Journal articles on the topic 'Implantable microelectrode arrays'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Implantable microelectrode arrays.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wei, Wen Jing, Yi Lin Song, Wen Tao Shi, Chun Xiu Liu, Ting Jun Jiang, and Xin Xia Cai. "A Novel Microelectrode Array Probe Integrated with Electrophysiology Reference Electrode for Neural Recording." Key Engineering Materials 562-565 (July 2013): 67–73. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.67.
Full textHetke, J. F., J. L. Lund, K. Najafi, K. D. Wise, and D. J. Anderson. "Silicon ribbon cables for chronically implantable microelectrode arrays." IEEE Transactions on Biomedical Engineering 41, no. 4 (April 1994): 314–21. http://dx.doi.org/10.1109/10.284959.
Full textZarifi, Mohammad Hossein, Javad Frounchi, Mohammad Ali Tinati, and Jack W. Judy. "PLATINUM-BASED CONE MICROELECTRODES FOR IMPLANTABLE NEURAL RECORDING APPLICATIONS." Biomedical Engineering: Applications, Basis and Communications 22, no. 03 (June 2010): 249–54. http://dx.doi.org/10.4015/s1016237210001992.
Full textJohnson, Matthew D., Robert K. Franklin, Matthew D. Gibson, Richard B. Brown, and Daryl R. Kipke. "Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings." Journal of Neuroscience Methods 174, no. 1 (September 2008): 62–70. http://dx.doi.org/10.1016/j.jneumeth.2008.06.036.
Full textGreen, Rylie A., Juan S. Ordonez, Martin Schuettler, Laura A. Poole-Warren, Nigel H. Lovell, and Gregg J. Suaning. "Cytotoxicity of implantable microelectrode arrays produced by laser micromachining." Biomaterials 31, no. 5 (February 2010): 886–93. http://dx.doi.org/10.1016/j.biomaterials.2009.09.099.
Full textSeymour, John P., Nick B. Langhals, David J. Anderson, and Daryl R. Kipke. "Novel multi-sided, microelectrode arrays for implantable neural applications." Biomedical Microdevices 13, no. 3 (February 8, 2011): 441–51. http://dx.doi.org/10.1007/s10544-011-9512-z.
Full textGhane-Motlagh, Bahareh, and Mohamad Sawan. "High-Density Implantable Microelectrode Arrays for Brain-Machine Interface Applications." Advances in Science and Technology 96 (October 2014): 95–101. http://dx.doi.org/10.4028/www.scientific.net/ast.96.95.
Full textJi, J., and K. D. Wise. "An implantable CMOS circuit interface for multiplexed microelectrode recording arrays." IEEE Journal of Solid-State Circuits 27, no. 3 (March 1992): 433–43. http://dx.doi.org/10.1109/4.121568.
Full textde Haro, C., R. Mas, G. Abadal, J. Muñoz, F. Perez-Murano, and C. Domı́nguez. "Electrochemical platinum coatings for improving performance of implantable microelectrode arrays." Biomaterials 23, no. 23 (December 2002): 4515–21. http://dx.doi.org/10.1016/s0142-9612(02)00195-3.
Full textBlack, Bryan J., Aswini Kanneganti, Alexandra Joshi-Imre, Rashed Rihani, Bitan Chakraborty, Justin Abbott, Joseph J. Pancrazio, and Stuart F. Cogan. "Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex." Journal of Neurophysiology 120, no. 4 (October 1, 2018): 2083–90. http://dx.doi.org/10.1152/jn.00181.2018.
Full textDu, Jiangang, Ingmar H. Riedel-Kruse, Janna C. Nawroth, Michael L. Roukes, Gilles Laurent, and Sotiris C. Masmanidis. "High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity With Microfabricated Electrode Arrays." Journal of Neurophysiology 101, no. 3 (March 2009): 1671–78. http://dx.doi.org/10.1152/jn.90992.2008.
Full textSchuettler, M., S. Stiess, B. V. King, and G. J. Suaning. "Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil." Journal of Neural Engineering 2, no. 1 (February 23, 2005): S121—S128. http://dx.doi.org/10.1088/1741-2560/2/1/013.
Full textNegi, S., R. Bhandari, L. Rieth, and F. Solzbacher. "In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays." Biomedical Materials 5, no. 1 (February 2010): 015007. http://dx.doi.org/10.1088/1748-6041/5/1/015007.
Full textZeng, Qi, Saisai Zhao, Hangao Yang, Yi Zhang, and Tianzhun Wu. "Micro/Nano Technologies for High-Density Retinal Implant." Micromachines 10, no. 6 (June 22, 2019): 419. http://dx.doi.org/10.3390/mi10060419.
Full textJang, Jae-Won, Yoo Na Kang, Hee Won Seo, Boil Kim, Han Kyoung Choe, Sang Hyun Park, Maan-Gee Lee, and Sohee Kim. "Long-term in-vivo recording performance of flexible penetrating microelectrode arrays." Journal of Neural Engineering 18, no. 6 (November 19, 2021): 066018. http://dx.doi.org/10.1088/1741-2552/ac3656.
Full textChakraborty, Bitan. "Electrochemical Properties of Sputtered Ruthenium Oxide Neural Stimulation and Recording Electrodes." Electrochem 4, no. 3 (July 24, 2023): 350–64. http://dx.doi.org/10.3390/electrochem4030023.
Full textRui, Yuefeng, Jingquan Liu, Yajun Wang, and Chunsheng Yang. "Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces." Microsystem Technologies 17, no. 3 (March 2011): 437–42. http://dx.doi.org/10.1007/s00542-011-1279-x.
Full textXiao, Guihua, Yilin Song, Yu Zhang, Yu Xing, Shengwei Xu, Mixia Wang, Junbo Wang, Deyong Chen, Jian Chen, and Xinxia Cai. "Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson’s Disease." Biosensors 10, no. 10 (September 28, 2020): 136. http://dx.doi.org/10.3390/bios10100136.
Full textSaggese, Gerardo, and Antonio Giuseppe Maria Strollo. "A Low Power 1024-Channels Spike Detector Using Latch-Based RAM for Real-Time Brain Silicon Interfaces." Electronics 10, no. 24 (December 9, 2021): 3068. http://dx.doi.org/10.3390/electronics10243068.
Full textAmini, Shahram. "O021 / #592 HIERARCHICAL SURFACE RESTRUCTURING: A NOVEL TECHNOLOGY FOR NEXT GENERATION IMPLANTABLE NEURAL INTERFACING ELECTRODES AND MICROELECTRODE ARRAYS." Neuromodulation: Technology at the Neural Interface 25, no. 7 (October 2022): S50—S51. http://dx.doi.org/10.1016/j.neurom.2022.08.058.
Full textYi, Wenwen, Chaoyang Chen, Zhaoying Feng, Yong Xu, Chengpeng Zhou, Nirul Masurkar, John Cavanaugh, and Mark Ming-Cheng Cheng. "A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate." Nanotechnology 26, no. 12 (March 6, 2015): 125301. http://dx.doi.org/10.1088/0957-4484/26/12/125301.
Full textJeakle, Eleanor N., Justin R. Abbott, Joshua O. Usoro, Yupeng Wu, Pegah Haghighi, Rahul Radhakrishna, Brandon S. Sturgill, et al. "Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex." Micromachines 14, no. 3 (March 19, 2023): 680. http://dx.doi.org/10.3390/mi14030680.
Full textLu, Botao, Penghui Fan, Yiding Wang, Yuchuan Dai, Jingyu Xie, Gucheng Yang, Fan Mo, et al. "Neuronal Electrophysiological Activities Detection of Defense Behaviors Using an Implantable Microelectrode Array in the Dorsal Periaqueductal Gray." Biosensors 12, no. 4 (March 25, 2022): 193. http://dx.doi.org/10.3390/bios12040193.
Full textCaldwell, Ryan, Himadri Mandal, Rohit Sharma, Florian Solzbacher, Prashant Tathireddy, and Loren Rieth. "Analysis of Al2O3—parylene C bilayer coatings and impact of microelectrode topography on long term stability of implantable neural arrays." Journal of Neural Engineering 14, no. 4 (May 31, 2017): 046011. http://dx.doi.org/10.1088/1741-2552/aa69d3.
Full textWu, Bingchen, Elisa Castagnola, and Xinyan Tracy Cui. "Zwitterionic Polymer Coated and Aptamer Functionalized Flexible Micro-Electrode Arrays for In Vivo Cocaine Sensing and Electrophysiology." Micromachines 14, no. 2 (January 27, 2023): 323. http://dx.doi.org/10.3390/mi14020323.
Full textNarayana, V. Lakshman, and A. Peda Gopi. "Enterotoxigenic Escherichia Coli Detection Using the Design of a Biosensor." Journal of New Materials for Electrochemical Systems 23, no. 3 (September 30, 2020): 164–66. http://dx.doi.org/10.14447/jnmes.v23i3.a02.
Full textGuan, S., J. Wang, X. Gu, Y. Zhao, R. Hou, H. Fan, L. Zou, et al. "Elastocapillary self-assembled neurotassels for stable neural activity recordings." Science Advances 5, no. 3 (March 2019): eaav2842. http://dx.doi.org/10.1126/sciadv.aav2842.
Full textFerrea, E., L. Suriya-Arunroj, D. Hoehl, U. Thomas, and A. Gail. "Implantable computer-controlled adaptive multielectrode positioning system." Journal of Neurophysiology 119, no. 4 (April 1, 2018): 1471–84. http://dx.doi.org/10.1152/jn.00504.2017.
Full textSui, Xiao Hong, Fei Tan, and Qiu Shi Ren. "Electrical Characteristics of a Stimulating Microelectrode-Electrolyte Interface." Key Engineering Materials 483 (June 2011): 690–93. http://dx.doi.org/10.4028/www.scientific.net/kem.483.690.
Full textLi, Szu-Ying, Hsin-Yi Tseng, Bo-Wei Chen, Yu-Chun Lo, Huai-Hsuan Shao, Yen-Ting Wu, Ssu-Ju Li, et al. "Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording." Biosensors 13, no. 2 (February 16, 2023): 280. http://dx.doi.org/10.3390/bios13020280.
Full textBeygi, Mohammad, John T. Bentley, Christopher L. Frewin, Cary A. Kuliasha, Arash Takshi, Evans K. Bernardin, Francesco La Via, and Stephen E. Saddow. "Fabrication of a Monolithic Implantable Neural Interface from Cubic Silicon Carbide." Micromachines 10, no. 7 (June 29, 2019): 430. http://dx.doi.org/10.3390/mi10070430.
Full textSwadlow, Harvey A., Yulia Bereshpolova, Tatiana Bezdudnaya, Monica Cano, and Carl R. Stoelzel. "A Multi-Channel, Implantable Microdrive System for Use With Sharp, Ultra-Fine “Reitboeck” Microelectrodes." Journal of Neurophysiology 93, no. 5 (May 2005): 2959–65. http://dx.doi.org/10.1152/jn.01141.2004.
Full textHuang, Ting, Zhonghai Wang, Lina Wei, Mark Kindy, Yufeng Zheng, Tingfei Xi, and Bruce Z. Gao. "Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial." Journal of Materials Science & Technology 32, no. 1 (January 2016): 89–96. http://dx.doi.org/10.1016/j.jmst.2015.08.009.
Full textKim, Yong-Ho, Chungkeun Lee, Kang-Min Ahn, Myoungho Lee, and Yong-Jun Kim. "Robust and real-time monitoring of nerve regeneration using implantable flexible microelectrode array." Biosensors and Bioelectronics 24, no. 7 (March 2009): 1883–87. http://dx.doi.org/10.1016/j.bios.2008.09.034.
Full textYoon, E., B. Koo, J. Wong, S. Elyahoodayan, J. D. Weiland, C. D. Lee, A. Petrossians, and E. Meng. "An implantable microelectrode array for chronic in vivo epiretinal stimulation of the rat retina." Journal of Micromechanics and Microengineering 30, no. 12 (October 17, 2020): 124001. http://dx.doi.org/10.1088/1361-6439/abbb7d.
Full textTrada, Hiren V., Venkat Vendra, Joseph P. Tinney, Fangping Yuan, Douglas J. Jackson, Kevin M. Walsh, and Bradley B. Keller. "Implantable thin-film porous microelectrode array (P-MEA) for electrical stimulation of engineered cardiac tissues." BioChip Journal 9, no. 2 (March 18, 2015): 85–94. http://dx.doi.org/10.1007/s13206-015-9201-8.
Full textGuo, Rui, and Jing Liu. "Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions." Journal of Micromechanics and Microengineering 27, no. 10 (September 13, 2017): 104002. http://dx.doi.org/10.1088/1361-6439/aa891c.
Full textShan, Jin, Yilin Song, Yiding Wang, Penghui Fan, Botao Lu, Jinping Luo, Wei Xu, et al. "Highly Activated Neuronal Firings Monitored by Implantable Microelectrode Array in the Paraventricular Thalamus of Insomnia Rats." Sensors 23, no. 10 (May 10, 2023): 4629. http://dx.doi.org/10.3390/s23104629.
Full textNazari, Hossein, Paulo Falabella, Lan Yue, James Weiland, and Mark S. Humayun. "Retinal Prostheses." Journal of VitreoRetinal Diseases 1, no. 3 (April 20, 2017): 204–13. http://dx.doi.org/10.1177/2474126417702067.
Full textBroche, Lionel M., Karla D. Bustamante, and Michael Pycraft Hughes. "An Algorithm for Tracking the Position and Velocity of Multiple Neuronal Signals Using Implantable Microelectrodes In Vivo." Micromachines 12, no. 11 (October 31, 2021): 1346. http://dx.doi.org/10.3390/mi12111346.
Full textMarland, Jamie, Mark Gray, David Argyle, Ian Underwood, Alan Murray, and Mark Potter. "Post-Operative Monitoring of Intestinal Tissue Oxygenation Using an Implantable Microfabricated Oxygen Sensor." Micromachines 12, no. 7 (July 10, 2021): 810. http://dx.doi.org/10.3390/mi12070810.
Full textAtta, Raghied Mohammed. "Increasing contact area of microelectrodes in implantable microchannel array system for peripheral nerve regenerative using metal deposited nanospheres." International Journal of Nano and Biomaterials 2, no. 1/2/3/4/5 (2009): 313. http://dx.doi.org/10.1504/ijnbm.2009.027727.
Full textZhang, Song, Yilin Song, Mixia Wang, Zhiming Zhang, Xinyi Fan, Xianteng Song, Ping Zhuang, Feng Yue, Piu Chan, and Xinxia Cai. "A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain." Biosensors and Bioelectronics 85 (November 2016): 53–61. http://dx.doi.org/10.1016/j.bios.2016.04.087.
Full textWei, Wenjing, Yilin Song, Xinyi Fan, Song Zhang, Li Wang, Shengwei Xu, Mixia Wang, and Xinxia Cai. "Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials." Nanotechnology 27, no. 11 (February 12, 2016): 114001. http://dx.doi.org/10.1088/0957-4484/27/11/114001.
Full textStutzki, Henrike, Florian Helmhold, Max Eickenscheidt, and Günther Zeck. "Subretinal electrical stimulation reveals intact network activity in the blind mouse retina." Journal of Neurophysiology 116, no. 4 (October 1, 2016): 1684–93. http://dx.doi.org/10.1152/jn.01095.2015.
Full textKim, Kangil, Seung-Ju Han, Chang-Hee Kim, and Sangmin Lee. "Implantable nanostructured microelectrode array with biphasic current stimulator for retinal prostheses." Technology and Health Care, February 23, 2023, 1–15. http://dx.doi.org/10.3233/thc-235001.
Full textCorbett, Scott, Joe Ketterl, and Tim Johnson. "Polymer-Based Microelectrode Arrays." MRS Proceedings 926 (2006). http://dx.doi.org/10.1557/proc-0926-cc06-02.
Full textLowe, Alexa, Safaa Hussain, Grace Xia, Ahsan Habib, and Ali Yanik. "Brain Computer Interfaces: Wireless Recording of Brain Signals with Electro-Plasmonic Nanoantenna." Journal of Student Research 11, no. 1 (February 28, 2022). http://dx.doi.org/10.47611/jsrhs.v11i1.2421.
Full textHejazi, Maryam, Wei Tong, Michael R. Ibbotson, Steven Prawer, and David J. Garrett. "Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing." Frontiers in Neuroscience 15 (April 12, 2021). http://dx.doi.org/10.3389/fnins.2021.658703.
Full textSun, Yimin, Xulin Dong, Hu He, Yan Zhang, Kai Chi, Yun Xu, Muhammad Asif, et al. "2D carbon network arranged into high-order 3D nanotube arrays on a flexible microelectrode: integration into electrochemical microbiosensor devices for cancer detection." NPG Asia Materials 15, no. 1 (March 31, 2023). http://dx.doi.org/10.1038/s41427-022-00458-5.
Full text