Academic literature on the topic 'Immuno evasione'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Immuno evasione.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Immuno evasione"
Baldwin, Louise A., Nenad Bartonicek, Jessica Yang, Sunny Z. Wu, Niantao Deng, Daniel Roden, Chia-Ling Chan, et al. "Abstract P1-04-04: Dna barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and in response to immunotherapy." Cancer Research 82, no. 4_Supplement (February 15, 2022): P1–04–04—P1–04–04. http://dx.doi.org/10.1158/1538-7445.sabcs21-p1-04-04.
Full textLehnert, Teresa, Maria T. E. Prauße, Kerstin Hünniger, Jan-Philipp Praetorius, Oliver Kurzai, and Marc Thilo Figge. "Comparative assessment of immune evasion mechanisms in human whole-blood infection assays by a systems biology approach." PLOS ONE 16, no. 4 (April 1, 2021): e0249372. http://dx.doi.org/10.1371/journal.pone.0249372.
Full textZindl, C. L., and D. D. Chaplin. "Tumor Immune Evasion." Science 328, no. 5979 (May 6, 2010): 697–98. http://dx.doi.org/10.1126/science.1190310.
Full textSeton-Rogers, Sarah. "Driving immune evasion." Nature Reviews Cancer 18, no. 2 (January 25, 2018): 67. http://dx.doi.org/10.1038/nrc.2018.5.
Full textMueller, K. L. "Immune Evasion Tactic." Science Signaling 4, no. 157 (January 25, 2011): ec27-ec27. http://dx.doi.org/10.1126/scisignal.4157ec27.
Full textMascola, John R. "Engineering immune evasion." Nature 441, no. 7090 (May 2006): 161. http://dx.doi.org/10.1038/441161a.
Full textFehervari, Zoltan. "Glioma immune evasion." Nature Immunology 18, no. 5 (May 2017): 487. http://dx.doi.org/10.1038/ni.3736.
Full textFitzpatrick, David R., and Helle Bielefeldt-Ohmann. "Mechanisms of herpesvirus immuno-evasion." Microbial Pathogenesis 10, no. 4 (April 1991): 253–59. http://dx.doi.org/10.1016/0882-4010(91)90009-y.
Full textUpadhyay, Ranjan, Linda Hammerich, Paul Peng, Brian Brown, Miriam Merad, and Joshua Brody. "Lymphoma: Immune Evasion Strategies." Cancers 7, no. 2 (April 30, 2015): 736–62. http://dx.doi.org/10.3390/cancers7020736.
Full textTsukerman, Pinchas, Jonatan Enk, and Ofer Mandelboim. "Metastamir-mediated immune evasion." OncoImmunology 2, no. 1 (January 2013): e22245. http://dx.doi.org/10.4161/onci.22245.
Full textDissertations / Theses on the topic "Immuno evasione"
GAMBACORTA, VALENTINA. "Novel Insights into the Immunobiology of Leukemia Relapse after Allogeneic Hematopoietic Cell Transplantation." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/259336.
Full textThe number of acute myeloid leukemia (AML) patients cured through allogeneic hematopoietic cell transplantation (allo-HCT) is constantly increasing. The therapeutic effectiveness of this procedure mainly relies on the transfer from the donor to the patient of immune cells, capable of recognizing and eliminating residual tumor cells. Still, up to 50% of transplanted AML patients will eventually relapse, and the prognosis of these patients remains extremely poor. Thus, aim of my thesis work was to improve current understanding on the immunobiology of post-transplantation relapse, by investigating i) how therapies and leukemia itself affect immune reconstitution, ii) how to refine detection of leukemia reappearance at the stage minimal residual disease (MRD), and iii) how to uncover the molecular mechanisms at the basis of leukemia immune evasion. In particular, I will first present the results of a prospective study aiming at evaluating the clinical utility of monitoring patient-specific chimerism on peripheral blood, instead of the currently used bone marrow specimens, employing quantitative PCR (qPCR) for the early detection of leukemia relapses after transplantation. Will next present the results of two studies on the dynamics of recovery of NK and T cells after allo-HCT. Both studies aim at understanding the determinants of donor immune system failure in controlling AML disease recurrence with the potential implications of using the identified features as biomarkers to predict post-transplantation relapse. In the last sections I will present both published and unpublished data on the biological mechanisms underlying post-transplantation disease relapse, reporting how this knowledge can be easily translated in novel therapeutic rationales to combat disease recurrence. Included in these sections are two recent reviews I authored, focused, respectively, on the immunobiology of post-transplantation relapse, and on current state-of-the art epigenetic therapies for AML and their effects on the immune system.
Close, Helen Judith. "Immune evasion in glioma." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/16103/.
Full textOdeberg, Jenny. "Human cytomegalovirus immune evasion strategies /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-126-8.
Full textRosa, Gustavo Luis Teixeira Lopes. "Studies of MHV-68 immune evasion and immune control." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611892.
Full textSolis, Mayra. "Immune evasion mechanisms by HIV-1." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103531.
Full textL'induction de la réponse immunitaire innée par des pathogènes viraux est caractérisée par une production rapide des interférons de Type I (IFNβ/α). Les Toll-like (TLR) ou RIG-like (RLR) récepteurs détectent divers composants viraux induisant multiples voies de signalisation intracellulaire impliquées dans l'activation du factor de transcription-NF-B- ainsi que des facteurs de régulation de l'interféron-3 et -7 (IRF-3 et IRF-7). Ces évènements mènent à la synthèse de molécules immunorégulatrices, tel que les interférons (IFN) de Type I, les cytokines pro-inflammatoires et les gènes stimulés par l'IFN (ISG), qui jouent un rôle important dans l'inhibition de la réplication virale. Au cours de l'évolution, les virus ont développé des stratégies pour contrer la réponse immunitaire innée afin de se répliquer. Le virus de l'immunodéficience humaine de type 1(VIH-1), l'agent infectieux du syndrome de l'immunodéficience acquise (SIDA), échappe à la réponse immunitaire innée, ce qui favorise la progression de la maladie. Par conséquent, une meilleure compréhension des mécanismes par lesquels le VIH-1 module les voies de signalisation des TLR et des RLR pourrait mener au développement de nouvelles stratégies thérapeutiques pour empêcher la réplication et donc la propagation du VIH-1. Des études ont démontré que les TLR qui signalent par l'intermédiaire de NF-B augmentent la réplication du VIH-1. Cependant, la stimulation du TLR4 déclenche à la fois la voie de signalisation de NF-B et celle des IFN, pouvant avoir ainsi des effets inhibiteurs sur la réplication du VIH-1. L'objectif de notre première étude était de comprendre le rôle du TLR4 dans la réplication du VIH-1. Par conséquent, nous avons caractérisé la voie d'activation des IRF-3 et IRF-7 suite à la stimulation du TLR4. Nos résultats démontrent que les kinases non-canoniques TBK1et IKKε sont activées avec une cinétique distincte ayant pour conséquence l'activation de l'IRF-3 et l'induction subséquente des IFN de type I. Par conséquent, l'activation de la voie de signalisation des IFN par la stimulation du TLR4 pourrait offrir une nouvelle stratégie pour inhiber la réplication du VIH-1. Notre deuxième étude a eu pour but de définir les différentes voies de signalisation activées par le VIH-1. Les changements transcriptionels induits par les différents sous-types du VIH-1 dans les cellules dendritiques immatures ont été examinés par analyse de microréseaux. Nos résultats démontrent que pendant la phase tardive de l'infection VIH-1, un ensemble de gènes est différemment régulé par les différents sous-types du VIH-1. En plus, cette étude accentue le rôle important des cellules dendritiques immatures dans la réplication et la dissémination du VIH-1. En conclusion, étant donné l'importance des RLR dans la reconnaissance des virus à ARN, l'objectif de la dernière étude a été d'étudier les mécanismes d'évasion utilisés par VIH-1 pour contrer la réponse antivirale innée. Nos résultats démontrent que l'ARN du VIH-1 est détecté par le récepteur cytosolique RIG-I. Cependant, une protéine du VIH-1 -la protéase- séquestre le récepteur RIG-I dans les lysosomes et empêche l'activation de la réponse antivirale initié par le récepteur RIG-I. De façon générale, la recherche présentée dans cette thèse propose de nouvelles avenues pour développer des stratégies préventives et thérapeutiques afin de combattre le VIH-1/SIDA.
Chan, Mei-po, and 陳美寶. "Modulation of Bacillus Calmétte Guerin-induced immune evasion." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B40987607.
Full textAndrews, Sophie Marie. "Adaptive immune evasion in clinically latent HIV infection." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:b7416aab-d345-48df-9194-797c62d7db47.
Full textOzturk, Mumin. "Tuberculosis transcriptomics: host protection and immune evasion mechanisms." Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/26863.
Full textChan, Mei-po. "Modulation of Bacillus Calmétte Guerin-induced immune evasion." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B40987607.
Full textAkhtar, Lisa Nowoslawski. "The role of SOCS proteins in HIV immune evasion." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2010. https://www.mhsl.uab.edu/dt/2010p/akhtar.pdf.
Full textBooks on the topic "Immuno evasione"
PhD, Henderson Brian, and Oyston Petra C. F, eds. Bacterial evasion of host immune responses. Cambridge, UK: Cambridge University Press, 2003.
Find full textVan der Ploeg, Lex H. T., Cantor Charles R. 1942-, and Vogel Henry J. 1920-, eds. Immune recognition and evasion: Molecular aspects of host-parasite interaction. San Diego: Academic Press, 1990.
Find full textSu, Bin, Kai Deng, Christiane Moog, and R. Brad Jones, eds. Immune Evasion Mechanisms by RNA Viruses. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88974-903-4.
Full textHenderson, Brian, and Petra C. F. Oyston, eds. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2003. http://dx.doi.org/10.1017/cbo9780511546266.
Full textHenderson, Brian, and Petra C. F. Oyston. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2003.
Find full textHenderson, Brian, and Petra C. F. Oyston. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2009.
Find full textHenderson, Brian, and Petra C. F. Oyston. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2003.
Find full textHenderson, Brian, and Petra C. F. Oyston. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2003.
Find full textWilson, Michael, Anthony Coates, Brian Henderson, and Petra C. F. Oyston. Bacterial Evasion of Host Immune Responses. Cambridge University Press, 2004.
Find full textMorrot, Alexandre, ed. Immune Evasion Strategies in Protozoan-Host Interactions. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88966-294-4.
Full textBook chapters on the topic "Immuno evasione"
Powers, C., V. DeFilippis, D. Malouli, and K. Früh. "Cytomegalovirus Immune Evasion." In Current Topics in Microbiology and Immunology, 333–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77349-8_19.
Full textLiang, Chengyu, Hyera Lee, Liguo Wu, Pinghui Feng, and Jae U. Jung. "KSHV Immune Evasion." In DNA Tumor Viruses, 611–44. New York, NY: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68945-6_24.
Full textFarrington, Lila, Gabriela O'Neill, and Ann B. Hill. "Viral Immune Evasion." In The Immune Response to Infection, 391–401. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816872.ch31.
Full textJohnson, David C., and Grant McFadden. "Viral Immune Evasion." In Immunology of Infectious Diseases, 357–77. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817978.ch24.
Full textMansfield, John M., and Martin Olivier. "Immune Evasion by Parasites." In The Immune Response to Infection, 453–69. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816872.ch36.
Full textMansfield, John M., and Martin Olivier. "Immune Evasion by Parasites." In Immunology of Infectious Diseases, 379–92. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817978.ch25.
Full textVeldkamp, Karin Ellen, and Jos A. G. Strijp. "Innate Immune Evasion by Staphylococci." In Pathogen-Derived Immunomodulatory Molecules, 19–31. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1601-3_2.
Full textCohen, Taylor S., Dane Parker, and Alice Prince. "Pseudomonas aeruginosa Host Immune Evasion." In Pseudomonas, 3–23. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9555-5_1.
Full textJung, M. Katherine. "Immune Surveillance and Tumor Evasion." In Alcohol and Cancer, 193–210. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0040-0_10.
Full textBarbosa, Angela S., and Lourdes Isaac. "Complement Immune Evasion by Spirochetes." In Current Topics in Microbiology and Immunology, 215–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/82_2017_47.
Full textConference papers on the topic "Immuno evasione"
Damania, Blossom A. "Abstract SY23-01: KSHV: Immune evasion and oncogenesis." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-sy23-01.
Full textSwanton, Charles. "Abstract IA16: Cancer evolution, immune evasion and metastasis." In Abstracts: AACR Virtual Special Conference on Tumor Heterogeneity: From Single Cells to Clinical Impact; September 17-18, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.tumhet2020-ia16.
Full textLane, Ryan S., Julia Femel, Jamie Booth, Christopher Loo, Nicholas Nelson, Takahiro Tsujikawa, Guillaume Thibault, and Amanda W. Lund. "Abstract NG02: Lymphatic vessels: Balancing immune priming and immune evasion in melanoma." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-ng02.
Full textHagan, Christy R., Lauryn Werner, Emma Helm, Margaret Axelrod, Justin Balko, Zachary Hartman, Kent Hunter, Howard Yang, Prabhakar Chalise, and Mary Markiewicz. "Abstract NG15: Progesterone-mediated immune evasion in breast cancer." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-ng15.
Full textSaigi, Maria, Ryohei Yoshida, Erik H. Knelson, Navin R. Mahadevan, Amir Vajdi, Israel Cañadas, Tran C. Thai, Mark M. Awad, Montse Sánchez-Céspedes, and David A. Barbie. "Abstract 1012: Determinants of immune evasion inMETdriven lung cancer." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1012.
Full textGarancher, Alexandra, Hiromichi Suzuki, Svasti Haricharan, Meher B. Masihi, Jessica M. Rusert, Paula S. Norris, Florent Carrette, et al. "Abstract IA11: Overcoming immune evasion in pediatric brain tumors." In Abstracts: AACR Special Conference on the Advances in Pediatric Cancer Research; September 17-20, 2019; Montreal, QC, Canada. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.pedca19-ia11.
Full textSwanton, Charles. "Abstract IA12: Cancer evolution: Chromosomal instability and immune evasion." In Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 5-6, 2021. American Association for Cancer Research, 2022. http://dx.doi.org/10.1158/2326-6074.tumimm21-ia12.
Full textChristophides, George. "Innate immune response and parasite evasion in malaria vector mosquitoes." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.92686.
Full textReviriego, Carmen Ballesteros, Anneliese O. Speak, Gemma Turner, Vivek Iyer, Leopold Parts, and David J. Adams. "Abstract B145: Identification of tumor cell intrinsic immune evasion mechanisms." In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-b145.
Full textGiannakis, Marios, Catherine Grasso, Daniel Wells, Tsuyoshi Hamada, Xinmeng Jasmine Mu, Michael Quist, Jonathan Nowak, et al. "Abstract PR03: Genetic mechanisms of immune evasion in colorectal cancer." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-pr03.
Full textReports on the topic "Immuno evasione"
Ma, Feng-Rong, and Gordon Freeman. The Role of PD-1 Ligand in Immune Evasion by Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada457690.
Full textPatankar, Manish S. Structural and Functional Analysis of CA125: Potential for Early Diagnosis and Understanding the Immune Evasion Strategies of Epithelial Ovarian Tumors. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada517680.
Full textPatankar, Manish S. Structural and Functional Analysis of CA125: Potential for Early Diagnosis and Understanding the Immune Evasion Strategies of Epithelial Ovarian Tumors. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada482775.
Full textYogev, David, Ricardo Rosenbusch, Sharon Levisohn, and Eitan Rapoport. Molecular Pathogenesis of Mycoplasma bovis and Mycoplasma agalactiae and its Application in Diagnosis and Control. United States Department of Agriculture, April 2000. http://dx.doi.org/10.32747/2000.7573073.bard.
Full textEldar, Avigdor, and Donald L. Evans. Streptococcus iniae Infections in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Toward the Pathogen and Vaccine Formulation. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7575286.bard.
Full text