Academic literature on the topic 'Implanted diamond'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Implanted diamond.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Implanted diamond"

1

Khomich, Andrey A., Alexey Popovich, and Alexander V. Khomich. "Photoluminescence Spectra of Helium Ion-Implanted Diamond." Materials 17, no. 21 (October 23, 2024): 5168. http://dx.doi.org/10.3390/ma17215168.

Full text
Abstract:
Ion implantation in diamond crystals is widely used both for producing conducting microstructures in the bulk of the material and for creating isolated photon emitters in quantum optics, photonics, cryptography, and biosensorics. The photoluminescence (PL) spectra of helium ion-implanted diamonds are dominated by two sharp emission lines, HR1 and HR2 (from Helium-Related), at ~536 and 560 nm. Here, we report on PL studies of helium-related optical centers in diamonds. Experiments have been carried out on a (110) plate of natural single-crystal type IIa diamonds. The uniform distribution of radiation defects in a 700 nm-thick layer was obtained by ten cycles of multiple-energy (from 24 to 350 kV) helium ion implantation with a total dose of 5 × 1016 cm−2. The diamonds were annealed in steps in a vacuum oven at temperatures from 200 to 1040 °C. It is demonstrated that helium ion implantation in diamonds followed by annealing gives rise to more than a dozen various centers that are observed in the PL spectra in the range of 530–630 nm. The transformations of the PL spectra due to annealing are investigated in detail. The spectral shapes of phonon sidebands are determined for the HR1, HR2, and HR3 bands with ZPLs at ~536, 560, and 577 nm, respectively, and it is shown that these bands are attributed to interstitial-related centers in diamonds. The reported results are important for understanding the structure and properties of helium-related defects in diamonds.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Huang-Chin, Umesh Palnitkar, Huan Niu, Hsiu-Fung Cheng, and I.-Nan Lin. "The Effect of Ion Implantation on Field Emission Property of Nanodiamond Films." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 4141–45. http://dx.doi.org/10.1166/jnn.2008.an50.

Full text
Abstract:
Nanocrystalline diamond films prepared by microwave plasma enhanced chemical vapor deposition (MPECVD) were implanted using 110 keV nitrogen ions under fluence ranging from 1013–1014 ions/cm2. Scanning Electron Microscopy (SEM) and Raman spectroscopy were used to analyze the changes in the surface of the films before and after ion implantation. Results show that with nitrogen ion implantation in nanocrystalline diamond film cause to decrease in diamond crystallinity. The field emission measurement shows a sharp increase in current density with increase in dose. The ion implantation also alters the turn on field. It is observed that the structural damage caused by ion implantation plays a significant role in emission behaviour of nanocrystalline diamonds.
APA, Harvard, Vancouver, ISO, and other styles
3

Negmatova, Kamola, Abdusattor Daminov, Abdusalam Umarov, and Nodira Аbed. "Synthesis of diamonds in the C – Mn - Ni - (H) system and the diamond-shaped mechanism." E3S Web of Conferences 264 (2021): 05003. http://dx.doi.org/10.1051/e3sconf/202126405003.

Full text
Abstract:
Studying the dependence of the degree (α) and rate (ϑ) of the phase transformation of graphite into diamond on the synthesis time at different temperatures of the developed synthetic diamonds using the technology of high-pressure high-temperature synthesis in a metal melt (HPHT), we determined the critical mass of diamonds, which indicates the entry of the system into the stability region of graphite, where the graphitization of diamonds occurs. The role of implanted metals and hydrogen in the formation of synthetic diamonds and on its properties was also investigated.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhongquan, Ma, and H. Naramoto. "Homoepitaxial layer from ion-implanted diamond." Solid-State Electronics 41, no. 3 (March 1997): 487–92. http://dx.doi.org/10.1016/s0038-1101(96)00190-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ZAITSEV, ER M., REJ V. DENISENKO, GABRIELE KOSACA, REINHART JOB, WOLFGANG R. FAHRNER, ER A. MELNIKOV, VALERY S. VARICHENKO, BERND BUCHARD, JOHANNES VON BORANY, and MATTHIAS WERNER. "Electronic Devices on Ion Implanted Diamond." Journal of Wide Bandgap Materials 7, no. 1 (July 1, 1999): 4–67. http://dx.doi.org/10.1106/74cc-m5wa-ypm5-uhcn.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Batory, D., J. Gorzedowski, B. Rajchel, W. Szymanski, and L. Kolodziejczyk. "Silver implanted diamond-like carbon coatings." Vacuum 110 (December 2014): 78–86. http://dx.doi.org/10.1016/j.vacuum.2014.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spits, R. A., T. E. Derry, and J. F. Prins. "Annealing studies on ion implanted diamond." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 64, no. 1-4 (February 1992): 210–14. http://dx.doi.org/10.1016/0168-583x(92)95467-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Höhne, R., P. Esquinazi, V. Heera, and H. Weishart. "Magnetic properties of ion-implanted diamond." Diamond and Related Materials 16, no. 8 (August 2007): 1589–96. http://dx.doi.org/10.1016/j.diamond.2007.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deguchi, Masahiro, Makoto Kitabatake, Takashi Hirao, Yusuke Mori, Jing Sheng Ma, Toshimichi Ito, and Akio Hiraki. "Diamond growth on carbon-implanted silicon." Applied Surface Science 60-61 (January 1992): 291–95. http://dx.doi.org/10.1016/0169-4332(92)90431-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bharuth-Ram, K., S. Connell, J. P. F. Sellschop, M. C. Stemmet, H. Appel, and G. M. Then. "TDPAD studies on19F implanted into diamond." Hyperfine Interactions 34, no. 1-4 (March 1987): 189–92. http://dx.doi.org/10.1007/bf02072700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Implanted diamond"

1

Prinsloo, Linda Charlotta. "Raman spectroscopic investigation of radiation damage in carbon implanted diamond." Diss., Pretoria : [s.n.], 2001. http://upetd.up.ac.za/thesis/available/etd-02092006-152019/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salami, Sana. "Conductance électronique et effet Seebeck dans des canaux conducteurs implantés sous la surface du diamant." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10287.

Full text
Abstract:
L'interaction entre les électrons et les phonons dans la matière condensée est responsable du couplage de leurs équations de transport, ce qui donne lieu à des effets d’entrainements mutuels sous l'effet d'un gradient de température (effet Seebeck) ou d'un courant de charge (effet Peltier). Dans certains matériaux, ces effets, connus sous le terme anglophone de « phonon drag », conduisent à des valeurs de coefficient Seebeck très élevées. Ils se manifestent généralement à basse température lorsque le libre parcours moyen des phonons est important, près du maximum en température de la conductivité thermique de réseau. Historiquement, ces effets de « drag » entre les électrons et les phonons ont été mis de côté dans les stratégies de recherche en thermoélectricité car ils coïncident avec un maximum de la conductivité thermique du réseau, ce qui limite l'efficacité thermoélectrique. Toutefois, des études réalisées en 2008 sur des systèmes de silicium nanostructurés ont montré que des effets Seebeck significatifs dus à ces effets de « drag » peuvent coexister avec une faible conductivité thermique du réseau. Les travaux théoriques traitant les équations de transport couplées ont apporté de nouvelles perspectives, démontrant que les états de phonons dominant le transport de chaleur sont distincts de ceux qui sont principalement impliqués dans les effets de drag. L'objectif de ma thèse était de réaliser des expériences pour explorer un nouveau concept d’effets « drag » entre les électrons et les phonons, séparés par une interface. J'ai étudié les propriétés de transport des électrons confinés dans un canal conducteur sous la surface d'un diamant cristallin agissant comme un bain de phonon externe constitué d’états de phonon propagatifs. Mon travail inclut l’élaboration des systèmes, leur caractérisation structurale et le développement de protocoles de mesure pour la conductance et le coefficients Seebeck pour des systèmes conducteurs enterrés. J'ai étudié les propriétés de transport de canaux produits dans différentes conditions d'implantation et de recuit pour comprendre les liens entre leur microstructure et leurs propriétés de transport électronique. Dans la première étude, j'ai mesuré la conductance et le coefficient Seebeck dans des canaux épais (~145 nm) enfouis à environ 200 nm sous la surface du diamant. Ces canaux, créés par implantation ionique d'hélium à une fluence modérée suivie d'un recuit à haute température, présentaient principalement une microstructure graphitique. À température ambiante, la conductance est proche de celle du graphite massif. Le coefficient Seebeck présentait un comportement à basse température similaire à celui du graphite, avec un pic négatif attribué aux effets de traînée. Toutefois, ce pic est apparu à une température nettement plus élevée que dans le cas du graphite massif, ce qui pourrait être une première indication des contributions supplémentaires des phonons du diamant. Dans la seconde étude, j'ai examiné des canaux de dimensions similaires mais soumis à une fluence d'implantation plus faible ou recuits à des températures plus basses. Ces canaux présentent une microstructure désordonnée complexe composée d'agrégats d'atomes de carbone avec une hybridation sp, sp² et sp³. La conductance et le coefficient Seebeck en fonction de la température varient de manière significative par rapport à la première étude. Le coefficient Seebeck est positif et atteint plusieurs milliers de µV/K à basse température. Les propriétés de transport ont été interprétées à l'aide de la théorie du chaos quantique. Mon travail montre la faisabilité des mesures de conductance et du coefficient Seebeck à basse température à travers des canaux conducteurs enfouis sous la surface du diamant et met en évidence la richesse des propriétés de conduction de ces canaux qui peuvent être accordées en contrôlant leur microstructure par un choix judicieux des paramètres d'implantation et de recuit
The interaction between electrons and phonons in condensed matter is responsible for the coupling of their transport equations, which gives rise to mutual drag effects between them under the effect of a temperature gradient (Seebeck effect) or a charge current (Peltier effect). In some bulk materials, these drag effects, better known as “phonon drag”, lead to very high Seebeck coefficient values at low temperatures. It usually manifests at low temperatures when the phonon mean free path is large, near the maximum in temperature of the lattice thermal conductivity in dielectric crystals, which occurs due to reduced phonon-phonon scattering. Historically, phonon drag has been overlooked in thermoelectric research as it coincides with the maximum in the lattice thermal conductivity peak, potentially reducing overall thermoelectric efficiency. However, studies in 2008 on nanostructured silicon systems contradicted this, demonstrating that significant Seebeck effects from phonon drag can coexist with low lattice thermal conductivity. Theoretical works treating the coupled transport equations offered new insights, demonstrating that phonon states dominating heat transport are distinct in phase space, in wave-vector, and energy from those mainly involved in drag effects. The aim of my thesis was to carry out experiments to explore a novel concept of phonon drag between electron and phonon gases, separated by an interface. I studied transport properties of electrons confined to a conductive channel beneath the surface of a crystalline diamond acting as an external phonon bath with propagative phonon states. My thesis involved system construction, structural characterization, development of measurement protocols for conductance and Seebeck coefficients, and adaptation of these measurements for buried conductive systems. I analyzed the transport properties of channels produced under different implantation and annealing conditions to understand how the microstructure of the channel influences electronic transport properties. In the first study, I measured conductance and the Seebeck coefficient in thick channels (~145 nm) buried about 200 nm below the diamond surface. These channels, created via helium ion implantation at moderate fluence followed by high-temperature annealing, displayed mostly a graphitic microstructure. At room temperature, the conductance was close to that of bulk graphite. The Seebeck coefficient exhibited low-temperature behavior akin to graphite, with a negative peak attributed to drag effects. However, this peak occurred at a significantly higher temperature compared to solid graphite, which could be a first indication of additional contributions from diamond phonons. In the second study, I examined channels with similar dimensions but subjected to lower implantation fluence or annealed at lower temperatures. These channels exhibited a highly disordered microstructure composed of aggregates of carbon atoms with sp, sp², and sp³ hybridization. The temperature-dependent conductance and Seebeck coefficient varied significantly from the first study. The Seebeck coefficient is positive and reached several thousand µV/K at low temperatures. The transport properties were interpreted using quantum chaos theory. My work shows the feasibility of conductance and Seebeck coefficient measurements at low temperature through conductive channels buried beneath the diamond surface and highlights the rich conduction properties of such channels which can be tuned by controlling their microstructure through a careful choice of implantation and annealing parameters
APA, Harvard, Vancouver, ISO, and other styles
3

Diez, Juliana Socas Vanoni. "Influência de parafusos recobertos com Diamond-like carbon (DLC) na interface pilar UCLA/implante." Universidade de Taubaté, 2009. http://www.bdtd.unitau.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=442.

Full text
Abstract:
Objetivo: Avaliar a interface pilar protético/implante e o destorque, quando utilizados parafusos recobertos com Diamond-like carbon (DLC) e parafusos convencionais de titânio para fixação dos componentes protéticos, antes e após ação de carga cíclica. Posteriormente, avaliar a correlação entre o desajuste vertical da interface pilar UCLAimplante e o destorque dos parafusos dos pilares. Método: Trinta e seis implantes foram divididos em quatro grupos de acordo com o tipo de conexão (hexágono externo e interno) e do parafuso utilizado para fixar o pilar ao implante (titânio ou recoberto com DLC), ou seja: Grupo A: hexágono externo/parafuso titânio; Grupo B: hexágono externo/parafuso recoberto com DLC; Grupo C: hexágono interno/parafuso titânio;Grupo D: hexágono interno/parafuso recoberto com DLC. Após os implantes terem sido incluídos em resina acrílica incolor, coroas foram enceradas sobre pilares UCLA, fundidas com liga metálica de Ni-Cr-Ti e parafusadas aos implantes com aplicação do torque recomendado pelo fabricante. Em seguida, as interfaces pilar/implante foram mensuradas, em microscópio de luz, em quatro pontos de cada amostra (DV1). Após as amostras terem sido submetidas a um milhão de ciclos mecânicos, as interfaces foram novamente mensuradas (DV2). Para comparar os valores médios, intra e intergrupos, das interfaces pilar/implante, da diferença entre os mesmos e os valores de destorque, os dados foram submetidos à Análise de Variância, ao teste t de Student e ao teste de Mann Whitney (p≤0,05). E para a correlação entre os fatores estudados, os resultados foram submetidos ao teste de correlação de Pearson (p≤0,05). Resultados: Os implantes com hexágono externo apresentaram os maiores valores de desajuste vertical pilar UCLA/implante antes (DV1) e após (DV2) ciclagem mecânica (GA/DV1 = 59,81μm e GA/DV2 = 62,59μm, GB/DV1 = 73,73μm e GB/DV2 = 72,95μm). Nos grupos onde foram utilizados parafusos de titânio foi observado aumento dos valores da interface pilar/implante de DV1 para DV2 (GA = de 59.81μm para 62.50μm e GC = de 18.13μm para 22.54μm). Nos grupos onde foram utilizados parafusos de DLC foi evidenciada redução dos valores da interface pilar/implante de DV1 para DV2 (GB = de 73.73μm para 72.95μm e GD = de 16.07μm para 14.47μm. Somente o GC apresentou diferença significativa entre os valores mensurados na interface pilar/implante antes e após o carregamento cíclico (p=0,05). Para correlacionar os valores de destorque aos valores das interfaces pilar/implante, foi aplicado o teste de correlação de Pearson, porém não foi verificada diferença significativa entre os fatores estudados (p˃0,05). Conclusões: As interfaces pilar UCLA/implante foram maiores nos grupos com hexágono externo que nos grupos com hexágono interno, porém sem diferença significativa quando utilizados parafusos de titânio ou revestidos com DLC. Houve perda de torque após carga cíclica em todos os grupos. Não é possível afirmar que um maior valor de interface pilar/implante esteja correlacionado com o desaperto do parafuso.
Purpose: To evaluate the interface abutment/implant, and the loosening screws values when used screws with Diamond-like carbon (DLC) coated and conventional titanium screws for fixation of prosthetic components, before and after action of cyclic loading. After, to evaluate the connections between the values of interface abutment UCLA/implant and loosening screw. Method: Thirty six implants were divided into four groups according to the type connection (external hexagon and internal hexagon) and screw used to fix the abutment to the implant (titanium or coated with DLC): Group A: external hexagon / titanium screw; Group B: external hexagon / DLC screw; Group C: internal hexagon / titanium screw; Group D: internal hexagon / DLC screw. After the implants were included in colorless acrylic resin, crowns were waxed using UCLA type abutment, casting with metal alloy of Ni-Cr-Ti and screwed to the implants using the torque recommended by the manufacturer. Then the interfaces pillar/implant were measured with light microscope in four pre-marked points (DV1). After the sets (implant, crown and screw) were subjected to one million mechanical cycles and the interfaces measured again (DV2). Analysis of Variance, Test t Student and test Mann Whitney (p≤0,05) were applied to compare the average to the interfaces abutment/implant intra and intergroup, the difference between the same and the loosening screws values. And to evaluate the correlated between the factors studying, the Pearsons correlation test (p≤0,05). Results: The implants with external hexagon exhibited the higher values of the vertical misfit pillar UCLA/implant before (DV1) and after (DV2) cyclic loading (GA/DV1 = 59,81μm e GA/DV2 = 62,59μm, GB/DV1 = 73,73μm e GB/DV2 = 72,95μm). In groups of titanium shows screws there was an increase in interface abutment/implant after cyclic loading (GA = 59,81μm to 62,50μm and GC = 18,13μm to 22,54μm) and in groups with DLC coated screws there was a reduction the values of interface abutment/implant (GB = 73,73μm to 72,95μm and GD = 16,07μm to 14,47μm). Only group C showed a statistically significant difference to the interface abutment/implant before and after cyclic loading (p = 0.05) exhibited mean values and differences between the interfaces pillar/implant. To correlate the values of loosening to the values of pillar interfaces/implant was applied the Pearsons correlation test, but there was no significance among the studied factors (p ˃ 0.05). Conclusions: The interfaces pillar UCLA/implant were higher in groups with external hexagon connection those in groups with internal hexagon, but without significant differences when use titanium screws or coated with DLC. Always screws loosed torque after cycling load. Is not possible to affirm that a higher value of interface abutment/implant be correlated with the loosening screw.
APA, Harvard, Vancouver, ISO, and other styles
4

Rodrigues, Ana Amélia. "Avaliação da biocompatibilidade de diamantes microestruturados e nanoestruturados : ensaios " in vitro" e "in vivo"." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259949.

Full text
Abstract:
Orientador: Vitor Baranauskas
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica
Made available in DSpace on 2018-08-09T14:59:50Z (GMT). No. of bitstreams: 1 Rodrigues_AnaAmelia_M.pdf: 19209454 bytes, checksum: 1a2efefc090d27e2715b48aad097989d (MD5) Previous issue date: 2006
Resumo: O desenvolvimento de novos materiais para a produção de implantes ortopédicos tem sido uma busca constante, devido principalmente ao aumento das aplicações clínicas e à necessidade de se alcançar maior durabilidade, diminuindo assim as cirurgias de revisão. O diamante CVD obtido por deposição química da fase vapor é um novo material com grande potencial de uso devido às suas excelentes propriedades físico-químicas. Dentre elas pode-se destacar a inércia química, extrema dureza e baixo coeficiente de atrito, características importantes para materiais que necessitam resistir ao desgaste e à corrosão produzida pelos fluídos do corpo humano. O objetivo deste estudo foi avaliar pela análise ¿in vitro¿ e ¿in vivo¿ a biocompatibilidade de tubos de diamante microcristalino e diamante nanocristalino produzidos pela deposição química de vapor em filamento quente (CVD). Palavras Chave: diamante CVD, biomateriais, implantes, próteses
Abstract: The development of new materials for orthopedic implants has been a quest due to the increasing number of clinical applications and necessity of achieving larger durability for lessening the need for revision surgeries. Diamond CVD (Chemical Vapour Deposition) is a new material with larger potential of future use due its excellent physico-chemical properties like for instance, high chemical inertness, extreme hardness and low friction coefficient. The aim of this study is to evaluate by ¿in vitro¿ and ¿in vivo¿ assays the biocompatibility of microcrystalline and nanocrystalline diamond self-sustaining tubes produced by hot-filament chemical vapor deposition (CVD). Key Words: chemical-vapor-deposited diamond, biomaterials, implants, prosthesis
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
5

Kiran, Raphael. "Electrodes en diamant pour la fabrication de microsystèmes électrochimiques pour applications biologiques." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI077/document.

Full text
Abstract:
Le diamant dopé bore (BDD) est un matériau extrêmement prometteur pour applications biomédicales par son unique combinaison de propriétés. Cette thèse a visé le développement de nouvelles structures de micro-électrodes en BDD et l'étude de leur intérêt et leurs performances pour des applications électroanalytiques et électrophysiologiques. En dépit de leurs propriétés électroanalytiques très supérieures à d'autres matériaux d'électrodes plus conventionnels, les électrodes BDD sont sujettes au «fouling», i.e. l'apparition d'un film à la surface du diamant qui réduit la réactivité électrochimique. Ceci est très compromettant dans des milieux complexes comme l'urine, les eaux stagnantes, des boissons, le plasma sanguin etc. Ici, un nouveau traitement d'activation a été développé pour nettoyer la surface des électrodes et recouvrir leur réactivité initiale, donc il permet leur usage pour de longues périodes d'enregistrement sans dégradation du signal. Ceci permet l'usage de ce type d'électrodes, pour des domaines d'applications, pour le suivi continu d'analytes, sans entretien spécifique, en solutions complexes. La grande originalité de ces techniques d'activation est qu'elle peut être menée directement dans l'analyte lui-même. En comparaison avec leurs équivalents en macro-électrodes, les microélectrodes permettent d'obtenir de plus grandes sensibilités, des courants résiduels moindre, des pertes ohmiques moindres, et donc des rapports signal à bruit meilleurs. Un procédé robuste et fiable a été optimisé pour la fabrication de réseaux de microélectrodes (MEA MicroElectrode Arrays) et d'ultra micro-électrodes, permettant par lithographie sur 4 pouces d'offrir une large flexibilité de fabrication. Par exemple, parmi d'autres prototypes, des microélectrodes BDD ont été utilisées pour applications de biocapteurs pour quantifier l'acide urique en temps quasi-réel. Bien que le diamant possède une très bonne biocompatibilité et des propriétés électrochimiques excellentes, la faible relative capacité de double couche limite leur application pour des applications électrophysiologiques. Des procédés de nanostructuration ont ainsi été mis au point pour accroitre les limites d'injection de charge. Parmi les approches, des procédés hybrides à base de polypyrrole se sont révélés prometteurs, de même que des procédés de gravure pour former de la «nano-herbe» diamant, très intéressantes pour la fabrication de MEAs en BDD. Ces matériaux à fort rapport d'aspect apparaissent comme d'excellents candidats pour applications d'interfaces neuronales et notamment pour la fabrication d'implants rétiniens.STAR
Boron doped diamond (BDD) electrodes are extremely promising in the field of biomedical applications as they exhibit a unique combination of properties. The thesis aims at developing new types of BDD microelectrodes and exploring their interests for electro-analytical and electrophysiological applications. Despite their superior electro-analytical properties, BDD electrodes are prone to fouling, which leads to a loss of electrode reactivity when used in biological fluids such as urine, waste waters, drinks, blood plasma, etc. A novel electrochemical treatment was developed to clean the electrode surface and to retrieve the initial reactivity, thereby enabling the use of BDD electrodes to long periods of measurements without degradation of the signal, thus significantly extending the field of monitoring and surveying applications up to domains where continuous analysis is required. The real novelty of the technique is that it does not require the use of a specific media and thus can be directly performed in the probed (bio-)fluid. Microelectrodes in comparison with macro-electrodes offer higher sensitivity, lower background current, lower ohmic losses and higher signal-to-noise ratio. A robust, high-yield, reliable, and reproducible process for fabricating a thin-film BDD micro and ultra-microelectrode arrays (MEA) was developed using a novel lithographic technique, based on clean room processing on 4 inch substrates, thus offering wide flexibility. For example, among other prototypes, BDD microelectrodes were developed as biosensors to quantify uric acid in human urine in quasi-real time. Although diamond film possesses good biocompatibility and excellent electrochemical properties, the low double-layer capacitance limits its application in electrophysiological applications. Increasing the charge injection limit was investigated by surface modification and nano-structuring. These include the synthesis of hybrid diamond-polypyrrole electrodes and nanograss BDD MEAs. Such high aspect ratio materials appear as excellent candidates for neurointerfacing applications such as for retinal implants
APA, Harvard, Vancouver, ISO, and other styles
6

Wilfinger, Claudia-Antonella. "Fabrication of full soft diamond implants for functional rehabilitation." Electronic Thesis or Diss., Université Gustave Eiffel, 2023. http://www.theses.fr/2023UEFL2025.

Full text
Abstract:
Le développement de nouvelles technologies biomédicales permet d'aider les personnes souffrant de la perte de fonctions motrices ou cognitives à récupérer partiellement de leur perte. L'étude des neurones a mis en évidence la nature électrique des signaux cérébraux, conduisant à la fabrication d'implants s'interfaçant avec eux. L'enregistrement et la stimulation de différentes parties du système nerveux central ont été rendus possibles grâce à des implants. Néanmoins, l'introduction d'un corps étranger dans le corps humain n'est pas sans conséquences. Les matériaux utilisés pour fabriquer les implants doivent être suffisamment rigides pour supporter les attaques du corps, mais ne doivent pas endommager les tissus environnants. Compte tenu de ces exigences, un matériau a récemment attiré l'attention : le diamant. Il peut être synthétisé en laboratoire et utilisé dans des processus microtechnologiques classiques pour fabriquer des dispositifs à base de diamant. Le diamant peut être un isolant électrique dans son état "naturel", c'est-à-dire un simple réseau de carbone, ou acquérir une conduction de type métallique s'il est suffisamment dopé au bore. L'excellente biocompatibilité du cristal le place comme un candidat sérieux en termes de matériau d'électrode. Ses propriétés chimiques, électrochimiques et mécaniques en font un matériau inerte, solide et fiable. Le travail de thèse s'est concentré sur le matériau diamant, afin de fabriquer un implant entièrement en diamant. Cela signifie que le diamant polycristallin intrinsèque sera utilisé comme couche de protection du dispositif, tandis que les sites des électrodes seront constitués de diamant conducteur dopé au bore (BDD). Le dispositif obtenu est conçu pour enregistrer les signaux du cerveau. Pour ce faire, la maîtrise de la structuration du diamant est primordiale pour pouvoir l’utiliser au sein de processus microtechnologiques. Il a été choisi de faire des croissances localisées du diamant, aussi bien intrinsèque que dopé, en utilisant du nitrure l’aluminium (AlN) en couche de masquage. Le taux de croissance, la composition chimique et l'analyse de l'état de surface ont confirmé la bonne manipulation du processus de diamant. Un autre point essentiel à prendre en compte lors de la fabrication des implants est le choix des matériaux qui transporteront les signaux électriques. Le développement de la couche conductrice a été réalisé en combinant le nitrure de titane (TiN) et le platine (Pt) pour tirer profit des deux matériaux. L'encapsulation du platine par le TiN a donné lieu à des pistes conductrices capables de supporter les conditions de croissance du diamant sans aucun dommage. Suite à la fabrication des implants diamant, une caractérisation doit être effectuée. Deux procédures d'analyse électrochimique ont donc été utilisées pour examiner les électrodes BDD et sonder le matériau : la voltampérométrie cyclique (CV) et la spectroscopie d'impédance électrochimique (EIS). Les tests ont confirmé la présence de BDD aux emplacements des électrodes, la bonne passivation du diamant intrinsèque et la faible impédance à 1 kHz, par rapport aux implants comportant des électrodes en BDD seul. Après s'être assuré du bon fonctionnement et de la fiabilité du dispositif, les implants ont été testés in vivo sur des rongeurs pour sonder leurs voies visuelles. Une craniotomie a été pratiquée sur des rats (à l’Institut de la Vision) et des souris (à l’EPFL) afin de placer les électrodes sur leur cortex visuel. Cette intervention chirurgicale a pour but de réaliser un enregistrement aigu des potentiels évoqués visuels (VEP), qui sont déclenchés par des stimulations visuelles. L'expérience a été un succès puisque les implants en diamant ont réussi à enregistrer des VEP dans différents contextes d'expérience, dans les deux laboratoires. Ces résultats préliminaires ouvrent la voie à la future génération d'implants neuronaux en diamant afin de garantir un dispositif chronique fiable et stable
The development of new biomedical technologies permits to help people suffering from the loss of motor or cognitive functions to partially recover from their loss. Neural study highlighted the electrical nature of brain signals, leading to the fabrication of implants interfacing with them. The recording and stimulation of different parts of the central nervous system were made possible through implants. Nevertheless, introducing a foreign object into the human body is not without consequences, as materials used to fabricate implants should be stiff enough to endure the body’s attacks but should not harm the surrounding tissues. Given these requirements, a material has recently gained attention: diamond. It can be synthetized in labs and used in conventional microtechnology processes to fabricate diamond-based devices. Diamond can either be an electrical insulator in its “natural” state, meaning a simple carbon lattice, or acquire a metallic-like conduction if doped enough with boron. The excellent biocompatibility of the carbonated crystal places it as a serious candidate in terms of electrode material. The chemical, electrochemical and mechanical properties, guarantee an inert, solid and reliable material. The PhD work was focused around diamond material, to fabricate a full-diamond implant. This means that intrinsic polycrystalline diamond was used as a protection layer of the device, while the electrodes sites were made of boron-doped conductive diamond (BDD). The obtained device was designed to record signals from the brain. To do this, the control of the structuring of diamond is essential to be able to use it within microtechnological processes. It was chosen to make localized growths of diamond, both intrinsic and doped, using aluminum nitride (AlN) as a masking layer. The growth rate, the chemical composition and the analysis of the surface condition confirmed the good handling of the diamond process. Another key point to consider when fabricating the implants is the choice of materials that will carry the electrical signals. The development of the conductive layer was done by combining titanium nitride (TiN) and platinum (Pt) to take advantage of both materials. The encapsulation of platinum by TiN resulted in conductive tracks capable of withstanding the growth conditions of diamond without any damage. Following the fabrication of the diamond implants, characterization must be performed. Two electrochemical analysis procedures were therefore used to examine the BDD electrodes and probe the material: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The tests confirmed the presence of BDD at the electrode locations, good intrinsic diamond passivation, and low impedance at 1 kHz compared to implants with BDD-only electrodes. After ensuring proper functioning and reliability of the device, the implants were tested in vivo on rodents to probe their visual pathways. A craniotomy was performed on rats (at the Vision Institute) and mice (at EPFL) in order to place the electrodes on their visual cortex. The purpose of this surgical procedure is to make an acute recording of visual evoked potentials (VEPs), which are triggered by visual stimuli. The experiment was successful as the diamond implants were able to record VEPs in different experimental settings in both laboratories. These preliminary results pave the way for the future generation of diamond neural implants to ensure a reliable and stable chronic device
APA, Harvard, Vancouver, ISO, and other styles
7

Aborass, Marwa A. EL-Mehde. "Effect of diamond-like carbon coating on implant drill wear during implant site preparation." University of the Western Cape, 2017. http://hdl.handle.net/11394/6306.

Full text
Abstract:
Magister Chirurgiae Dentium
Dental implants are artificial fixtures that are surgically inserted into the jaws to replace missing teeth. The success of dental implant treatment is dependent on achieving successful osseointegration (Branemark et al. 2001). Drills used for implant site preparation are made of different materials such as stainless steel (SS), zirconia and ceramic. Most of them do not have sufficient cutting efficiency and wear resistance (Oliveira et al. 2012). Recently diamond-like carbon coating (DLC) has been added as a drill coating to increase the cutting efficiency, increase wear resistance and drill hardness (Batista Mends et al. 2014).
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Yuan. "Biomolecule Functionalization of Diamond Surfaces for Implant Applications - A Theoretical Study." Doctoral thesis, Uppsala universitet, Oorganisk kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-236957.

Full text
Abstract:
Diamond is a promising material with unique chemical properties. In this thesis, nano-scale diamond quantum size effects were investigated using several chemical property indicators. The results show that the chemical properties are strongly dependent on size for film thicknesses smaller than 1 nm (1D), and for nanodiamond particle diameters less than 2 nm (3D). When the sizes exceed these ranges there are no longer any quantum effects. The influence of surface termination coverage on the surface chemical properties has been calculated for the 2×1 reconstructed diamond (100) surface and for the diamond (111) surface. The terminating species included COOH and NH2 groups, which both are beneficial for the immobilization of biomolecules. The results of the calculations show that it is energetically possible to terminate the diamond surfaces up to 100% with NH2, while it is only possible to cover the surfaces up to 50% with COOH species. The reason for the latter result is most probably the larger sterical hindrance amongst the adsorbates. Both types of termination species were shown to influence the diamond surface electronic properties (e.g., HOMO/LUMO levels). In order to extend the diamond utility for biomedical applications, especially implant design, interactions of various growth factors with the diamond surfaces were also simulated. For non-solvent diamond-biomolecule systems, the results show that adhesion affinities are strongly dependent on biomolecule molecular weights. When including a water based solvent in the systems, the results show good physisorption affinities between proteins and diamond. Proteins structures, before and after physisorption, were visualized, and further investigated with respect to electrostatic properties and functional groups. By comparing the biomolecular structural changes during the adhesion processes, it can be concluded that both the general structures, as well as the binding pocket structures, were kept intact after the adhesion to the diamond surfaces (regardless of the adhesion affinities). In addition, the surface electronic potential distributions were maintained, which indicate preserved biomolecule functionalities.
Vascubone
APA, Harvard, Vancouver, ISO, and other styles
9

Edin, Fredrik. "Strategies in Cochlear Nerve Regeneration, Guidance and Protection : Prospects for Future Cochlear Implants." Doctoral thesis, Uppsala universitet, Öron-, näs- och halssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-276336.

Full text
Abstract:
Today, it is possible to restore hearing in congenitally deaf children and severely hearing-impaired adults through cochlear implants (CIs). A CI consists of an external sound processor that provides acoustically induced signals to an internal receiver. The receiver feeds information to an electrode array inserted into the fluid-filled cochlea, where it provides direct electrical stimulation to the auditory nerve. Despite its great success, there is still room for improvement, so as to provide the patient with better frequency resolution, pitch information for music and speech perception and overall improved quality of sound.  A better stimulation mode for the auditory nerves by increasing the number of stimulation points is believed to be a part of the solution. Current technology depends on strong electrical pulses to overcome the anatomical gap between neurons and the CI. The spreading of currents limits the number of stimulation points due to signal overlap and crosstalk. Closing the anatomical gap between spiral ganglion neurons and the CI could lower the stimulation thresholds, reduce current spread, and generate a more discrete stimulation of individual neurons. This strategy may depend on the regenerative capacity of auditory neurons, and the ability to attract and guide them to the electrode and bridge the gap. Here, we investigated the potential of cultured human and murine neurons from primary inner ear tissue and human neural progenitor cells to traverse this gap through an extracellular matrix gel. Furthermore, nanoparticles were used as reservoirs for neural attractants and applied to CI electrode surfaces. The nanoparticles retained growth factors, and inner ear neurons showed affinity for the reservoirs in vitro. The potential to obtain a more ordered neural growth on a patterned, electrically conducting nanocrystalline diamond surface was also examined. Successful growth of auditory neurons that attached and grew on the patterned substrate was observed. By combining the patterned diamond surfaces with nanoparticle-based reservoirs and nerve-stimulating gels, a novel, high resolution CI may be created. This strategy could potentially enable the use of hundreds of stimulation points compared to the 12 – 22 used today. This could greatly improve the hearing sensation for many CI recipients.
APA, Harvard, Vancouver, ISO, and other styles
10

Clem, William Charles. "Mesenchymal stem cell interaction with nanonstructured biomaterials for orthopaedic applications." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/clem.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008.
Additional advisors: Yogesh K. Vohra, Xu Feng, Jack E. Lemons, Timothy M. Wick. Description based on contents viewed July 8, 2009; title from PDF t.p. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Implanted diamond"

1

Kazuhisa, Miyoshi, and Langley Research Center, eds. Physical and tribological characteristics of ion-implanted diamond films. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miyoshi, Kazuhisa. Friction and wear properties of as-deposited and carbon ion-implanted diamond films. [Washington, D.C: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miyoshi, Kazuhisa. Friction and wear properties of as-deposited and carbon ion-implanted diamond films. Cleveland, Ohio: Lewis Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Auciello, Orlando. Biocompatible Ultrananocrystalline Diamond Coating for Next Generation Medical Devices and Implants. University of Cambridge ESOL Examinations, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Auciello, Orlando, ed. Ultrananocrystalline Diamond Coatings for Next-Generation High-Tech and Medical Devices. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781316105177.

Full text
Abstract:
A comprehensive guide to the science of a transformational ultrananocrystalline-diamond (UNCDTM) thin film technology enabling a new generation of high-tech and external and implantable medical devices. Edited and co-authored by a co-originator and pioneer in the field, it describes the synthesis and material properties of UNCDTM coatings and multifunctional oxide/nitride thin films and nanoparticles, and how these technologies can be integrated into the development of implantable and external medical devices and treatments of human biological conditions. Bringing together contributions from experts around the world, it covers a range of clinical applications, including ocular implants, glaucoma treatment devices, implantable prostheses, scaffolds for stem cell growth and differentiation, Li-ion batteries for defibrillators and pacemakers, and drug delivery and sensor devices. Technology transfer and regulatory issues are also covered. This is essential reading for researchers, engineers and practitioners in the field of high-tech and medical device technologies across materials science and biomedical engineering.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Implanted diamond"

1

Bharuth-Ram, K., D. Naidoo, and G. Klingelhöfer. "57Fe Implanted in Diamond." In Mössbauer Spectroscopy in Materials Science, 79–86. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4548-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bharuth-Ram, K., D. Naidoo, G. Klingelhöfer, and J. E. Butler. "CEMS Study of 57Fe Implanted in Diamond." In Hyperfine Interactions (C), 111–14. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0281-3_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rubanov, S., B. A. Fairchild, A. Suvorova, P. Olivero, and S. Prawer. "Conventional and Analytical Electron Microscopy Study of Phase Transformation in Implanted Diamond Layers." In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 3363–69. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48764-9_416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miyagawa, Shingo, Tomoyuki Suzuki, Takahiro Kudo, and Masataka Satoh. "Encapsulating Annealing of N+ Implanted 4H-SiC by Diamond-Like-Carbon Film." In Materials Science Forum, 583–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lawson, T. R., S. A. Catledge, and Yogesh K. Vohra. "Nanostructured Diamond Coated CoCrMo Alloys for Use in Biomedical Implants." In Bioceramics 17, 1015–18. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pan, Yicheng Peter, Jarlen Don, Tsuchin Philip Chu, and Ajay Mahajan. "Influence of Diamond-like Carbon Coatings on the Fatigue Behavior of Spinal Implant Rod." In Time Dependent Constitutive Behavior and Fracture/Failure Processes, Volume 3, 383–89. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9794-4_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Uzumaki, E. T., C. S. Lambert, W. D. Belangero, and Cecília A. C. Zavaglia. "Biocompatibility of Titanium Based Implants with Diamond-Like Carbon Coatings Produced by Plasma Immersion Ion Implantation and Deposition." In Bioceramics 20, 677–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burchard, A., M. Restle, M. Deicher, H. Hofsäss, S. G. Jahn, Th König, R. Magerle, W. Pfeiffer, and U. Wahl. "Microscopic characterization of heavy-ion implanted diamond." In Wide-Band-Gap Semiconductors, 150–53. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50024-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jamieson, D. N., S. Prawer, K. W. Nugent, and S. P. Dooley. "Cross-sectional Raman microscopy of MeV implanted diamond." In Ion Beam Modification of Materials, 641–45. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82334-2.50119-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Q., and B. V. King. "Radiation damage and conductivity changes in ion implanted diamond." In Ion Beam Modification of Materials, 555–59. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82334-2.50105-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Implanted diamond"

1

Revesz, Stephen M., Adolfo Misiara, John B. S. Abraham, Edward S. Bielejec, Hebin Li, and Michael Titze. "Negative Thermal Expansion in Diamond Probed using the Zero-Phonon Line of Silicon Vacancy Color Centers." In CLEO: Fundamental Science, FM3F.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3f.5.

Full text
Abstract:
We probed the negative thermal expansion of diamond via optical detection of ion beam implanted charged silicon vacancy centers and demonstrate optical stability across 5 orders of magnitude implantation fluence.
APA, Harvard, Vancouver, ISO, and other styles
2

Das, Arunava, Sounak Mukherjee, Zi-Huai Zhang, Andrew M. Edmonds, Nicola Palmer, Rajesh Patel, Matthew L. Markham, and Nathalie P. de Leon. "Optimizing Fermi Level Engineering for Single Neutral Silicon Vacancy Centers in Diamond." In CLEO: Fundamental Science, FM3F.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm3f.6.

Full text
Abstract:
We use Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy to characterize boron and nitrogen concentrations needed for the stabilization of neutral silicon vacancy centers (SiV0) in Si-implanted diamonds co-doped with boron and nitrogen.
APA, Harvard, Vancouver, ISO, and other styles
3

Pimenov, Sergej M., Vitaliy V. Kononenko, Taras V. Kononenko, Vitali I. Konov, Pascal Fischer, Valerio Romano, Heinz P. Weber, A. V. Khomich, and R. A. Khmelnitskiy. "Laser annealing of ion-implanted diamond." In SPIE Proceedings, edited by Heinz P. Weber, Vitali I. Konov, and Thomas Graf. SPIE, 2003. http://dx.doi.org/10.1117/12.537498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Emission Property of Nitrogen Implanted Diamond." In 10th International Conference on Vacuum Microelectronics. IEEE, 1997. http://dx.doi.org/10.1109/ivmc.1997.627679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khmelnitskiy, R. A., V. A. Dravin, S. D. Tkachenko, and A. A. Gippius. "Optical characterization of graphitized layers in ion-implanted diamond." In Lasers in Synthesis, Characterization, and Processing of Diamond, edited by Vitali I. Konov and Victor G. Ralchenko. SPIE, 1998. http://dx.doi.org/10.1117/12.328208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hong, D., D. M. Aslam, T. Grimm, L. Garbini, and S. Bandy. "Field Emission from Carbon Implanted Polycrystalline Diamond Film." In 10th International Conference on Vacuum Microelectronics. IEEE, 1997. http://dx.doi.org/10.1109/ivmc.1997.627400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ueda, K., Y. Yamauchi, and M. Kasu. "High-temperature Operation of Boron-implanted Diamond FETs." In 2009 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2009. http://dx.doi.org/10.7567/ssdm.2009.j-3-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saleh Ziabari, Maziar, Jacob Henshaw, Pauli Kehayias, Michael Titze, Edward Bielejec, Nate Ristoff, Zaili Peng, Victor Acosta, Michael Lilly, and Andrew Mounce. "Optimization of shallow surface NV yield with Hot Implant of N-Implanted Diamond." In Proposed for presentation at the March Meeting held March 14-18, 2022 in Chicago, IL United States. US DOE, 2022. http://dx.doi.org/10.2172/2001949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Galkina, T. I., A. Y. Klokov, R. A. Khmelnitskiy, A. I. Sharkov, V. A. Dravin, and A. A. Gippius. "Generation of acoustic phonons in diamond by laser excitation of the buried implanted layer." In Lasers in Synthesis, Characterization, and Processing of Diamond, edited by Vitali I. Konov and Victor G. Ralchenko. SPIE, 1998. http://dx.doi.org/10.1117/12.328210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hu, X. J., H. J. Liu, J. P. Pan, and L. P. Lu. "N-type conductivity in oxygen ion implanted nanocrystalline diamond films." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography