que economicamente se mostrou mais favorável.
Garcia, Aaron Nicholas. "Comparative Investigation of Dosimetric Tools in IMRT." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1187369612.
Full textCruz, António Manuel Costa. "IMRT beam angle optimization using Tabu search." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/17714.
Full textO número de pacientes com cancro continua a crescer no mundo e a Organização Mundial da Saúde considerou mesmo esta como uma das principais ameaças para a saúde e o desenvolvimento humano. Dependendo da localização e das especi cidades do tumor, existem muitos tratamentos que podem ser usados, incluindo cirurgia, quimioterapia, imunoterapia e radioterapia. A Radioterapia de Intensidade Modulada (IMRT | Intensity Modulated Radiation Therapy) é uma das modalidades mais avançadas de radioterapia, onde a otimização pode ter um papel importante no que diz respeito à qualidade do tratamento aplicado. Em IMRT, o feixe de radiação pode ser visto como se fosse constituído por vários pequenos feixes, pelo uso de um colimador multifolhas, que permite que a intensidade seja modulada. Este complexo problema de otimização pode ser dividido em três subproblemas, que estão relacionados entre si e que podem ser resolvidos sequencialmente. Para cada paciente, os ângulos de onde a radiação ir a ocorrer têm de ser determinados (problema geométrico | otimização angular). Depois, para cada um desses ângulos, o mapa de intensidades (ou fluências) tem de ser calculado (problema das intensidades | otimização das fluências). Finalmente, e necessário determinar o comportamento do colimador multifolhas, de forma a garantir que as intensidades são, de facto, atribuídas (problema de realiza ção). Em cada um destes problemas de otimização, a qualidade do tratamento atribuído depende dos modelos e algoritmos usados. Neste trabalho, a nossa atenção estará particularmente focada na otimização angular, um problema conhecido por ser altamente não-convexo, com muitos mínimos locais e com uma função objetivo que requer muito tempo de computação para ser calculada. Tal significa, respetivamente, que os algoritmos que sejam baseados no cálculo de gradientes ou que requeiram muitas avaliações da função objetivo podem não ser adequados. Assim, os procedimentos metaheurísticos podem ser uma boa alternativa para abordar este problema, visto que são capazes de escapar de mínimos locais e são conhecidos por conseguirem calcular boas soluções em problemas complexos. Neste trabalho ser a descrita uma aplicação para Pesquisa Tabu. Serão ainda apresentados os testes computacionais realizados, considerando dez casos clínicos de pacientes previamente tratados por radioterapia, pretendendo-se mostrar que a Pesquisa Tabu e capaz de melhorar os resultados obtidos através da solução equidistante, cujo uso e comum na prática clínica.
The number of cancer patients continues to grow worldwide and the World Health Organization has even considered cancer as one of the main threats to human health and development. Depending on the location and speci cities of the tumor, there are many treatments that can be used, including surgery, chemotherapy, immunotherapy and radiation therapy. Intensity Modulated Radiation Therapy (IMRT) is one of the most advanced radiation therapy modalities, and optimization can have a key role in the quality of the treatment delivered. In IMRT, the radiation beam can be thought of as being composed by several small beams, through the use of a multileaf collimator, allowing radiation intensity to be modulated. This complex optimization problem can be divided in three related subproblems that can be solved sequentially. For each patient, the angles from which the radiation will be delivered have to be determined (geometric problem | beam angle optimization). Then, for each of these angles, the radiation intensity map is calculated ( uence or intensity optimization). Finally, it is necessary to determine the behavior of the multileaf collimator that guarantees that the desired radiation intensities are, indeed, delivered (realization problem). In each of these optimization problems, the quality of the treatment delivered depends on the models and algorithms used. In this work the attention will be focused in beam angle optimization, a problem known to be highly non{convex, with many local minima and with an objective function that is time expensive to calculate, which, respectively, means that algorithms that are gradient{based or that require many objective function evaluations will not be adequate. Metaheuristics can be the right tool to tackle this problem, since they are capable of escaping local minima and are known to be able to calculate good solutions for complex problems. In this work, an application of Tabu Search to beam angle optimization is described. Computational results considering ten clinical cases of head{and{neck cancer patients are presented, showing that Tabu Search is capable of improving the equidistant solution usually used in clinical practice.
Markovic, Miljenko. "Comparison of IMRT delivery methods a thesis /." San Antonio : UTHSC, 2008. http://learningobjects.library.uthscsa.edu/cdm4/item_viewer.php?CISOROOT=/theses&CISOPTR=58&CISOBOX=1&REC=13.
Full textHeeger, Jonas [Verfasser]. "Bestrahlung von Kopf-Hals-Tumoren mit fluenzmodulierter Radiotherapie (IMRT) : Vergleich zweier IMRT-Techniken mit 3D-konformaler Bestrahlung / Jonas Heeger." Köln : Deutsche Zentralbibliothek für Medizin, 2013. http://d-nb.info/1042333823/34.
Full textFlosi, Adriana Aparecida. "Desenvolvimento de cálculo de unidades monitoras para IMRT." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-03042012-092734/.
Full textIndependent verification of dose calculations and monitor units settings of IMRT treatment plans is an important step in the quality assurance procedure for IMRT technique. At present, the verification is mainly based on experimental measurements, which are time consuming and laborious. In this work an independent methodology of monitor units calculation was developed as a new tool for IMRT treatments quality and precision assurance. The values found are near those calculated by the treatment planning system used, in a manner that the calculation algorithm demonstrated ± 1,8 % concordance in a simple geometry with the system. After several tests and the levels of action well established, the independent monitor units verification for IMRT treatment plans will become an effective and efficient tool in quality assurance, helping identification and the reduction of possible mistakes in radiotherapy treatments. To radiotherapy services is assured the use of the developed methodology as a tool of quality control in IMRT treatments as an original contribution of this work, specially those that do not dispose financial resources to acquire commercially available independent monitor unit calculus software.
Books on the topic "IMRT"
Bortfeld, Thomas, Rupert Schmidt-Ullrich, Wilfried De Neve, and David E. Wazer, eds. Image-Guided IMRT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1.
Full textInternational Conference on Dose, Time, and Fractionation in Radiation Oncology (6th 2001 Madison, Wis.). Biological & physical basis of IMRT & tomotherapy. Madison, Wisc: Medical Physics Pub., 2002.
Find full textContemporary IMRT: Developing physics and clinical implementation. Bristol: Institute of Physics, 2005.
Find full textYeo, Inhwan Jason. A procedural guide to film dosimetry: With emphasis on IMRT. Madison, Wi: Medical Physics Pub., 2004.
Find full text1949-, Meyer John, ed. IMRT, IGRT, SBRT: Advances in the treatment planning and delivery of radiotherapy. Basel: Karger, 2007.
Find full textBloi, Elimelekh ben ʻAmram. Sefer Imre Elimelekh: Imrot ḳodesh ʻal ha-Torah. Yerushala[y]im: [ḥ. mo. l., 2001.
Find full textAlter, Abraham Mordecai, d. 1948. and Alter Avraham Mordekhai, eds. Hagadah shel Pesaḥ: ʻim leḳeṭ imrot ha-"Imre Emet". Tel-Aviv: Peʾer, 1994.
Find full textSan Francisco Radiation Oncology Conference (2009), ed. IMRT, IGRT, SBRT: Advances in the treatment planning and delivery of radiotherapy : San Francisco Radiation Oncology Conference, San Francisco, Calif., USA, April 17-19, 2009. 2nd ed. Basel: Karger, 2011.
Find full textHölzl, Sebastian. Stadtarchiv und Museumsarchiv IMST. Innsbruck: Amt der Tiroler Landesregierung, Abt. IVb, Tiroler Landesarchiv, 1992.
Find full textBallagó, Imre. Ballagó Imre. Székesfehérvár: István Király Múzeum, 1986.
Find full textBook chapters on the topic "IMRT"
Rosenzweig, Kenneth E. "IMRT Lung." In Image-Guided IMRT, 359–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1_28.
Full textArthur, Douglas W., Monica M. Morris, Frank A. Vicini, and Nesrin Dogan. "Breast IMRT." In Image-Guided IMRT, 371–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1_29.
Full textBuyyounouski, Mark K., Eric M. Horwitz, Robert A. Price, Steve J. Feigenberg, and Alan Pollack. "Prostate IMRT." In Image-Guided IMRT, 391–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1_31.
Full textRodriguez, Matthew G. "IMRT/VMAT." In Absolute Therapeutic Medical Physics Review, 7–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14671-8_2.
Full textMills, Michael D., and Shiao Y. Woo. "History of IMRT." In Intensity-Modulated Radiation Therapy, 3–14. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55486-8_1.
Full textCourt, Laurence E., Peter Balter, and Radhe Mohan. "Principles of IMRT." In Intensity-Modulated Radiation Therapy, 15–42. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55486-8_2.
Full textShibamoto, Yuta, Chikao Sugie, Hiroyuki Ogino, and Natsuo Tomita. "Radiobiology for IMRT." In Intensity-Modulated Radiation Therapy, 43–57. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55486-8_3.
Full textTachibana, Hidenobu, and Tetsuo Akimoto. "IGRT for IMRT." In Intensity-Modulated Radiation Therapy, 85–112. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55486-8_5.
Full textMageras, Gig S., Ellen Yorke, and Steve B. Jiang. "“4D” IMRT Delivery." In Image-Guided IMRT, 269–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1_22.
Full textRemeijer, Peter, and Marcel van Herk. "Imaging for IMRT." In Image-Guided IMRT, 19–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30356-1_3.
Full textConference papers on the topic "IMRT"
"IMRT Track Committee." In 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems. IEEE, 2008. http://dx.doi.org/10.1109/sitis.2008.7.
Full textS.Omar, Noor, and Runak T.Ali. "Differences among IMRT and 3D-CRT plans for patients with brain cancer Noor Sami Omar." In 4th International Conference on Biological & Health Sciences (CIC-BIOHS’2022). Cihan University, 2022. http://dx.doi.org/10.24086/biohs2022/paper.654.
Full textHernandez, M., J. M. Artacho, X. Mellado, and S. Cruz. "Smooth intensity maps for IMRT." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946508.
Full textVial, Philip, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico, and Marko Moscovitch. "In vivo dosimetry for IMRT." In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576165.
Full text"IMRT in carcinoma cervix: Maximizing the gain and nipping the side effects: RGCI experience." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685268.
Full textJohn, Subhashini. "High precision radiotherapy for vulvar cancer in post renal transplantation: Dosimetric challenges." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685369.
Full textFeygelman, Vladimir, Benjamin E. Nelms, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico, and Marko Moscovitch. "Dose Verification in IMRT and VMAT." In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576164.
Full textOliveira, Nicole Cristina Cassimiro de, and Aurelio Ribeiro Leite de Oliveira. "Otimização Fuzzy no Planejamento da IMRT." In v. 10 n. 1 (2023): CNMAC 2023. SBMAC, 2023. http://dx.doi.org/10.5540/03.2023.010.01.0081.
Full textDasanayake, Isuru, Issam El Naqa, and Jr-Shin Li. "Constrained Kalman filtering for IMRT optimization." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717478.
Full textYuan, GuangJin, QianWen Li, ShunLin Shan, ChangHu Li, LiMing Xu, and XiMing Xu. "Whole-field intensity-modulated radiation therapy (IMRT) combined with replanning split-field IMRT for nasopharygeal carcinoma." In 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2010. http://dx.doi.org/10.1109/bmei.2010.5639384.
Full textReports on the topic "IMRT"
Yang, David Y. Incorporating Model Parameter Uncertainty into Prostate IMRT Treatment Planning. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada439169.
Full textXing, Lei. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada446396.
Full textXing, Lei. Prostate Dose Escalation by a Innovative Inverse Planning-Driven IMRT. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada494754.
Full textXia, Ping. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada511267.
Full textXia, Ping. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada572202.
Full textXia, Ping. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada582203.
Full textXia, Ping. Multiadaptive Plan (MAP) IMRT to Accommodate Independent Movement of the Prostate and Pelvic Lymph Nodes. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada561088.
Full textKurdziel, Karen, Michael Hagan, Jeffrey Williamson, Donna McClish, Panos Fatouros, Jerry Hirsch, Rhonda Hoyle, Kristin Schmidt, Dorin Tudor, and Jie Liu. Multimodality Image-Guided HDR/IMRT in Prostate Cancer: Combined Molecular Targeting Using Nanoparticle MR, 3D MRSI, and 11C Acetate PET Imaging. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada446542.
Full textShumway, Dean A., Kimberly S. Corbin, Magdoleen H. Farah, Kelly E. Viola, Tarek Nayfeh, Samer Saadi, Vishal Shah, et al. Partial Breast Irradiation for Breast Cancer. Agency for Healthcare Research and Quality (AHRQ), January 2023. http://dx.doi.org/10.23970/ahrqepccer259.
Full textBiswal, S., and G. Erbert. Testing of the IMRA Wattlite Laser. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/15013505.
Full text