Academic literature on the topic 'Immunization schemes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Immunization schemes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Immunization schemes"
Zhu, Anding, Wanying Chen, Jinming Zhang, Xiaojie Zong, Wenmin Zhao, and Yi Xie. "Investor immunization to Ponzi scheme diffusion in social networks and financial risk analysis." International Journal of Modern Physics B 33, no. 11 (April 30, 2019): 1950104. http://dx.doi.org/10.1142/s0217979219501042.
Full textAkimkin, V. G., and T. A. Semenenko. "Epidemiological and Immunological Efficacy of Health Workers Vaccination against Hepatitis B." Epidemiology and Vaccine Prevention 16, no. 4 (August 20, 2017): 52–57. http://dx.doi.org/10.31631/2073-3046-2017-16-4-52-57.
Full textGrinchik, Polina R., Leyla S. Namazova-Baranova, Marina V. Fedoseenko, Asiya A. Girina, Sergey V. Kovalev, Anastasia V. Mazokha, Elena D. Makushina, et al. "Comparative Analysis of Immunization and Immunization Coverage in Children of Russian Federation Federal Districts." Pediatric pharmacology 19, no. 1 (March 3, 2022): 6–19. http://dx.doi.org/10.15690/pf.v18i6.2351.
Full textEyer, Klaus. "Reading the writing of immunizations in mice – the quantitative assessment of secreted antibodies to evaluate the quality of immunizations." Journal of Immunology 206, no. 1_Supplement (May 1, 2021): 59.21. http://dx.doi.org/10.4049/jimmunol.206.supp.59.21.
Full textXiang, Fei, and Shan Li. "Parameter Optimization of PID Controller for Boiler Combustion System by Applying Adaptive Immune Genetic Algorithm." Advanced Materials Research 546-547 (July 2012): 961–66. http://dx.doi.org/10.4028/www.scientific.net/amr.546-547.961.
Full textLiu, Maoxing. "The analysis of HIV/AIDS drug-resistant on networks." International Journal of Modern Physics C 25, no. 05 (March 11, 2014): 1440008. http://dx.doi.org/10.1142/s0129183114400087.
Full textShurygina, A. P. S., N. V. Zabolotnykh, T. I. Vinogradova, K. A. Vasilyev, Zh V. Buzitskaya, and M. A. Stukova. "Lung memory T-cell response in mice following intranasal immunization with influenza vector expressing mycobacterial proteins." Russian Journal of Infection and Immunity 10, no. 3 (August 7, 2020): 506–14. http://dx.doi.org/10.15789/2220-7619-iol-1232.
Full textStovba, L. F., O. V. Chukhralya, D. I. Pavel’ev, N. K. Chernikova, and S. V. Borisevich. "Comparison of the Efficacy of Different Schemes for Using Recombinant Vector Vaccines against Ebola Fever, Based on Vaccinia Virus, MVA Strain." Problems of Particularly Dangerous Infections, no. 4 (January 7, 2024): 24–31. http://dx.doi.org/10.21055/0370-1069-2023-4-24-31.
Full textWANG, Jun, Yunqing HAN, and Miles F. WILKINSON. "An active immunization approach to generate protective catalytic antibodies." Biochemical Journal 360, no. 1 (November 8, 2001): 151–57. http://dx.doi.org/10.1042/bj3600151.
Full textProtasov, A. V., N. P. Andreeva, and A. M. Kostinovа. "Vaccination of patients with bronchial asthma against influenza and pneumococcal infection." Journal of microbiology epidemiology immunobiology, no. 4 (September 2, 2019): 90–98. http://dx.doi.org/10.36233/0372-9311-2019-4-90-98.
Full textDissertations / Theses on the topic "Immunization schemes"
Saade, Carla. "Immune response against SARS-CoV-2 : impact of viral variants, vaccination, and protection against reinfection." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10271.
Full textThe COVID-19 pandemic has presented significant challenges to global healthcare, largely due SARS-CoV-2’s ability to acquire new mutations. This has led to the sequential emergence of variants of concern (VOCs) such as Alpha, Beta, Delta, and now Omicron that exhibited different successive subvariants (notably BA.1, JN.1, and KP.3). These VOCs have raised concerns about their capacity to escape the immune response induced by infection and/or vaccination. As vaccination campaigns continue worldwide, it is crucial to evaluate how different immunization schemes, including homologous and heterologous vaccinations as well as infection combined with vaccination (hybrid immunity), impact the immune response against emerging variants. With a prospective cohort of healthcare workers, this PhD project aimed to investigate i) the capacity of viral variants to escape the immune response, ii) the effectiveness of different immunization schemes, and iii) the durability of the resulting immune responses. Our findings indicated that the Alpha and Beta variants are able to escape neutralizing antibodies induced by immunization against the ancestral strain, regardless of the immunization scheme. This capacity for immune evasion extends beyond these earlier variants, as both the Delta and Omicron variants also demonstrated significant resistance to neutralization by antibodies elicited through prior immunization. Such findings underscore the critical need to consider variant-specific immune escape when establishing protection thresholds and updating vaccination strategies. In addition to viral immune escape the waning of the immune response also contributes to a decreased protection against SARS-CoV-2. Our results show that the type of immunization, i.e. infection or vaccination, significantly influences the peak levels and half-life of antibodies targeting the receptor binding domain (RBD). This led us to investigate the immune response induced by different immunization schemes 6 months post-immunization. In particular, we showed that hybrid immunity leads to a more robust immune response 6 months post-immunization compared to immunity induced by either infection or vaccination alone. This enhanced response is observed across various immunological parameters, such as neutralization capacity and the pool of memory B cells, and translates into significantly improved protection against the Delta variant. Individuals with hybrid immunity experienced a 4.5-fold reduction in the risk of Delta infection compared to those with immunity induced solely by homologous vaccination. These findings highlight the importance of considering these differences when formulating vaccination recommendations. Nevertheless, breakthrough infections, i.e. infections occurring despite previous vaccination, are frequently reported during the Omicron era among individuals fully-vaccinated and those with hybrid immunity. Our investigation into the humoral immune response following BA.1 breakthrough infection revealed that while hybrid immunity prevents an increase in anti-S IgG4 levels and maintains a high antibody-dependent cellular cytotoxicity (ADCC) activity, it limits the diversification of the RBD-specific memory B cell pool compared to vaccination-induced immunity. Hence, our results indicate that BA.1 breakthrough infection elicits distinct immune responses that vary based on prior immunization schemes, which emphasizes the interest to consider immunization history with the aim to personalize vaccination recommendations. Overall, the results obtained throughout this PhD project emphasize the need to incorporate prior immunization history into ongoing adjustments of vaccination strategies and policies to effectively address the evolving immune escape capabilities of VOCs
Books on the topic "Immunization schemes"
Sahn, David E. Is Food the Answer to Malnutrition? Edited by Ronald J. Herring. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780195397772.013.030.
Full textBook chapters on the topic "Immunization schemes"
Dwyer, Michael. "Towards a National Immunization Programme." In Strangling Angel, 144–69. Liverpool University Press, 2018. http://dx.doi.org/10.5949/liverpool/9781786940469.003.0008.
Full textDwyer, Michael. "Anti-diphtheria Immunization in the Irish Free State." In Strangling Angel, 51–76. Liverpool University Press, 2018. http://dx.doi.org/10.5949/liverpool/9781786940469.003.0004.
Full textDwyer, Michael. "O’Cionnfaola v. the Wellcome Foundation and Daniel McCarthy." In Strangling Angel, 126–43. Liverpool University Press, 2018. http://dx.doi.org/10.5949/liverpool/9781786940469.003.0007.
Full textDwyer, Michael. "The Ring College Immunization Disaster." In Strangling Angel, 101–25. Liverpool University Press, 2018. http://dx.doi.org/10.5949/liverpool/9781786940469.003.0006.
Full text"A Scheme for Immunization against Common Infections." In A Synopsis of Children's Diseases, 520. Elsevier, 1985. http://dx.doi.org/10.1016/b978-1-4831-8407-4.50186-3.
Full textBrazelton, Mary Augusta. "Legacies of Warlords and Empires." In Mass Vaccination, 33–54. Cornell University Press, 2019. http://dx.doi.org/10.7591/cornell/9781501739989.003.0002.
Full textConference papers on the topic "Immunization schemes"
Xinli Huang, Yin Li, Ruijun Yang, and Fanyuan Ma. "Enhancing Attack Survivability of Gnutella-like P2P Networks by Targeted Immunization Scheme." In Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT'05). IEEE, 2005. http://dx.doi.org/10.1109/pdcat.2005.135.
Full textAraújo, Amanda Viana de Araújo e., Anna Clara Silva Fonseca, Geovanna Resende de Moraes, Ivan Kevin da Silva Garcia, Beatriz Oliveira Amaro, and Wallex da Silva Guimarães. "The role of health professionals in promoting women's knowledge about HPV and its relationship with cervical cancer." In III Seven International Medical and Nursing Congress. Seven Congress, 2024. http://dx.doi.org/10.56238/iiicongressmedicalnursing-008.
Full textReports on the topic "Immunization schemes"
Knowles, Donald, and Monica Leszkowicz Mazuz. Transfected Babesia bovis expressing the anti-tick Bm86 antigen as a vaccine to limit tick infestation and protect against virulent challenge. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598160.bard.
Full text