Academic literature on the topic 'Immunothérapie oncolytique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Immunothérapie oncolytique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Immunothérapie oncolytique"
Quéméneur, Éric. "Les vecteurs viraux en immunothérapie du cancer." Annales des Mines - Réalités industrielles Novembre 2023, no. 4 (November 9, 2023): 87–91. http://dx.doi.org/10.3917/rindu1.234.0087.
Full textHouel, Ana, and Johann Foloppe. "Les virus oncolytiques : acteurs et vecteurs de protéines thérapeutiques contre les tumeurs." médecine/sciences 39, no. 11 (November 2023): 845–54. http://dx.doi.org/10.1051/medsci/2023161.
Full textDissertations / Theses on the topic "Immunothérapie oncolytique"
Delaunay, Tiphaine. "Etude de différents virus oncolytique pour l'immunothérapie du cancer : mécanisme de la sensibilité tumorale et effets sur la réponse immunitaire." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT1020/document.
Full textOncolytic immunotherapy exploits the lytic and immunogenic properties of oncolytic viruses (OV). These viruses selectively replicate in and lyze tumor cells without harming healthy tissues. During my thesis, I first identified the bi-allelic deletion of genes encoding type I interferons (IFN I, IFN-α et -β) as the most frequent defect in the IFN I antiviral response in malignant pleural mesothelioma (MPM). These alterations make the tumor cells permissive to attenuated oncolytic measles virus that subsequently provokes their lysis. I also showed that this loss of IFN I genes is common to cancers for which the deletion of the tumor suppressor gene CDKN2A is critical (glioblastoma, esophageal cancer). This is the first report showing a link between the deletion of IFN I genes and the sensitivity of tumor cells to OV. This link could be used as a predictive marker of the efficacy of oncolytic immunotherapy. I then demonstrated in vitro and in vivo a strong oncolytic activity against MPM of the VVTK-RR- modified vaccinia virus deleted from the genes encoding the thymidine kinase and the ribonucleotide reductase. This OV is thus of particular interest for oncolytic immunotherapy of MPM. Finally, I demonstrated a new mechanism by which different OV favor the human anti-tumor immune response. By lyzing tumor cells, OV allow the intercellular transfer of tumorassociated antigens such as NY-ESO-1 and induce or reinforce the presentation of these antigens to specific cytotoxic CD4+ T cells. Overall, my PhD work provides a better understanding of both the oncolytic activity of different viruses and their effects on the antitumor immune response
Chatelain, Camille. "Rôles des cellules myéloïdes du microenvironnement tumoral lors d’une infection par le virus oncolytique de la rougeole." Electronic Thesis or Diss., Nantes Université, 2023. https://archive.bu.univ-nantes.fr/pollux/show/show?id=f16e2a89-845b-4d19-88b8-e1cecfa63242.
Full textAll nucleated cells can detect, signal and limit viral infections to their neighboring cells and to the immune system through the secretion of type I interferons (IFN). Attenuated measles virus (MV) replicates preferentially in tumor cells of malignant pleural mesothelioma (MPM) rather than in healthy cells, as they often have defects in this pathway. However, non-tumoral cells in the microenvironment possess functional antiviral pathways and can produce IFN upon infection. In this study, we aimed to determine the role of monocyte-derived myeloid cells on MV oncolytic activity and their contribution to anti-tumor immunity. We cultured MPM tumor cells with monocytes previously differentiated, or not, into macrophages or dendritic cells. These co- cultured cells were then infected with MV. Our results show that monocyte-derived cells can limit the oncolytic action of MV in a patient- specific manner. By producing IFN, these cells compensate for the lack of IFN expression by tumor cells, protecting them from the oncolytic action of MV. However, in response to the virus, these myeloid cells also generate an inflammatory response, which could stimulate the patient's antitumor immune response. In conclusion, this study highlights the importance of taking non-tumor cells into account when assessing the oncolytic activity of MV
Fend, Laetitia. "Utilisation de modèles pré-cliniques murins orthotopiques et transgéniques pour l'évaluation d'approches immunothérapeutiques dans le traitement du cancer." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ058.
Full textIn experimental approaches to immunotherapy of cancer, mouse tumor models are used for reasons of speed and reproducibility. Ectopic mouse tumor models are the most often used, but they constitute artificial models that reflect only a part of the biological reality of tumors from various origins.The aim of my thesis project was to develop new mouse preclinical tumor models to better mimic the pathological situations of solid tumors in humans. First, I developed an orthotopic model of kidney cancer (subcapsular kidney implantation of a renal carcinoma cell line which either expressed or did not express the human xeno-antigen, MUC1). In addition to this, I also studied a spontaneous model of breast cancer (MMTV-PyMT).These models enabled us to evaluate the efficacy of three different immunotherapy approaches namely oncolytic virus strategy, tumor antigen vectorization by using a viral vector, and monoclonal antibody
Ogor, Thomas. "Ciblage cellulaire spécifique de l'interféron α pour le contrôle des défenses immunitaires antitumorales." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONT001.
Full textIt is widely accepted that a cancer develops when cancer cells escape from the control of the immune system and that harnessing the immune defences in order to reactivate endogenous anti-tumor T cells could be a therapeutic option for full and durable responses.Type I interferon is known for its potent antitumor activity in experimental mouse tumors. Furthermore, it has been shown to be a key cytokine necessary for the efficacy of many anticancer agents targeting not only cancer cells (ionising radiations, cytostatic chemicals, mAbs…) but also the immune system (vaccination, CAR-T cells…). However, its use is no longer considered by the clinician owing to the side effects experienced by the patients. To address this concern, a highly promising technology allowing the design of cell-specific targeted interferon molecules has been developed and the objective of our present work is to generate and pre-clinically evaluate lead compounds. For this, a number of research frontiers must be tackled, these include to answer to the fundamental questions 'where' and 'when' interferon must act in order to exert its antitumor activity either alone or in combination with the above-mentioned therapeutic strategies.The question 'when' is important because it is highly suspected that the relative timing of interferon action and TCR stimulation determines whether the effect of interferon is immunostimulant or immunosuppressive. The question 'where' is evident since it determines the choice of the targeting moiety of the engineered interferons. We know that the action of interferon on dendritic cells is necessary for its antitumor activity but is it sufficient? Is an action on T cells also mandatory? Is an interferon action on tumor cells or stroma cells necessary for attracting effector immune cells?
Xie, Wei. "Transcription Inhibitor Lurbinectedin and Oncolytic Peptide LTX-401 trigger Immunogenic Cell Death and Synergize With Immune Checkpoint Blockade Lurbinectedin Synergizes With Immune Checkpoint Blockade To Generate Anticancer Immunity Tumor Lysis With LTX-401 Creates Anticancer Immunity Autophagy Induction by Thiostrepton Improves the Efficacy of Immunogenic Chemotherapy Oncolysis With DTT-205 and DTT-304 Generates Immunological Memory in Cured Animals." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL072.
Full textCancer is the second leading cause of death worldwide, despite the existence of standard treatment, innovative therapeutic strategies and drugs are still in urgent demand. The combination of immunogenic cell death (ICD) inducing drugs and immune checkpoint blockade (ICB) seems to be a promising modality. In this thesis, we demonstrated Lurbinectedin, a transcription inhibitor newly approved for relapsed lung cancer treatment, triggers hallmarks of ICD in four different human and murine cell lines in vitro. Vaccinated with Lurbinectedin-treated fibrosarcoma cell protects immunocompetent mice from rechallenge with syngeneic tumours. Lurbinectedin restrains transplanted fibrosarcoma growth in an immune dependent manner. Both transplanted MCA205 cancer and hormone/carcinogen induced breast cancer were sensitized by Lurbinectedin to PD-1 and CTLA-4 double ICBs. Of note, long-term immunological memory was generated in cured mice. Further, we evaluated the anticancer capacity of LTX-401, an oncolytic peptide designed for local immunotherapy. Sequential intratumoral injections of LTX-401 dramatically retards subcutaneous MCA205 and TC-1 tumour growth in immunocompetent host, yet shows limited therapeutic effect of anti-CTLA-4 or anti-PD-1/anti-CTLA-4 ICBs. Moreover, sequential LTX-401 treatment with double ICBs exhibits systemic antitumor immunity to both treated and abscopal tumour. In conclusion, lurbinectedin and LTX-401 induce cancer cell immunogenic cell death and enhance the anticancer effects of immune chekcpoint blockade. These results lay the experimental foundation of combination regiments and may facilitate the clinical trial design
Book chapters on the topic "Immunothérapie oncolytique"
Foloppe, Johann, Laetitia Fend, Xavier Préville, Philippe Erbs, and Jean-Marc Limacher. "17. Virus oncolytiques dans le traitement du cancer." In Immunothérapie des cancers au troisième millénaire, 277–94. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1888-4-018.
Full textFoloppe, Johann, Laetitia Fend, Xavier Préville, Philippe Erbs, and Jean-Marc Limacher. "17. Virus oncolytiques dans le traitement du cancer." In Immunothérapie des cancers au troisième millénaire, 277–94. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1888-4.c018.
Full text