Academic literature on the topic 'Implosion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Implosion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Implosion"
Dewald, E. L., S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D. M. Ho, C. V. Young, et al. "First graded metal pushered single shell capsule implosions on the National Ignition Facility." Physics of Plasmas 29, no. 5 (May 2022): 052707. http://dx.doi.org/10.1063/5.0083089.
Full textChoe, W. H., and R. C. Venkatesan. "Self-similar solutions of screw-pinch plasma implosion." Laser and Particle Beams 8, no. 3 (September 1990): 485–91. http://dx.doi.org/10.1017/s0263034600008727.
Full textLindl, John D., Steven W. Haan, and Otto L. Landen. "Impact of hohlraum cooling on ignition metrics for inertial fusion implosions." Physics of Plasmas 30, no. 1 (January 2023): 012705. http://dx.doi.org/10.1063/5.0113138.
Full textManheimer, W., and D. Colombant. "Effects of viscosity in modeling laser fusion implosions." Laser and Particle Beams 25, no. 4 (December 2007): 541–47. http://dx.doi.org/10.1017/s0263034607000663.
Full textBaker, K. L., O. Jones, C. Weber, D. Clark, P. K. Patel, C. A. Thomas, O. L. Landen, et al. "Hydroscaling indirect-drive implosions on the National Ignition Facility." Physics of Plasmas 29, no. 6 (June 2022): 062705. http://dx.doi.org/10.1063/5.0080732.
Full textLi, Chuanying, Jianfa Gu, Fengjun Ge, Zhensheng Dai, and Shiyang Zou. "Impact of different electron thermal conductivity models on the performance of cryogenic implosions." Physics of Plasmas 29, no. 4 (April 2022): 042702. http://dx.doi.org/10.1063/5.0066708.
Full textRoycroft, R., J. P. Sauppe, and P. A. Bradley. "Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF." Physics of Plasmas 29, no. 3 (March 2022): 032704. http://dx.doi.org/10.1063/5.0083190.
Full textBarlow, D., T. Goffrey, K. Bennett, R. H. H. Scott, K. Glize, W. Theobald, K. Anderson, et al. "Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility." Physics of Plasmas 29, no. 8 (August 2022): 082704. http://dx.doi.org/10.1063/5.0097080.
Full textNishimura, H., H. Shiraga, T. Endo, H. Takabe, M. Katayama, Y. Oshikane, M. Nakamura, Y. Kato, and S. Nakai. "Radiation-driven cannonball targets for high-convergence implosions." Laser and Particle Beams 11, no. 1 (March 1993): 89–96. http://dx.doi.org/10.1017/s0263034600006947.
Full textChristopherson, A. R., R. Betti, C. J. Forrest, J. Howard, W. Theobald, E. M. Campbell, J. Delettrez, et al. "Inferences of hot electron preheat and its spatial distribution in OMEGA direct drive implosions." Physics of Plasmas 29, no. 12 (December 2022): 122703. http://dx.doi.org/10.1063/5.0091220.
Full textDissertations / Theses on the topic "Implosion"
Gish, Lynn Andrew. "Analytic and numerical study of underwater implosion." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81699.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 203-205).
Underwater implosion, the rapid collapse of a structure caused by external pressure, generates a pressure pulse in the surrounding water that is potentially damaging to adjacent structures or personnel. Understanding the mechanics of implosion, specifically the energy transmitted in the pressure pulse, is critical to the safe and efficient design of underwater structures. Hydrostatically-induced implosion of unstiffened metallic cylinders was studied both analytically and numerically. An energy balance approach was used, based on the principle of virtual velocities. Semi-analytic solutions were developed for plastic energy dissipation of a symmetric mode 2 collapse; results agree with numerical simulations within 10%. A novel pseudo-coupled fluid-structure interaction method was developed to predict the energy transmitted in the implosion pulse; results agree with fully-coupled numerical simulations within 6%. The method provides a practical alternative to computationally-expensive simulations when a minimal reduction in accuracy is acceptable. Three design recommendations to reduce the severity of implosion are presented: (1) increase the structure's internal energy dissipation by triggering higher collapse modes, (2) initially pressurize the internals of the structure, and (3) line the cylinder with a flexible or energy absorbing material to cushion the impact between the structure's imploding walls. These recommendations may be used singly or in combination to reduce or completely eliminate the implosion pulse. However, any design efforts to reduce implosion severity must be part of the overall system design, since they may have detrimental effects on other performance areas like strength or survivability.
by Lynn Andrew Gish.
Ph.D.
Scardigli, Corinne. "Implosion : gestion des stocks par la replanification amont." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0057.
Full textKrueger, Seth R. "Simulation of cylinder implosion initiated by an underwater explosion." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FKrueger.pdf.
Full textThesis Advisor(s): Young S. Shin. "June 2006." Includes bibliographical references (p. 99-100). Also available in print.
Szirti, Daniel. "Development of a single-stage implosion-driven hypervelocity launcher." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112585.
Full textSigley, Thomas E. "Evangelism implosion getting to the heart of the issue /." Theological Research Exchange Network (TREN), 1997. http://www.tren.com.
Full textKinnear, Timothy Michael. "Investigation into triggered star formation by radiative driven implosion." Thesis, University of Kent, 2016. https://kar.kent.ac.uk/52436/.
Full textSmith, Joel Aaron. "Implosion of steel fibre reinforced concrete cylinders under hydrostatic pressure." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ45939.pdf.
Full textCardoso, Pedro Daniel Martins Lucas. "The future of old-age pensions its explosion and implosion /." [Amsterdam : Amsterdam : Thela Thesis] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/76523.
Full textLoiseau, Jason. "Phase velocity techniques for the implosion of pressurized linear drivers." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94919.
Full textL'étude présente porte sur l'évaluation de plusieurs techniques pour générer une vitesse de phase dans un explosif afin de produire de très hautes vitesses de détonation sur des cibles linéaires ou cylindriques. En particulier, il a été démontré que le jumelage de deux composantes explosives ayant des vitesses de détonation différentes pour faire glisser une onde de détonation structurée est une méthode pouvant précisément générer des vitesses de phase désirées. La méthode de la division d'une onde de détonation dans plusieurs canaux individuels fut évaluée et il fut démontré qu'elle est aussi précise. Des modèles analytiques pour la conception des composantes explosives nécessaires à la production des vitesses de phase désirées en utilisant ces techniques sont présentés en détail. Une nouvelle méthode pour générer une vitesse de phase axisymétrique, implosive et linéaire a été également mise au point en faisant varier l'épaisseur de la paroi d'un tube métallique cylindrique. Il fut démontré que cet appareil est capable de produire des vitesses de phase, mais avec des écarts importants avec les prévisions analytiques. La technique qui utilise les deux composantes a également été appliquée à un tube à chocs explosif linéaire. Le tube à chocs a été construit à partir d'un tube métallique à parois mince et entouré par un anneau mince d'explosifs puis un tube de métal à parois épaisse. L'onde de détonation a été progressivement injectée par une mince fente dans le haut du tube à parois épaisse. Une onde de choc a été entraînée à des vitesses allant jusqu'à 11~km/s avec cet appareil.
Rallu, Arthur Seiji Daniel. "A multiphase fluid-structure computational framework for underwater implosion problems /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textBooks on the topic "Implosion"
Temple, L. Parker. Implosion. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118487105.
Full text(Group), Zadig. L' implosion française. Paris: A. Michel, 1992.
Find full textFunabashi, Yoichi, ed. Japan’s Population Implosion. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4983-5.
Full textMaking China: Cultural implosion. [Beijing?]: Shi jie hua ren yi shu chu ban she, 2002.
Find full textLindner, Gabriele. Die Eigenart der Implosion. Berlin: Kolog-Verl., 1994.
Find full textRick, Poynor, ed. Typography now two: Implosion. London: Booth-Clibborn Editions, 1998.
Find full textL' implosion du monde. Paris: la Différence, 2007.
Find full textDalla Longa, Remo. Globalization and Urban Implosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70512-3.
Full textThe implosion of American federalism. Oxford: Oxford University Press, 2001.
Find full textWlasenko, Olexander. Energy implosion: The (905) imagination. Oshawa, Ont: Robert McLaughlin Gallery, 2001.
Find full textBook chapters on the topic "Implosion"
Bakardjieva, Maria. "Home Implosion." In Happiness and Domestic Life, 57–72. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003265702-7.
Full textStrauss, Wolfgang, and Monika Fleischmann. "Implosion of Numbers." In Disappearing Architecture, 118–31. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7674-0_10.
Full textde Jong, Thimon. "Implosion of Trust." In Future Human Behavior, 50–52. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003227144-10.
Full textWeidenfeld, Ursula. "Implosion einer Krisenkanzlerin?" In Zeitenwende, 127–35. Göttingen: Vandenhoeck & Ruprecht, 2022. http://dx.doi.org/10.13109/9783666800351.127.
Full textJarausch, Konrad H. "Implosion oder Selbstbefreiung?" In Deutsche Umbrüche im 20. Jahrhundert, 543–66. Köln: Böhlau Verlag, 2000. http://dx.doi.org/10.7788/boehlau.9783412319687.543.
Full textHidekazu, Inagawa. "Introduction." In Japan’s Population Implosion, 1–25. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_1.
Full textKiyoto, Matsuda, Arai Junji, and Nagao Takashi. "Countering Falling Regional Population with Business." In Japan’s Population Implosion, 197–215. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_10.
Full textFunabashi, Yoichi. "Policy Proposals." In Japan’s Population Implosion, 217–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_11.
Full textFumihiko, Seta, Otake Hiroshi, and Umeyama Goro. "The Greater Tokyo Shock." In Japan’s Population Implosion, 27–49. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_2.
Full textChikako, Igarashi, Akiyama Yuki, and Kamiya Kenichi. "A Collapse in Regional Infrastructure." In Japan’s Population Implosion, 51–78. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_3.
Full textConference papers on the topic "Implosion"
Seporaitis, Marijus, Raimondas Pabarcius, and Kazys Almenas. "Study of Controlled Condensation Implosion Events." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22448.
Full textChannell, P. J. "Radial implosion acceleration." In AIP Conference Proceedings Volume 130. AIP, 1985. http://dx.doi.org/10.1063/1.35277.
Full textMuttaqie, Teguh, Jung-Min Sohn, Sang-Rai Cho, Sang-Hyun Park, Gulgi Choi, Soonhung Han, Phill-Seung Lee, and Yoon Sik Cho. "Implosion Tests of Aluminium Alloy Tubes Under External Hydrostatic Pressure." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77375.
Full textKullberg, C. M. "A Method for Estimating Acoustic Implosion Efficiencies for Collapsing Cavities in Nuclear Reactor Systems." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1130.
Full textBaksht, R. B., I. M. Datsko, A. V. Luchinsky, V. I. Oreshkin, A. V. Fedyunin, Yu D. Korolev, I. A. Shemyakin, V. G. Rabotkin, Malcolm Haines, and Andrew Knight. "Implosion of Multilayer Liners." In DENSE Z-PINCHES: Third International Conference. AIP, 1994. http://dx.doi.org/10.1063/1.2949179.
Full textWang, Kevin G., Patrick Lea, Alex Main, Owen McGarity, and Charbel Farhat. "Predictive Simulation of Underwater Implosion: Coupling Multi-Material Compressible Fluids With Cracking Structures." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23341.
Full textWoelke, Pawel, Margaret Tang, Scott McClennan, Najib Abboud, Darren Tennant, Adam Hapij, and Mohammed Ettouney. "Impact Mitigation for Buried Structures: Demolition of the New Haven Veterans Memorial Coliseum." In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26817.
Full textBaum, Carl E. "Electromagnetic Implosion Using an Array." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345579.
Full textBaum, Carl E. "Electromagnetic implosion using an array." In 2007 IEEE International Pulsed Power Plasma Science Conference (PPPS 2007). IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4651846.
Full textCheng, Xingxing, Baosheng Jin, and Wenqi Zhong. "Numerical Simulation of Boiler Implosion." In 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918535.
Full textReports on the topic "Implosion"
Gocharov, V., and O. Hurricane. Panel 3 Report: Implosion Hydrodynamics. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1078544.
Full textCable, M. D., S. P. Hatchett, M. B. Nelson, R. A. Lerche, T. J. Murphy, and D. B. Ress. High density implosion experiments at Nova. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10146659.
Full textKline, John L. Pre-shot viewgraphs for first DT layered Beryllium Implosion. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1196195.
Full textHurricane, O. High-foot Implosion Workshop (March 22-24, 2016) Report. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1258520.
Full textSauppe, Joshua. The Cylindrical Implosion Platform: Recent Results and Next Steps. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1631563.
Full textSerrano, Jason Dimitri, Alexander S. Chuvatin, M. C. Jones, Roger Alan Vesey, Eduardo M. Waisman, V. V. Ivanov, Andrey A. Esaulov, et al. Compact wire array sources: power scaling and implosion physics. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/941403.
Full textAkkor, Gun, John S. Baras, and Michael Hadjitheodosiou. A Feedback Implosion Suppression Algorithm for Satellite Reliable Multicast. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada637177.
Full textHurricane, O. The high-foot implosion campaign on the National Ignition Facility. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129989.
Full textKline, John L. Maximizing 1D “like” implosion performance for inertial confinement fusion science. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1261806.
Full textBorovina, Dan, and Eric Brown. The Trinity High Explosive Implosion System: The Foundation for Precision Explosive Applications. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1764181.
Full text