Academic literature on the topic 'Impurity models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Impurity models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Impurity models"
Weston, Robert. "Impurity operators in RSOS models." Journal of Physics A: Mathematical and General 33, no. 48 (November 24, 2000): 8981–9001. http://dx.doi.org/10.1088/0305-4470/33/48/326.
Full textHewson, A. C., A. Oguri, and D. Meyer. "Renormalized parameters for impurity models." European Physical Journal B 40, no. 2 (August 2004): 177–89. http://dx.doi.org/10.1140/epjb/e2004-00256-0.
Full textQiu, Huanhuan, Jianing Zhuang, Li Huang, Jianzhou Zhao, and Liang Du. "Improved Hubbard-I approximation impurity solver for quantum impurity models." Journal of Physics: Condensed Matter 31, no. 2 (December 7, 2018): 025601. http://dx.doi.org/10.1088/1361-648x/aaee95.
Full textHafermann, H., C. Jung, S. Brener, M. I. Katsnelson, A. N. Rubtsov, and A. I. Lichtenstein. "Superperturbation solver for quantum impurity models." EPL (Europhysics Letters) 85, no. 2 (January 2009): 27007. http://dx.doi.org/10.1209/0295-5075/85/27007.
Full textBracken, Anthony J., Xiang-Yu Ge, Mark D. Gould, and Huan-Qiang Zhou. "Integrable extended Hubbard models with boundary Kondo impurities." Bulletin of the Australian Mathematical Society 64, no. 3 (December 2001): 445–67. http://dx.doi.org/10.1017/s0004972700019912.
Full textJin-Jun, Liang, Clive Emary, and Tobias Brandes. "Quantum Impurity Models with Coupled Cluster Method." Communications in Theoretical Physics 54, no. 3 (September 2010): 509–17. http://dx.doi.org/10.1088/0253-6102/54/3/26.
Full textMorozov, D. Kh. "Reduced Models of Impurity Seeded Edge Plasmas." Contributions to Plasma Physics 48, no. 1-3 (March 2008): 234–42. http://dx.doi.org/10.1002/ctpp.200810041.
Full textSalleh, Faiz, and Hiroya Ikeda. "Influence of Impurity Band on Seebeck Coefficient in Heavily-Doped Si." Advanced Materials Research 222 (April 2011): 197–200. http://dx.doi.org/10.4028/www.scientific.net/amr.222.197.
Full textPetrenko, T. L., V. V. Teslenko, and E. N. Mokhov. "Models of Impurity Boron in Various SiC Polytypes." Defect and Diffusion Forum 103-105 (January 1993): 667–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.103-105.667.
Full textMochizuki, Kazuhiro, Fumimasa Horikiri, Hiroshi Ohta, and Tomoyoshi Mishima. "Models for Impurity Incorporation during Vapor-Phase Epitaxy." Materials Science Forum 1062 (May 31, 2022): 3–7. http://dx.doi.org/10.4028/p-9bg88x.
Full textDissertations / Theses on the topic "Impurity models"
Glossop, Matthew T. "Theoretical studies of Anderson impurity models." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365734.
Full textDickens, Nigel L. "Quantum impurity models : a local moment approach." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270010.
Full textSimpson, James. "Theoretical studies of Jahn-Teller impurity ion complexes in III-V semiconductors." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329837.
Full textHolzner, Andreas Michael. "DMRG studies of Chebyshev-expanded spectral functions and quantum impurity models." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-139333.
Full textSandven, Håkon. "Evaluation of Distribution Function Models for ICRH-induced Impurity Transport in Tokamaks." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192460.
Full textFusionsenergi är utnyttjandet av energi som frigörs i kärnfusionsreaktioner, och har potential för att bli en energikälla som är mer hållbar, säkrare och renare än de primära energikällorna idag. Det grundläggande problemet för fusionskraft är energiinneslutning. Förorenande joner är en viktig källa för förlust av energiinneslutning i fusionsanläggningar med magnetisk inneslutning. Därför är föroreningstransport i fusionsplasma ett viktigt ämnesområde. Joncyklotronresonansupphettning (ICRH) har visats både experimentellt och teoretiskt att påverka föroreningstransport i tokamaker. En poloidal asymmetri i minoritetsjonerna ger en elektrisk potential, som orsakar förorening samlas på den inre sidan av fusionsanläggningen. Poloidal asymmetri i föroreningsdensiteten på ett fluxyta inducerar en netto radialflux över fluxytan. Detta projekt har jämfört ICRH-inducerad föroreningstransport för fyra approximativa distributionsfunktionsmodeller för minoritetsjon med numeriska resultat från SELFO koden. Detta har gjorts med beräkningar för JET-liknande, kon-centrisk tokamak-geometri med deuterium-plasma, väte som minoritetsjoner, och volfram som föroreningsjoner. Två modeller, s.k. bi-Maxwellian- och LFS bi-Maxwellianmodellen, används i existerande litteratur. Ytterligare två modeller introduceras, kallad tri-Maxwellian- och LFS tri-Maxwellianmodellen. Dessa modeller tar hänsyn till förekomsten av termiska och snabba joner i minoritetsbefolkningen. Resultaten visar att det finns tydliga skillnader mellan de olika modellerna, särskilt när resonansytan är på den inre sidan. Tri-Maxwellianmodellerna visar en klar förbättring över bi-Maxwellianmodellerna jämfört med SELFO. Det finns dock vissa särdrag i resultaten från SELFO som ingen av de approximative modellerna förutsäger, eftersom modellerna försummar breda banor. En möjlig barriär i den radiella transporten har också blivit identifierat på fluxytor där asymmetrin i föroreningsdensiteten liknar asymmetrin i den magnetiska fältstyrkan. LFS bi-Maxwellianmodellen förutsäger den radiella positionen av barriären mest noggrant och tillförlitligt jämfört med SELFO.
Sindel, Michael. "Numerical Renormalization Group studies of Quantum Impurity Models in the Strong Coupling Limit." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-31150.
Full textMünder, Wolfgang. "Matrix product state clculations for one-dimensional quantum chains and quantum impurity models." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-135224.
Full textHanl, Markus Johannes. "Optical and transport properties of quantum impurity models - an NRG study of generic models and real physical systems." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-174608.
Full textDe, Leo Lorenzo. "Non-Fermi liquid behavior in multi-orbital Anderson impurity models and possible relevance for strongly correlated lattice models." Doctoral thesis, SISSA, 2004. http://hdl.handle.net/20.500.11767/4016.
Full textBidzhiev, Kemal. "Out-of-equilibrium dynamics in a quantum impurity model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.
Full textThe fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
Books on the topic "Impurity models"
Ottieri, Alessandra. L' esperienza dell'impuro: Filosofia, fisiologia, chimica, arte e altre "impurità" nella scrittura di Valéry, Ungaretti, Sinisgalli, Levi. Roma: Aracne, 2006.
Find full textL' esperienza dell'impuro: Filosofia, fisiologia, chimica, arte e altre "impurità" nella scrittura di Valéry, Ungaretti, Sinisgalli, Levi. Roma: Aracne, 2006.
Find full textSchwanke, Peter. Implementation into DIVIMP of a drift-kinetic model derived from the Fokker-Planck equation to examine the parallel-to-B velocity component of impurity ions in divertor-tokamak plasmas. Toronto: Department of Aerospace Science and Engineering, University of Toronto, 2001.
Find full textComtet1, Alain, and Yves Tourigny2. Impurity models and products of random matrices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0011.
Full textEngh, Thorvald Abel, Geoffrey K. Sigworth, and Anne Kvithyld. Principles of Metal Refining and Recycling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198811923.001.0001.
Full textNardelli, Matilde. Antonioni and the Aesthetics of Impurity. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474444040.001.0001.
Full textMoran, Richard. Williams, History, and the “Impurity of Philosophy”. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190633776.003.0011.
Full textMartin, Peter. China's Civilian Army. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197513705.001.0001.
Full textUrban, Hugh B. Purity. Edited by Michael Stausberg and Steven Engler. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198729570.013.43.
Full textFoltz, Jonathan. Fables of Detachment. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190676490.003.0002.
Full textBook chapters on the topic "Impurity models"
Okiji, A., S. Suga, M. Yamashita, and N. Kawakami. "Elementary Excitations for Impurity Models." In Correlation Effects in Low-Dimensional Electron Systems, 96–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85129-2_9.
Full textPost, D. E., and K. Lackner. "Plasma Models for Impurity Control Experiments." In Physics of Plasma-Wall Interactions in Controlled Fusion, 627–93. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0067-1_16.
Full textLesage, F., H. Saleur, and P. Simonetti. "New Exact Results for Quantum Impurity Problems." In Calogero—Moser— Sutherland Models, 299–312. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1206-5_19.
Full textLee, In-Ho, Kang-Hun Ahn, Yong-Hoon Kim, Richard M. Martin, and Jean-Pierre Leburton. "Capacitive Energy of Quantum Dots with Hydrogenic Impurity." In Physical Models for Quantum Dots, 145–62. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-8.
Full textWeng, Yilin, and J. P. Leburton. "Impurity Scattering with Semiclassical Screening in Multiband Quasi-One-Dimensional Systems." In Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 59–76. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-6.
Full textFortunelli, A., A. Desalvo, O. Salvetti, and E. Albertazzi. "Cluster Simulations of Amorfous Silicon, with and without an Impurity Boron Atom." In Cluster Models for Surface and Bulk Phenomena, 595–603. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6021-6_47.
Full textKroha, Johann, and Peter Wölfle. "Diagrammatic Theory of Anderson Impurity Models: Fermi and Non-Fermi Liquid Behavior." In Open Problems in Strongly Correlated Electron Systems, 101–10. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0771-9_11.
Full textBelenkii, A. Ya. "A Cluster Model of the Electronic Structure of Grain Boundaries with the Impurity Segregation and Particles Precipitation." In Cluster Models for Surface and Bulk Phenomena, 577–85. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-6021-6_45.
Full textTakeno, Shozo, and Hideaki Matsueda. "Atomic Operator Formalism of Elementary Gates for Quantum Computation and Impurity-Induced Exciton Quantum Gates." In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 195–204. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_17.
Full textDebertolis, Maxime. "Random Matrix Impurity Model." In Springer Theses, 95–127. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47233-6_6.
Full textConference papers on the topic "Impurity models"
Žitko, Rok, and Janez Bonča. "Non-Fermi-liquid properties of three-impurity Anderson models." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XI: Eleventh Training Course in the Physics of Strongly Correlated Systems. AIP, 2007. http://dx.doi.org/10.1063/1.2752007.
Full textNishio, Osamu, Masahiro Takenaka, Eiji Aoki, Norio Mizukoshi, and Katsumasa Fujii. "Calibration of TCAD Models for High Dose Impurity Diffusion." In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.a-5-2.
Full textRingel, M., V. Janiš, Adolfo Avella, and Ferdinando Mancini. "Strong electron correlation in impurity models: singlet and triplet multiple scatterings." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII: Thirteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2009. http://dx.doi.org/10.1063/1.3225484.
Full textDas, Saptarshi, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. "Using Gini Impurity to Mine Attribute-based Access Control Policies with Environment Attributes." In SACMAT '18: The 23rd ACM Symposium on Access Control Models and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205977.3208949.
Full textJaniš, Václav, and Antonín Klíč. "Kondo Temperature and High to Low Temperature Crossover in Impurity Models of Correlated Electrons." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011124.
Full textKawaguchi, Munemichi. "Phase-Field Model for Recrystallization of Impurities in Sodium Coolant." In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65721.
Full textSlepchuk, Kira, Kira Slepchuk, Tatyana Khmara, and Tatyana Khmara. "AVAILABILITY OF NUMERICAL MATHEMATICAL MODELS TO SOLVE THE APPLIED PROBLEMS OF WATER QUALITY MANAGEMENT OF SHELF ECOSYSTEMS." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93b74031e6.93146133.
Full textSlepchuk, Kira, Kira Slepchuk, Tatyana Khmara, and Tatyana Khmara. "AVAILABILITY OF NUMERICAL MATHEMATICAL MODELS TO SOLVE THE APPLIED PROBLEMS OF WATER QUALITY MANAGEMENT OF SHELF ECOSYSTEMS." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43172900b2.
Full textAzeem, M. Mustafa, Di Yun, and Muhammad Zubair. "Atomic Insights on Interaction Mechanism of Dislocation With Void/Impurity/Precipitates in BCC Iron." In 2021 28th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icone28-65197.
Full textTamura, Akinori, Shiro Takahashi, Hiroyuki Nakata, and Akio Takota. "Development of Evaluation Method for Cold Trap in Fast Breeder Reactor: Part 1 — Numerical Analysis of Impurity Precipitation on Mesh Wire." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67702.
Full textReports on the topic "Impurity models"
Cox, L. E., J. M. Peek, and J. W. Allen. Pu 4f XPS spectra analyzed in the Anderson impurity model. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/296778.
Full textVeerasingam, Ramanapathy. A one-dimensional plasma and impurity transport model for reversed field pinches. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10103441.
Full textWest, W. P., T. E. Evans, and N. H. Brooks. Modeling of impurity spectroscopy in the divertor and SOL of DIII-D using the 1D multifluid model NEWT1D. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/453536.
Full textPatchett, B. M., and A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1993. http://dx.doi.org/10.55274/r0010418.
Full text